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Figure S1. Enrichment versus flow rates (¢, ml/hr) and number of membranes stacked (n),
which shows that capture rate decreases as a function of flow rate but can be increased by
stacking multiple ExoTENPO membranes in series. Enrichment versus flow rate data were
collected using n = 2 membranes and enrichment versus number of membranes data were

collected using ¢ = 10 ml/hr.
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Figure S2. Western blot analysis for the presence of exosomal markers (TSG101, Alix, CD9)
and GluR2, a surface protein that we used to capture specific types of vesicles. Mouse plasma
(~1.5 ml) was run through the device and 20 ug of proteins was loaded per lane. Multiple bands
observed in the Western blots and the bands that are below the expected size may be
degradation products. Those larger are most likely cross-reacting proteins or possible
complexes of the proteins not fully denatured (e.g. CD9 shows a band at approximately double
the size of the monomer, suggesting possible dimers). Many reports do not show the existence
of these extra bands since the Western blots are cut to show only the expected band, but
multiple bands are shown on some of the product sheets for the antibodies purchased (e.g. Anti-

ALIX antibody, ab117600, Abcam).



KEGG pathway

Amphetamine addiction
ECM-receptor interaction

Axon guidance

Cocaine addiction

Hippo signaling pathway

Long-term potentiation
Glutamatergic synapse

Long-term depression

Oxvtocin signaling pathway

Mucin type O-Glycan biosynthesis
Phosphatidvlinositol signaling svstem
Estrogen signaling pathway

Gastric acid secretion

Melanogenesis

Whnt signaling pathwav

GnRH signaling pathway

Choline metabolism in cancer
Thyroid hormone signaling pathway
Adherens junction

Adrenergic signaling in cardiomyocytes
Thvroid hormone svnthesis

cAMP signaling pathway

MAPK signaling pathwav

GABAergic synapse

Arrhvthmogenic right ventricular cardiomvopathv (ARVC)
Proteoglycans in cancer

Colorectal cancer

Pathways in cancer

Dopaminergic svnapse

Neurotrophin signaling pathway
Rap1 signaling pathwav

Regulation of actin cytoskeleton
Insulin secretion

Calcium signaling pathway
Endocvtosis

cGMP-PKG signaling pathway
Bacterial invasion of epithelial cells
Acute myeloid leukemia

mTOR signaling pathwav

Type Il diabetes mellitus

Vascular smooth muscle contraction
Focal adhesion

Ras signaling pathwayv

Dilated cardiomyopathy

Endocrine and other factor-regulated calcium reabsorption
Salivary secretion

Notch signaling pathwav

Protein processing in endoplasmic reticulum
Tvrosine metabolism

Transcriptional misregulation in cancer
PI3K-Akt signaling pathway

Glioma

Sphingolipid signaling pathwav

HIF-1 signaling pathway

Fc gamma R-mediated phagocvtosis
Insulin signaling pathway

Prostate cancer

Signaling pathways regulating pluripotency of stem cells
Cholinergic svnapse

AMPK signaling pathway

Lvsine degradation

mRNA surveillance pathway

p-value

9.88E-10
1.72E-08
6.33E-08
8.43E-06
8.43E-06
5.89E-05
5.89E-05
6.71E-05
6.71E-05
7.83E-05
0.000226338
0.000315628
0.000315628
0.000315628
0.000315628
0.000374091
0.000374091
0.000374091
0.000502778
0.000502778
0.000723891
0.001061806
0.001061806
0.001291407
0.001291407
0.001291407
0.001424685
0.001522255
0.001778928
0.001809901
0.00215094
0.002586915
0.002713245
0.00313986
0.003891426
0.004374251
0.007378135
0.007395526
0.007395526
0.009062598
0.009086041
0.010003783
0.017436479
0.017436479
0.021778587
0.023046574
0.02348454
0.025880522
0.030277587
0.030277587
0.030277587
0.035464845
0.035464845
0.036935049
0.037064748
0.037339799
0.037442281
0.037442281
0.03748049
0.041102219
0.041504241
0.041504241

#igenes

#miRNAs

Figure S3. Significantly enriched pathways (N=62, FDR corrected p value < 0.05) from KEGG.

The highlighted pathways (red) are relevant brain injury-related pathways.
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Figure S4. KEGG pathways that are statistically significantly different (p value <0.05) for blast

injured mice versus healthy mice. Top 3 miRNAs related to the pathways and their target genes

are included.
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Figure S5. The performance evaluation of training sets using N-1 leave-one-out cross
validation. Confusion matrix is made by comparing predicted labels to actual labels. A. A training
set that compares high blast 1hr vs. sham control achieved Accuracy = 90%. B. A training set
that compares sham control vs. heterogeneous injury achieved Accuracy = 100%. C. A training
set that compares sham control vs. different time points achieved Accuracy = 100%. D. A
training set that compares sham control vs. low blast (LB) vs. high blast (HB) achieved 58%
accuracy. Here, misclassification mainly comes from classifying LB from HB. E. A training set
that compares sham control vs. single injury vs. double injury achieved 61% accuracy. Here,
misclassification mainly comes from classifying single injury from double injury. F. A training set
that compares healthy donors vs. TBI patients achieved Accuracy = 93%. G. A training set that

compares 1 hrvs. 1 day vs. 4 days vs. 14 days achieved Accuracy = 71%.
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Figure S6. Heat map of expression level of EV miRNAs from different groups of mice (injured,
control). Statistical difference of miRNA expression levels between two groups is reported as p

value and AUC was calculated for individual miRNAs.
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Figure S7. Classification accuracy versus the number of samples in the training set. To
evaluate the effect of training set size, we performed N-1 cross validation for two classifications,
by merging the training and evaluation set. We performed this test on the multi-state
classification of Sham vs. a single injury vs. a double injury and sham vs. a low blast pressure
injury (215 kPa) vs. a high blast pressure injury (415 kPa). As the number of samples in the
training set increased, accuracy of the N-1 cross validations increased out to N = 60 samples,

indicating that data contains meaningfully separable signals.
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Figure S8. The performance evaluation of two different patient cohorts. A. A comparison for
healthy controls versus patients with TBI and systemic injury. AUC = 0.94 was achieved with N =
44 samples in the blinded test set. B. A comparison for healthy controls versus patients with TBI
and no or mild systemic injury. AUC = 0.996 was achieved with N = 37 samples in the blinded

test set.
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Figure S9. The benchmarking of our EV diagnostic to Quanterix’s Single MOlecule Array
(SIMOA) platform. A. Using this platform we measured known TBI biomarkers, including GFAP,
UCH-L1, Tau, and NF-L. The concentrations of these markers were measured from TBI patients
(N = 36) and healthy controls (N = 15) in a representative cohort from the same samples
measured using our EV diagnostic. B. For none of the protein markers was there a significant
difference between TBI patients and healthy controls (P > 0.05), likely due to the variability of
the injury severity (AIS 2-5) and time elapsed since the injury (0.4-120 hours) within our patient
cohort. The AUCs from the protein markers ranged from 0.66-0.88, which were lower than what

we have achieved (AUC = 0.9) using our EV diagnostic.
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Figure S10. The benchmarking of our EV diagnostic to Quanterix’s Single MOlecule Array

(SIMOA) platform. Using this platform we measured known TBI biomarkers, including Tau and

NF-L. The concentrations of these markers were measured from TBI patients (N = 36) and

healthy controls (N = 15) in a representative cohort from the same samples measured using our

EV diagnostic. For none of the protein markers was there a significant difference between TBI

patients and healthy controls (P > 0.05), likely due to the variability of the injury severity (AIS

2-5) and time elapsed since the injury (0.4-120 hours) within our patient cohort. The AUCs from

the protein markers ranged from 0.66-0.88, which were lower than what we have achieved

(AUC = 0.9) using our EV diagnostic.
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Figure S11. The predictive values of TBI patients using protein or miRNA biomarkers from

serum or plasma.



Figure S12. A. The SEM image of iron oxide magnetic nanoparticles (d = 50 nm). B. An

SEM image of EVs captured at the edge of the nanopores. The scale baris 1 um.



0% clogged B 4% clogged C =

Flow velocity (um/s)

20

4% clogged 0% clogged

Figure S13. Simulation of invariance of TENPO to clogging. Clogging is simulated using
Comsol Multiphysics finite element simulation package. We model an array of N = 23 pores
with a diameter of 600 nm in a polycarbonate membrane that was 5 uym thick. We use
symmetric boundary conditions to approximate an infinite array of pores. The pores are
spaced by 4 um to approximate a pore density of 107 cm-2 and the flow rate is set at 3 mL/hr.
We simulate clogging by comparing an unclogged array (A) with an array with one pore
occluded (B), simulating a much higher rate of pore occlusion (4%) than observed using our
device with plasma (<0.1%). In the clogged device, as expected, the flow is evenly

distributed to the other pores (C), resulting in robust device operation.
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Figure S14. The specificity of the EXoTENPO device tested using isotype control (biotin

mouse igG1 k isotype, Biolegend) antibody. Two highly expressed genes were selected for

comparison and measured using QPCR. PCR threshold cycle Ct values of exosome-specific
capture were compared to those of control antibody and fold change was quantified. Error
bars represent Standard Error from two device replicates and three PCR replicates.(P <

0.005)



