
Supplemental Information

HeatITup Algorithm:

Choice of preprocessing

HeatITup has two implementations: heatitup and heatitup-complete. While heatitup accepts
FASTA files and heatitup-complete accepts BAM files, both programs output the same CSV file.
Before duplication detection, there is a choice of preprocessing built into heatitup-complete.
heatitup-complete can join together the mate pairs to lengthen reads in paired end sequencing.
For complex reads, heatitup-complete can use Trinity1 to create contigs from the reads and find
duplications within those longer sequences. heatitup-complete then calls heatitup to detect the
repeated sequences. For cases in which preprocessing to elongate or join reads is not needed, or a
custom preprocessing is run, we recommend directly using heatitup. The following sections cover
the algorithm that is implemented by heatitup. The complete list of arguments are documented
with the heatitup -h or heatitup-complete -h command.

Identify the duplication sequence of ITD

The longest repeated substring problem can be solved using suffix trees2. The algorithm first identi-
fies the locations of the duplications by using an efficient functional lazy suffix tree implementation
(suffixtree package)3. heatitup follows this method to identify such a substring and checks if the
resulting substring overlaps using the Boyer-Moore algorithm (stringsearch package)4. In the end,
heatitup identifies the deepest path in the tree resulting in the current candidate for the duplication
(the left candidate CDl and the right candidate CDr, both ordered sets of positions, for instance CDl
could be {20, 21, 22, 23, 24}).

In order to account for point mutations (real or due to sequencing errors) in the duplications,
we provide the --min-mutations parameter which allows for a certain number m of nucleotides
in-between mutations. The algorithm identifies mutations by mutating the nucleotide at min(CDl)−1
and the nucleotide at min(CDr)− 1 (“end mutations”) so that both nucleotides are equal. We then
reconstruct the suffix tree and obtain a new substring with a new CDl and CDr. We do the same
procedure for the nucleotide on the right side, max(CDl) + 1 and max(CDr) + 1. If the longest of the
two substrings is longer than the previously found substring by m or more, then we call the changed
nucleotide a mutation and continue to search for more mutations until we end up with candidate
substrings that are not longer than the current best by m (Figures 1b and 1c). These positions are
then set as Dl and Dr.

1

Identify the exogenous nucleotides of the spacer of ITD

We call the set of nucleotides in-between the duplication locations, S = {max(Dl) + 1, max(Dl) +
2, ... , min(Dr)− 1}, the “spacer”. If max(Dl) + 1 = min(Dr), then the spacer is the empty set and thus
the sequence is classified as a typical FLT3-ITD. Otherwise, we slide the spacer sequence with the
left or right duplication, Dl ∪ S or S ∪ Dr across the reference sequence and find the location with
the minimum Hamming distance. The mismatches between these two strings are candidates for
exogenous nucleotides within the spacer. The reference sequence here is contained in a FASTA file
and is at the location of the suspected ITD. For instance, here we use the FLT3 exon 14 sequence
as the reference. Using an incorrect reference (here any gene or sequence that is not FLT3) may
result in wrong exogenous assignment and filters.

Based on empirical observations, exogenous nucleotides are differentiated from point mutations
in the spacer by being present in a long continuous string, whereas a point mutation would be
relatively isolated. We chose to use a heat equation as a model for point mutation identification.
That is, over time a location with continuous spikes of heat takes longer to disperse under a
certain threshold than an isolated spike (Figures 1b and 1c). In our application, the spikes of
heat are analogous to mismatched nucleotides, so we implemented the heat equation using the
discrete Gaussian kernel. The parameters of the kernel are customizable in the --gaussian-window,
--gaussian-time, and --gaussian-threshold parameters. --gaussian-window refers to the length
of the window for the Gaussian kernel, --gaussian-time refers to the number of steps to run the
diffusion, and the --gaussian-threshold refers to the minimum heat cutoff to be considered an
exogenous nucleotide rather than a point mutation.

If there are no exogenous nucleotides within the spacer, the sequence is classified as a typical
FLT3-ITD, otherwise the sequence is classified as an atypical FLT3-ITD.

Filter out false positive duplications

Looking for all repeated sequences within the reads would naturally be prone to false positives – re-
peated sequences can occur naturally. Especially for smaller repeated sequences this can become
an issue where the signal is lost in the noise. In order to remove repeated sequences that can be
found in the reference, we have implemented several filters. We provide the --blacklist-input
parameter to point to a fasta file containing known false positives. If set, a candidate duplication is
compared to each sequence in the blacklist. If the two sequences share a Levenshtein distance5

of less than the parameter --levenshtein-distance, the sequence is considered a false positive
and the next longest duplication candidate is evaluated.

We can utilize known information to get a more specific filter using the reference sequence
itself. If the reference sequence is provided via the --reference-input parameter, we can com-
putationally derive two types of blacklists in addition to the provided one: a basic "match" and a
recursive blacklist creation. For the basic match, --reference-check-blacklist, the candidate
duplication sequence is located at each position in the reference sequences. If there are two
or more non-overlapping occurrences within a sequence, the candidate is called a false positive.
These checks are efficient and are recommended over the following process.

The alternative approach to generate a blacklist is through the --reference-recursive-blacklist
parameter. This option creates a blacklist by running the duplication finder algorithm on the se-
quences and finding the longest repeated substring in each one. Those sequences not in the
blacklist (checked with the Levenshtein distance) are added to the blacklist and the algorithm is

2

run again, getting the next longest duplication and so on until all duplications are in the blacklist.
This process may be faster and more precise (due to the Levenshtein distance being applied to
this blacklist whereas --reference-check-blacklist only searches for exact matches) for smaller
reference sequences, but becomes much slower for longer sequences due to the worse scalability
of the duplication finder versus the substring matching.

The reference can also provide a template for contigs generated from unmapped reads in
heatitup-complete. Using the --blast-command argument in the assembly method removes
contigs with no significant alignments to the provided reference. Furthermore, if the reads were
aligned and provided as BAM input, we can use the CIGAR to efficiently remove reads matching all
positions that are unlikely to contain any duplications. These steps remove much of the noise that
results in repeated strings that are not actual duplications.

Output format

The output of both heatitup and heatitup-complete is a CSV.

Explanation of each column in the heatitup output CSV.

Column name Definition
label Inputted label from the --label field
fHeader Header of the sequence
fSequence Read sequence
dSubstring Duplicated segment
dLocations Positions of the duplicated segment and its origin
dMutations Positions of the point mutations pairs
sSubstring Spacer segment
sLocation Position of the spacer
sOtherLocations Positions of the exogenous nucleotides
classification Classification of the read: Typical, Atypical, or Normal (no duplication)

Computational complexity

The algorithm uses repeated lazy functional suffix tree constructions and searches, as well as a
sliding window for the spacer identification. Using a constant alphabet of nucleotides, we can expect
to construct the lazy suffix tree in time complexity O(kn log n), with a worst case of O(kn2), where k
is the size of the alphabet (a constant here) and n is the length of the string3. With larger alphabets,
this implementation is faster than both Ukkonen and McCreight’s algorithms3. With mutations, we
construct the suffix tree O(n) times. Similarly, we find the candidate atypical mutations using a
sliding window, with a worst case of the entire sequence being a spacer, O(n2). Finally, the discrete
Gaussian kernel is constant, with just the input of the heat signal creating a complexity of O(n).
Thus the algorithm in total has complexity of O(n2).

The algorithm is implemented in a streaming fashion, so constant space is taken for all input
sequences as we can classify each sequence independently. For the data from the TCGA cohort
consisting of 8153681 reads from 321 samples, the assembly based algorithm with Trinity (using
the entire FLT3 gene as a reference for the blacklist) ran in 41:32 hours on a single thread. Without

3

assembly, the algorithm ran in 21:45 minutes on a single thread, although this process could be
easily parallelized.

The algorithm was implemented in Haskell and available at https://github.com/faryabib/HeatITup.

ITD Characterization

We determined the proportion of typical ITD by (# typical clones / (# atypical clones + # typical
clones)). In comparing the lengths of the duplicated segment and spacer segment, we used the
Mann-Whitney U test. We quantified the fraction of the spacer that was exogenous by counting
the number of like nucleotides and dividing them by the length of the spacer. Each atypical clone
contributes a value to each nucleotide, so if the exogenous segment was "AGG" and the spacer was
“AGGTTC” the resulting values would be (A, 1), (C, 0), (G, 2), (T, 0) before percentage conversion.
We used the Mann-Whitney U test for comparing purines versus pyrimidines and Tukey’s HSD after
ANOVA to find significance of each individual nucleotide.

Statistical Analysis

ITD Clonal assignment

All reads with a similar FLT3-ITD mutation were assigned to a clone with an allele frequency
(AF). We provide the helper program collapse-duplication to assist in grouping together similar
mutations into clones. Using the assumption that the anchor points of the duplication should
remain relatively stable, the program groups together reads with similar duplication and spacer
segment locations and lengths. The window length for the positions to be near each other between
reads, as well as the difference in lengths for the spacer and duplication, can be lenient (the
beginning position of the spacer can be within 5 nucleotides between reads, for instance, using the
--wiggle 5 option). We can then use the grouped together reads to calculate the AF. The amount
of leniency between reads was set to 5 nucleotides in this analysis. We removed clones with an AF
smaller than 1%, resulting in 189 typical and 50 atypical clones in all 97 individuals. For the TCGA
cohort, we included clones if their FLT3-ITD duplication length was 15 or greater. Results from
heatitup on TCGA were compared to the table in Rustagi et al.6. Each individual’s representative
FLT3-ITD clone was determined based on the dominant clone from the earliest sample (University
of Pennsylvania) or, due to less coverage, longest duplication (TCGA).

Survival analysis

Overall survival (OS) curves for both the FLT3i-treated and non-FLT3i-treated studies were cal-
culated from the date of diagnosis to the date of censor, either death or latest follow-up. A
Cox proportional hazards model was applied to each cohort for each relevant variable using the
survival R library. The proportional hazards assumption for each presented variable was tested
and met using Schoenfeld residuals7.

To identify possible confounding variables in this analyses, a univariate Cox regression was
used for each candidate confounding variable: sex, age, allogenic transplant, disease type (de
novo or relapsed), remission at initiation of TKI treatment, and FLT3i type. Allogenic transplant

4

https://github.com/faryabib/HeatITup

and remission at initiation of TKI treatment were significant contributors in this analysis and were
included in all subsequent survival analyses where applicable.

For the survival curves, the survminer was used to plot the raw Kaplan-Meier curves for the
cohort. For the exogenous ratio curve, the ratio resulting in the maximum separation between the
two groups was used for visualization only, the complete spectrum of values was used in the Cox
model.

5

0

20

40

60

80

Atypical Typical

D
up

lic
at

io
n

Le
ng

th
 (

bp
)

●

●●

●
●

●
●●●●
●

●●

●●●●
●

●

●●

●

●●●●
●
●●●

0

40

80

120

160

Atypical Typical

S
pa

ce
r

Le
ng

th
 (

bp
)

a. b.

c. d.

●

●
●●

●

●

●

●●

●●

●

●

●●●

●

●●

●●

●●

●●

●●

●●

●

●

●●

●●

●

●

●●

●

●●

●●

●●

●●●●●●●●●●●●

●

●

●

●
●●

●●

●

●

●

●

●

●●

●

●

●

●●

●●
●●

●●

0%

25%

50%

75%

100%

A C G T

F
ra

ct
io

n
of

 s
pa

ce
r

(%
)

0%

5%

10%

15%

20%

10 20 30 40 50

Exogenous Nucleotides

F
ra

ct
io

n
of

 c
lo

ne
s

(%
)

Figure S1: Characterization of FLT3-ITD clones in the FLT3i cohort. a) Violin plots of
duplicated segment lengths for typical and atypical clones (Typical median: 39 bp, Atypical median:
43, Mann-Whitney U test: p = 0.294). b) Violin plots of spacer segments for typical and atypical
clones (Typical median: 0, Atypical median: 11.5, Mann-Whitney U test: p < 2.22e− 16). c)
Distribution of the number of exogenous nucleotides per clone (median (mean): 4 (5.44) bp). d)
Exogenous nucleotide usage. By Tukey’s HSD after ANOVA, G > A (p = 0.0588), G > C
(p = 9.54e− 5), G > T (p = 0.00490), and (p > 0.05) for all other comparisons. 186 typical clones
and 50 atypical clones.

6

Table S1: Confusion matrix of HeatITup and genetic reviewers manual annotation for sequences
in Figure 3.

Expert visual annotation
Typical Atypical

HeatITup
Typical 22 0
Atypical 0 17

Table S2: Univariate Cox regression analyses for the FLT3-ITD-positive UPENN cohort.

Variable HR CI p-value
Age 1.00 1.00 – 1.00 0.737
Sex 1.03 0.604 – 1.76 0.916
Disease status 0.605 0.333 – 1.10 0.0991
Allogenic transplant 0.440 0.256 – 0.757 0.00301
Remission at TKI treatment (FLT3i+ only) 4.35 1.54 – 12.2 0.00539
Clone frequency 2.26 0.430 – 11.89 0.335
FLT3i type (FLT3i+ only) 0.783 0.528 – 1.16 0.221

Table S3: Cox regression analysis of FLT3-ITD duplication length for the non-FLT3i-treated cohort.

Variable HR CI p-value
Duplication length 1.01 0.991 – 1.04 0.250
Cohort 1.21 0.578 – 2.54 0.612

Table S4: Cox regression analysis of FLT3-ITD classification for the non-FLT3i-treated cohort.

Variable HR CI p-value
Typical or atypical 0.777 0.419 – 1.44 0.422
Cohort 0.917 0.483 – 1.74 0.793

Table S5: Cox regression analysis of FLT3-ITD duplication length with classification for the
non-FLT3i-treated cohort.

Variable HR CI p-value
Duplication length 1.01 0.991 – 1.04 0.244
Typical or atypical 0.772 0.418 – 1.43 0.409
Cohort 1.15 0.542 – 2.46 0.711

Table S6: Cox regression analysis of FLT3-ITD classification for the top third longest ITD
duplications in the non-FLT3i-treated cohort (Benjamini-Hochberg adjusted p-values from long
non-FLT3i-treated cohort analyses).

Variable HR CI p-value Adjusted p-value
Typical or atypical 0.226 0.0764 – 0.669 0.00722 0.0253
Cohort 2.069 0.757 – 5.66 0.156 -

7

Table S7: Cox regression analysis of FLT3-ITD spacer sequence exogenous fraction for the
non-FLT3i-treated cohort.

Variable HR CI p-value
Exogenous fraction 1.43 0.412 – 4.96 0.573
Cohort 0.723 0.324 – 1.615 0.429

Table S8: Cox regression analysis of FLT3-ITD spacer sequence exogenous fraction for the top
third longest ITD duplications in the non-FLT3i-treated cohort.

Variable HR CI p-value Adjusted p-value
Exogenous fraction 159 4.92 – 5160 0.00427 0.0253
Cohort 14.8 1.77 – 123 0.0129 -

Table S9: Cox regression analysis of FLT3i treatment for the UPENN cohort.

Variable HR CI p-value
FLT3i treated 0.0432 0.00583 – 0.320 0.00209
Allogenic transplant 0.487 0.279 – 0.849 0.0111
Remission at TKI treatment (FLT3i+ only) 4.64 1.69 – 12.8 0.00296

Table S10: Cox regression analysis of FLT3-ITD duplication length for the FLT3i-treated cohort
(Benjamini-Hochberg adjusted p-values from FLT3i cohort analyses).

Variable HR CI p-value Adjusted p-value
Duplication length 0.993 0.973 – 1.01 0.531 0.531
Allogenic transplant 0.413 0.209 – 0.814 0.0106 -
Remission at TKI treatment 4.48 1.56 – 12.8 0.00531 -

Table S11: Cox regression analysis of FLT3-ITD classification for the FLT3i-treated cohort
(Benjamini-Hochberg adjusted p-values from FLT3i cohort analyses).

Variable HR CI p-value Adjusted p-value
Typical or atypical 0.337 0.165 – 0.689 0.00286 0.00572
Allogenic transplant 0.306 0.154 – 0.607 0.000698 -
Remission at TKI treatment 4.82 1.69 – 13.8 0.00326 -

Table S12: Cox regression analysis of FLT3-ITD spacer sequence exogenous fraction for the
FLT3i-treated cohort.

Variable HR CI p-value
Exogenous fraction 4.96 1.33 – 18.5 0.0173
Allogenic transplant 0.784 0.313 – 1.96 0.603
Remission at TKI treatment 3.25 0.913 – 11.6 0.0689

8

References

1. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a
reference genome. Nature Biotechnology 29, 644–652 (2011).

2. Karp, R. M., Miller, R. E. & Rosenberg, A. L. Rapid identification of repeated patterns in strings,
trees and arrays in (ACM Press, 1972), 125–136.

3. Giegerich, R. & Kurtz, S. A comparison of imperative and purely functional suffix tree construc-
tions. Science of Computer Programming 25, 187–218 (1995).

4. Boyer, R. S. & Moore, J. S. A fast string searching algorithm. Communications of the ACM 20,
762–772 (1977).

5. Levenshtein, V. I. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady 10, 707 (1966).

6. Rustagi, N. et al. ITD assembler: an algorithm for internal tandem duplication discovery from
short-read sequencing data. BMC Bioinformatics 17 (2016).

7. Schoenfeld, D. Partial Residuals for The Proportional Hazards Regression Model. Biometrika
69, 239 (1982).

9

