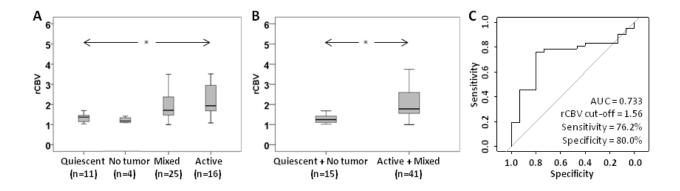
Supplementary Table S1. The correlation coefficients of APTw intensity and semi-quantitative (Path_{spec}, Cell_{spec}, and Nec_{spec}) and quantitative (Cell_{count} and Ki-67) pathologic indices

	Path _{spec}	Cell _{spec}	Nec _{spec}	Cell _{count}	Ki-67
APTw Intensity	0.651***	0.616***	-0.255*	0.580***	0.458***
Path _{spec}		0.675***	-0.286**	0.622***	0.380**
Cell _{spec}			-0.174	0.725***	0.495***
Nec _{spec}				-0.066	-0.085
Cell _{count}					0.587***

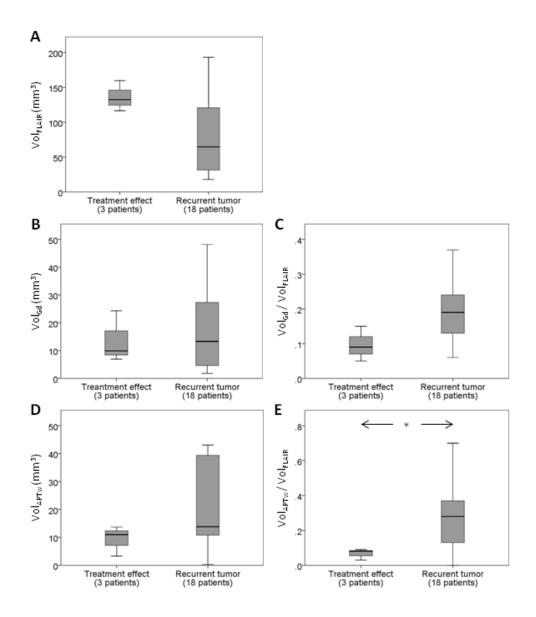
Note: Path = histopathologic assignment; Cell = cellularity; Nec = necrosis. Subscript "spec" means the specimen-based measurement from the whole specimen, and Cell_{count} and Ki-67 were quantitatively counted by image processing software semi-automatically. For Path_{spec}, we used: quiescent = 1; mixed = 2; and active = 3. For the sake of simplicity, four no tumor-containing specimens were grouped with quiescent tumor specimens for the analysis. *P < 0.05; **P < 0.01; ***P < 0.001.


Supplementary Results

Regression Analysis between APTw and Pathologic Indices


We finally performed a multiple linear regression analysis to model the relationship between APTw signal intensity and pathologic indices. We tested three potential predictor sets: [Path_{spec}, Cell_{spec}, Nec_{spec}, Ki-67], [Path_{spec}, Cell_{count}, Nec_{spec}, Ki-67], and [Path_{spec}, Cell_{spec}, Nec_{spec}, Cell_{count}, Ki-67]. For Path_{spec}, we used: quiescent = 1; mixed = 2; and active = 3. Four no tumor-containing specimens were grouped with quiescent tumor specimens for the analysis. After a stepwise elimination, the same model equation was obtained:

APTw =
$$0.620 + 0.812 \times \text{Path}_{\text{spec}} + 1.280 \times \text{Ki-67} \ (R^2 = 0.546; P < 0.05).$$
 [S1]


The histopathologic assignment (Path_{spec}: active, mixed, quiescent/no tumor) was identified as the most powerful factor that affected APTw signal intensity, followed by the Ki-67 index. These results indicated that APTw imaging can identify areas with the most malignant biological behavior, consistent with active tumor within heterogeneous brain lesions.

Supplementary Fig. S1. Quantitative analysis and diagnostic ability of rCBV. **A,** Quantitative comparison of rCBV intensities that correspond to quiescent, mixed, and active specimens, as well as non-tumor specimens. **B,** Quantitative comparison of rCBV intensities that correspond to treatment effects (non-tumor and quiescent) and tumor recurrence (mixed and active). **C,** The ROC analysis of rCBV intensities as an imaging biomarker to distinguish active glioma from treatment effects. * P < 0.05.

Supplementary Fig. S2. Anatomical and APTw MR images for a patient with treatment effect (**A**, Patient 17) and a patient with recurrent tumor (**B**, Patient 2). Only 3/15 slices acquired were shown. Areas with recurrent tumor (namely, APTw > 1.79%, compared with CNAWM) were marked in red, which were used to calculate the APTw-based recurrent tumor volume (Vol_{APTw}).

Supplementary Fig. S3. Comparison between tumor volumes for three patients with treatment effects and 18 patients with recurrent tumor. **A,** FLAIR hyperintensity-based tumor volumes (Vol_{FLAIR}). **B,** Gd-enhancing tumor volumes (Vol_{Gd}). **C,** Vol_{Gd}/Vol_{FLAIR}. **D,** APTw-based recurrent tumor volume (namely, APTw > 1.79%, compared with CNAWM; Vol_{APTw}). **E,** Vol_{APTw}/Vol_{FLAIR}. Based on the Mann-Whitney U test, the mean tumor volumes of FLAIR hyperintensity and Gd enhancement were not significantly different between these two patient groups. However, the relative APTw-based recurrent tumor volumes (Vol_{APTw}/Vol_{FLAIR}) were significantly lower for three patients with treatment effects than for 18 patients with recurrent tumor (0.07 \pm 0.03 vs. 0.31 \pm 0.25; P < 0.05).