Status¹ Parameter Value Unit Description Vol Duodenum 3.84615×10-5 Volume of the duodenum compartment 0 7.9×10^{-4} Vol_{RBC} Volume of the RBC compartment 0 6.73077×10⁻⁵ Volume of the spleen compartment Vol_{Spleen} 0 Vol_{Liver} 1.161905×10-3 Volume of the liver compartment 0 1.3×10^{-3} Vol_{Plasma} Volume of the plasma compartment 0 Vol_{BoneMarrow} 2.14286×10⁻⁴ Volume of the bone marrow compartment 0 1.96948×10⁻² Vol_{RestOfBody} Volume of the "rest of body" compartment 0 kInDuo 0.397138 1st order rate constant of iron transfer from Transferrin to Duoded¹ nıım d^{1} kInLiver 2.11666 1st order rate constant of iron transfer from Transferrin to Liver ▲ d^{1} kInRBC 5.03844×10¹¹ 1st order rate constant of iron transfer from Bone Marrow to RBC † kInRest 1st order rate constant of iron transfer from Transferrin to "Rest of d^1 4.78121 † Body" kInBM 1st order rate constant of iron transfer from Transferrin to Bone d^{1} † 4.06878×10¹² Marrow d¹ kDuoLoss 6.80738×10⁻⁵ 1st order rate constant of iron loss from Duodenum compartment *kRestLoss* † 1st order rate constant of iron loss from "Rest of Body" compart-0.0168620 d¹ ment kBMSpleen † 0.103218 1st order rate constant for transfer or iron from Bone Marrow to d¹ Spleen **VDuoNTBI** † 0.200906 Maximal rate of Ferroportin in Duodenum compartment (FPN mol d1 Vmax) **VLiverNTBI** 0.0444795 mol d1 Maximal rate of Ferroportin in Liver compartment (FPN *Vmax*) † mol d1 **VSpleenNTBI** † 2.06738 Maximal rate of Ferroportin in Spleen compartment (FPN *Vmax*) VRestNTBI 0.0101453 Maximal rate of Ferroportin in Rest of Body compartment (FPN mol d¹ Vmax) 0.03 d^{1} Steady state rate of transfer of iron from RBC to Spleen kRBCSpleen 0 KmFeFPN M 0.112511 Michaelis constant of Ferroportin reactions 6.3×10⁻⁹ M **KiHepcidin FPN** Inhibition constant of Ferroportin reactions by Hepcidin 0 $M d^{-1}$ vDiet 3.46965×10-3 Steady state rate of iron entry into duodenum (from diet) † fDiet 1.29060×10⁻⁶ Factor to adjust vDiet to the different levels of iron supply (deficient, adequate, and rich iron, in this order). The effective rate of 0 ▲ 3.11813 dietary iron entry is the product *fDiet*×vDiet $M^{-1}d^{-1}$ kNTBI Fe1Tf † 1.00400×109 Second order rate constant of NTBI binding to apoTransferrin kFe1Tf_Fe2Tf 1.00400×109 $M^{-1}d^{-1}$ Second order rate constant of NTBI binding to Fe1Tf 0 d^1 3.98766×10-4 ksHepcidin † 1st order activation constant of Hepcidin synthesis by TotalFeTf 5.0×10⁻¹² M **KEPOHepcidin** 0 Inhibition constant of EPO on Hepcidin synthesis hEPOHepcidin 0 4 Hill coefficient for inhibition of EPO on Hepcidin synthesis d^1 0.75616 kdHepcidin v order rate constant for degradation of Hepcidin 0 **VNTBILiver** 14.1511 $M d^{-1}$ Maximal rate of import of NTBI into the liver (ZIP14 *Vmax*) 6.79291×10⁻⁴ KmNTBI M Michaelis constant for NTBI entry into the liver (ZIP14 Km)

S1 Table – List of all model parameters including their values, units, and a brief description of their	role.
---	-------

KaNTBI		2.55016×10-4	М	Substrate activation constant for NTBI entry into the liver
vEPO	ţ	2.62675×10-9	M d ⁻¹	Maximal rate of synthesis of EPO (when [FeRBC]=0)
hEPO	0	6.5		Hill coefficient for the inhibition of EPO synthesis by FeRBC
KiEPORBC	0	0.01	М	Inhibition constant of EPO synthesis by FeRBC
<i>kdEPO</i>	0	4.8	<i>d</i> ⁻¹	1 st order rate constant for the degradation of EPO
vTf	ţ	1.54710×10-5	M d ⁻¹	Rate of synthesis of Transferrin
kdTf	0	0.4	d ¹	1 st order rate constant of degradation of Transferrin
Injected	0	3.073×10 ¹⁵		Number of radioactive ferrous ions injected (tracer)

¹- parameters marked with a triangle (\blacktriangle) were fit to the data, those marked with a dagger (†) were determined by steady state equations, and those marked with an open circle (\circ) were determined by other data or assumptions.