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SUMMARY

The neuronal microtubule-associated protein tau,
MAPT, is central to the pathogenesis ofmany demen-
tias. Autosomal-dominant mutations in MAPT cause
inherited frontotemporal dementia (FTD), but the un-
derlying pathogenic mechanisms are unclear. Using
human stem cell models of FTD due to MAPT muta-
tions, we find that tau becomes hyperphosphorylated
and mislocalizes to cell bodies and dendrites in
cortical neurons, recapitulating a key early event in
FTD. Mislocalized tau in the cell body leads to
abnormalmicrotubulemovements in FTD-MAPT neu-
rons that grossly deform the nuclear membrane. This
results in defective nucleocytoplasmic transport,
which is corrected by microtubule depolymerization.
Neurons in the post-mortem human FTD-MAPT cor-
tex have a high incidence of nuclear invaginations,
indicating that tau-mediated nuclear membrane
dysfunction is an important pathogenic process in
FTD. Defects in nucleocytoplasmic transport in FTD
point to important commonalities in the pathogenic
mechanisms of tau-mediated dementias and ALS-
FTD due to TDP-43 and C9orf72 mutations.

INTRODUCTION

The microtubule-associated protein tau (MAPT; tau) is involved

in the pathogenesis of several different forms of dementia,

including Alzheimer’s disease (AD), progressive supranuclear

palsy, Pick’s disease, corticobasal degeneration, and frontotem-

poral dementia (FTD) (Lee et al., 2001; Spillantini and Goedert,

2013). FTD is the third most common cause of dementia, after

AD and vascular dementia (Rossor et al., 2010). Autosomal-

dominant missense and splicing mutations in MAPT are causes

of inherited or familial FTD (FTD-MAPT) (D’Souza et al., 1999;

Goedert et al., 2012; Hutton et al., 1998). However, although it

is well established that these mutations lead to hyperphosphor-

ylation and aggregation of tau protein in vivo (Ballatore et al.,
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2007; Goedert et al., 2012), the cell biology of neuronal dysfunc-

tion and progressive neurodegeneration in this condition are

currently not fully understood.

In healthy neurons, tau protein is almost exclusively localized

to the axon, and several mechanisms have been suggested for

its highly polarized cellular localization, including selective

mRNA and protein transport, local translation, and local degra-

dation (Wang and Mandelkow, 2016). Mislocalization and

aggregation of tau in neuronal cell bodies are common features

of tau-mediated dementias, including FTD and AD (Fu et al.,

2016; Thies and Mandelkow, 2007; Zempel and Mandelkow,

2015). Protein aggregation is widely considered as inherently

pathogenic in neurodegeneration (Fitzpatrick et al., 2017;

Hernández-Vega et al., 2017), altering many cellular functions,

most notably autophagy and proteostasis (Bence et al., 2001;

Caballero et al., 2018; Lim and Yue, 2015). However, how

MAPTmutations lead to tau hyperphosphorylation andmislocal-

ization, the effects of this mislocalization on neuronal cell

biology, and how this contributes to neuronal dysfunction and

neurodegeneration all remain poorly understood.

As a typical microtubule-binding protein, tau has several roles

in regulating microtubule function and intracellular transport

(Wang and Mandelkow, 2016). Tau binds both alpha and beta

tubulin subunits of microtubules and has been demonstrated

to both stabilize and promote microtubule growth (Kadavath

et al., 2015; Witman et al., 1976). The presence of tau on micro-

tubules can alter directions and rates of axonal transport (Dixit

et al., 2008; Trinczek et al., 1999). Tau is a natively disordered

protein and has recently been found to undergo fluid phase

transitions at higher concentrations, nucleating microtubules

when it does so (Hernández-Vega et al., 2017). Therefore, it is

likely that the changes in tau levels, post-translational modifica-

tions, and cellular localization that occur in dementia lead to al-

terations in microtubule biology, particularly in the neuronal cell

body.

To address the question of how MAPT mutations lead to

neuronal dysfunction and neurodegeneration, we investigated

the effects of two different classes of MAPT mutations on the

cell biology of human iPSC-derived cortical neurons. We find

that both missense and splicing MAPT mutations cause misloc-

alization of tau to the cell bodies of neurons andmarked changes
creativecommons.org/licenses/by-nc-nd/4.0/).
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in microtubule dynamics. Microtubules in the cell bodies of

FTD-MAPT neurons actively deform the nuclear membrane, dis-

rupting nucleocytoplasmic transport. Defects in nuclear enve-

lope function, including nucleocytoplasmic transport, are an

important pathological process in ALS-FTD because of repeat

expansions in C9orf72 and TDP-43 mutations (Chou et al.,

2018; Zhang et al., 2015, 2016, 2018). Our findings demonstrate

that dysfunction of the nuclear membrane due to altered micro-

tubule dynamics is a pathogenic process in dementias involving

tau, expanding the group of neurodegenerative diseases that

involve disrupted nucleocytoplasmic transport and suggesting

commonmechanisms of neuronal dysfunctional in these hetero-

geneous conditions.

RESULTS

Increased Phosphorylation and Altered Cellular
Localization of Tau in FTD-MAPT Neurons
To study the effects on neuronal cell biology of FTD-MAPT mu-

tations, we generated excitatory cortical neurons (Shi et al.,

2012b) from induced pluripotent stem cells (iPSCs) derived

from individuals with different autosomal-dominant mutations

in MAPT that are causal for early-onset FTD (Figures 1 and S1).

We studied two different types of mutations: the MAPT

IVS10+16 autosomal-dominant mutation, which increases inclu-

sion of exon 10, encoding the second microtubule-binding

repeat and thus altering the ratio of three (3R) and four (4R) tau

isoforms (Hutton et al., 1998; Sposito et al., 2015), and the auto-

somal-dominantMAPT P301L missense mutation that produces

an aggregation-prone form of tau (Wang and Mandelkow, 2016)

(Figures 1 and S1). The cortical identity of the neurons generated

and the reproducibility of the culture compositions among geno-

types was confirmed by assessing the expression of a set of

classifier genes that define different neuronal cell types

(Figure S1).

Total tau content was similar in neurons of each genotype,

collectively referred to here as FTD-MAPT neurons (Figure 1A).

Notably, tau phosphorylation was increased in FTD-MAPT neu-

rons comparedwith controls (Figure 1A), including at Ser404 and

Ser202/Thr205 (AT8), epitopes typically hyperphosphorylated in

tau-mediated dementias (Alonso et al., 2004; Wang et al., 2013).

As both mutations are dependent on expression of exon 10 of

MAPT, we confirmed translation of exon 10 in neurons generated

from all iPSC lines by western blotting and mass spectrometry

(Figures 1B, 1C, and S1). No significant difference in insoluble,

aggregated tau was detected by sarkosyl extraction between

neurons of each genotype (Figure S1).

Mislocalization of tau from axons to neuronal cell bodies and

dendrites is an early event in FTD in vivo (Götz et al., 1995; Hoo-

ver et al., 2010; Kowall and Kosik, 1987). As expected, control

neurons showed a predominantly axonal distribution of tau,

with tau largely absent from MAP2-positive neuronal cell bodies

and dendrites (Figure 1D). In contrast, tau was commonly pre-

sent in MAP2-positive cell bodies and dendrites in both MAPT

IVS10+16 and P301L neurons (Figures 1D and 1E). Furthermore,

tau within cell bodies and dendrites of FTD-MAPT neurons was

hyperphosphorylated, as detected by AT8-immunoreactivity

(phospho-S202/T205) (Figure 1D).
Microtubules Invade the Nucleus in FTD-MAPT Neurons
Given the mislocalization of tau to the cell bodies of FTD-

MAPT neurons, we studied neuronal microtubule dynamics

in control and FTD-MAPT neurons (Figures 2 and S2). Actively

extending microtubules were live-imaged in iPSC-derived

neurons of each genotype by expression of GFP-tagged EB3

(Figure 2; Videos S1 and S2), the microtubule plus-end binding

protein (+TIP) (Akhmanova and Steinmetz, 2008). Total micro-

tubule movements were not different between non-demented

control and FTD-MAPT neurons, with similar rates of exten-

sions and retractions measured among the various genotypes

(Table S1).

However, microtubule dynamics were qualitatively different

in the cell bodies of control neurons compared with FTD-

MAPT neurons. Non-demented control neurons typically had

many actively growing microtubules within the cell body that

extended around a smooth, oval nucleus (Figures 2A and

2B; Video S1). In contrast, many FTD-MAPT neurons had

microtubules with plus ends projecting into the nucleus (15

of 26 FTD-MAPT neurons) (Figure 2B), an event that was infre-

quently detected in both groups of control neurons (2 of 19)

(Figure 2B). Notably, those microtubules that abnormally pro-

jected into the nucleus in FTD-MAPT neurons frequently orig-

inated from a pronounced focus that resembled a microtubule

organizing center (Figure 2A; Video S1). These pronounced

foci were not detected in either of the control neuronal lines.

We confirmed that the EB3+ microtubules that project into

the neuronal nucleus are dynamically growing microtubules,

as the mobility of EB3+ comets was greatly reduced

following acute microtubule depolymerization (with nocoda-

zole) (Figures S2Band S2C; Video S2).

Microtubules Deform the Nuclear Envelope
in FTD-MAPT Neurons
Microtubules couple to the nuclear membrane through the

LINC complex (Crisp et al., 2006). This physical association re-

sults in transmission of mechanical forces that influence nu-

clear shape and integrity (Chang et al., 2015), affecting the

function of the nuclear envelope (Webster et al., 2009). Given

the abnormal projection of microtubules into the nucleus in

FTD-MAPT neurons, we studied the shape of the nuclear en-

velope in iPSC-derived neurons. Marked differences were pre-

sent in nuclear shape between non-demented controls and

FTD-MAPT neurons, as demonstrated by large folds, or invag-

inations, of the laminB1-positive inner nuclear lamina within

the nucleus (Figure 3). The neuronal identity of invaginated

cells was confirmed by the co-staining with the cortical deep

layer transcription factor CTIP2 and the pan-neuronal protein

b3-tubulin (Figure 3).

Quantification of the proportions of neurons with deformation

of the nuclear membrane, as defined by the presence of

laminB1-positive regions within the nucleus, (Figures 3B and

S3), demonstrated that deep nuclear invaginations were present

in approximately 25% of MAPT P301L and 40% of MAPT

IVS10+16 neurons, compared with fewer than 10% of control

neurons (Figure 3B). To confirm that microtubules actively

deformed the nucleus in FTD-MAPT neurons, we acutely depo-

lymerized microtubule with the small molecule nocodazole. This
Cell Reports 26, 582–593, January 15, 2019 583



Figure 1. Increased Phosphorylation and Altered Cellular Localization of Tau in FTD-MAPT Neurons

(A) Phosphorylated tau (pS404; AT8 [pS202/pT205]) is increased as a fraction of total tau (epitope 243–441) in frontotemporal dementia (FTD)-MAPT neurons

(MAPT IVS10+16-A/B andMAPT P301L) compared with non-demented and MAPT P301 isogenic control neurons (induced pluripotent stem cell [iPSC]-derived

neurons at 120 days in vitro [DIV]; three biological replicates). b-actin and b3-tubulin were used as controls. Molecular weight (kDa) is indicated.

(B) Tau isoforms with three (3R; red) or four (4R; inclusion of region 2; green) microtubule-binding regions were detected by western blot analysis of dephos-

phorylated protein extracts from iPSC-derived control and FTD-MAPT cortical neurons (120 DIV) and from post-mortem human cerebral cortex (non-demented

individual). Tau isoforms were identified relative to a commercial tau ladder (Sigma). Molecular weight (kDa) is indicated.

(C) Peptide sequences identified by tau immunoprecipitation (IP)/mass spectrometry from iPSC-derived cortical neurons, confirming the inclusion of repeat 2

(corresponding to exon 10) of 4R tau. In MAPT P301L neurons, both proline and leucine were identified at position 301 (highlighted red). See also Figure S1.

(D) Tau protein is mislocalized to MAP2-positive cell bodies and dendrites in iPSC-derived FTD-MAPT neurons. Confocal images of iPSC-derived control and

FTD-MAPT neurons (120 DIV; tau, green; MAP2, red; DAPI, blue). Hyperphosphorylated, AT8-positive tau (AT8; green) is found in cell bodies of FTD-MAPT

neurons (arrows) but not in controls (b3-tubulin, red; DAPI, blue). Scale bars, 20 mm.

(E) Increased co-localization of tau andMAP2 protein in FTD-MAPT neurons, comparedwith non-demented control neurons, analyzed by Pearson’s R correlation

(control lines, gray bars; FTD-MAPT lines, black).

Significance was determined for three-sample comparison of non-demented control and twoMAPT IVS10+16 lines using one-way ANOVA followed by Tukey’s

test (*p < 0.05 and ***p < 0.001). Pairwise comparison of theMAPT P301L line and its isogenic control was carried out using Student’s t test (*p < 0.05); error bar

represents SEM; n = 3 independent experiments.

See also Figure S1.
significantly reduced the proportion of neurons with nuclear in-

vaginations and restored round nuclear morphology (Figures

3C and 3D). We conclude that the pronounced deformations of

the neuronal nuclear membrane in FTD-MAPT neurons are

actively mediated by microtubules.
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Super-resolution Imaging Demonstrates Close
Apposition of Tau and Tubulin within Nuclear Lamina
Invaginations
To further study the spatial relationships between tau, microtu-

bules, and the nuclear envelope, we conducted a detailed



Figure 2. Microtubules Invade the Nucleus in FTD-MAPT Neurons

(A) Total microtubule trajectories (cumulative over a 200 s interval) overlaid on stills from GFP-EB3 live imaging (gray) demonstrate multiple microtubule ex-

tensions into the nuclei of FTD-MAPT neurons (MAPT IVS10+16-B andMAPT P301L; 120 DIV), compared with non-demented control neurons; white dotted line

indicates the nuclear membrane.

(B) GFP-EB3 growth tracks from representative neurons (cumulative over a 200 s interval) from FTD-MAPT neurons (MAPT IVS10+16-A/B and MAPT P301L)

compared with non-demented and MAPT P301 isogenic control neurons (iPSC-derived neurons at 120 DIV; three biological replicates).

Red arrows indicate examples of trajectories within the nucleus. Bars indicate the number of sampled neurons with (black), and without (white), nuclear EB3

growth tracks; n = number of imaged neurons. Scale bars, 10 mm.

See also Video S1, Table S1, and Figure S2.
analysis of the neuronal nucleus in iPSC-derived neurons using

three-dimensional (3D) stimulated emission depletion (STED)

super-resolution imaging. Three-dimensional STED imaging

demonstrated that invaginations of the nuclear lamina present

in FTD-MAPT neurons commonly extended deeply into the nu-

cleus, in some cases traversing the entire length of the nucleus,

forming pronounced folds (Figure 4A). In comparison, nuclei

from non-demented controls had a regular, smoothmorphology,

with few examples of nuclear lamina invaginations (Figure 4A).

As observed by confocal microscopy, tau protein was found to

be abundant in the cell bodies of FTD-MAPT neurons by STED

imaging and in those neurons was closely apposed to the outer

nuclear membrane (Figure 4B). Both tau protein and neuronal

tubulin were found within nuclear lamina invaginations in FTD-

MAPT neurons (Figure 4B). STED imaging demonstrated that

tau within nuclear membrane invaginations is within hundreds

of nanometers of the nuclear lamina (Figure 4C). Given that

laminB1 filaments line the inner surface of the nuclear envelope,

which is typically of the order of 15–60 nm in width (Burke and

Stewart, 2013; Gerace and Huber, 2012), we conclude that tau
is in close proximity to proteins in the outer membrane of the nu-

clear envelope in FTD-MAPT neurons.

Tau-Containing Nuclear Lamina Invaginations in
Neurons of the Post-mortem FTD-MAPT Cerebral
Cortex
Having identified nuclear lamina defects in iPSC-derived FTD-

MAPT neurons, we asked whether alterations of the nuclear lam-

ina are also a feature of FTD-MAPT in vivo. To do so, we studied

the incidence of invaginations of the nuclear lamina in the frontal

and temporal cortex from two separate cohorts from indepen-

dent brain banks, both containing individuals diagnosed with

FTD due to MAPT IVS10+16 mutations and compared with

age-matched non-demented controls. These cohorts were

analyzed separately using different methods for detecting

laminB1. We quantified the fraction of all nuclei with invagina-

tions within each brain region (Figure 5). Similar results were

obtained in both cohorts: the frequency of nuclear lamina invag-

inations was higher in the deep cortical layers in post-mortem

cerebral cortices from individuals with FTD due to the MAPT
Cell Reports 26, 582–593, January 15, 2019 585



Figure 3. Microtubules Deform the Nuclear Envelope in FTD-MAPT Neurons

(A) Marked abnormalities of nuclear lamina shape in FTD-MAPT neurons. Confocal images of the nuclear lamina (laminB1, green) in FTD-MAPT neurons (MAPT

IVS10+16-A/B and MAPT P301L; neuronal transcription factor CTIP2, red) compared with non-demented and MAPT P301 isogenic control neurons (120 DIV).

White arrows indicate examples of nuclei with pronounced deformation of the nuclear lamina.

(B) FTD-MAPT neurons have increased numbers of cells with deformed nuclear membranes, as defined by the shape of the inner nuclear lamina. Schematic of

image analysis method used to quantify nuclear invaginations, as a measure of distortion of the nuclear membrane: nuclear area was established using DAPI

(blue), and nuclear lamina (laminB1, green) was assigned as either nuclear boundary or invaginated (i.e., within the nucleus). The fraction of total laminB1 that was

invaginated was used empirically to define a threshold for defining neurons as having nuclear membrane invaginations (see Figure S3 for details). Between 25%

(MAPT P301L) and 40% (MAPT IVS10+16) of FTD-MAPT neurons have nuclear invaginations, compared with fewer than 10% of control neurons. Significance

was determined for non-demented control and twoMAPT IVS10+16 lines using one-way ANOVA followed by Tukey’s test (*p < 0.05); pairwise comparison of the

MAPT P301L line and its isogenic control was carried out using Student’s t test (*p < 0.05); error bar represents SEM; n = 3 independent experiments.

(C) Acute depolymerization of microtubules reverses nuclear lamina invaginations and restores rounded nuclear shapes. Confocal images of control and FTD-

MAPT neurons (using genotypes described in A; 120 DIV), treated with DMSO (vehicle) or 10 mM nocodazole for 3 h (laminB1, green; b3-tubulin, red; DAPI, blue).

Scale bars, 10 mm.

(D) The proportion of FTD-MAPT neurons with nuclear lamina invaginations is significantly reduced by nocodazole treatment.

Quantification of neurons with abnormalities of the nuclear lamina was carried out as in B. n = 3 independent experiments; error bars represent SEM. Significance

was determined using one-way ANOVA followed by Tukey’s test (*p < 0.05); error bar represents SEM; n = 3 independent experiments.

See also Figure S3.
IVS10+16 mutation, compared with non-demented control indi-

viduals (Figures 5 and S4). This was the case in both frontal and

temporal cortex (Figures 5B, 5E, and 5F).

Data from iPSC-derived FTD-MAPT neurons suggested that

laminB1-positive nuclear invaginations would be associated

with the presence of phosphorylated tau within the neuronal

cell body. Consistent with this, we found that the nuclear lamina

was grossly disrupted in neurons that had high levels of hyper-

phosphorylated (AT8+) tau and neurofibrillary tangles in the

post-mortem FTD-MAPT IVS10+16 cerebral cortex (Figures 5C

and S4B), and those neurons frequently contained pronounced

nuclear lamina invaginations (Figures 5C and S4B). Furthermore,
586 Cell Reports 26, 582–593, January 15, 2019
nuclear lamina invaginations in such neurons also commonly

contained AT8-positive hyperphosphorylated tau (Figure 5C).

Disrupted Nucleocytoplasmic Transport in FTD-MAPT
Neurons
Abnormalities of the nuclear lamina are also found in aging dis-

eases, such as Hutchinson-Gilford progeria syndrome (Broers

et al., 2006). Nuclear membrane distortion in response to me-

chanical forces leads to deleterious effects on many aspects of

nuclear function, disrupting nucleocytoplasmic transport (Kelley

et al., 2011).We confirmed that the nuclear lamina/membrane in-

vaginations present in iPSC-derived FTD-MAPT neurons also



Figure 4. Super-resolution Imaging Demonstrates Close Apposition of Tau and Tubulin within Nuclear Lamina Invaginations

(A) Three-dimensional reconstructions using STED imaging of the nuclear lamina (laminB1, green) in FTD-MAPT iPSC-derived neurons (MAPT IVS10+16 and

MAPT P301L) reveal pronounced nuclear invaginations compared with non-demented and MAPT P301-isogenic control neurons (120 DIV). Scale bar, 10 mm.

(B) Tau is in close proximity to the nuclear lamina within nuclear invaginations of FTD-MAPT neurons. STED imaging of control and FTD-MAPT iPSC-derived

neurons (using genotypes described in A; 120 DIV; tau, green; b3-tubulin, red; DNA, Yo-Pro, blue). Detail from white boxes in upper panels, showing both merge

of all channels, and single channel images of tau (green) or b3-tubulin (red). Dashed lines indicate the boundary between the nucleus (Nu) and cytoplasm (Cy).

Arrows indicate invaginations into the nucleus.

(C) Nuclear invaginations are lined with nuclear lamina and contain tau. STED imaging of MAPT IVS10+16-A neurons (120 DIV; tau, green; laminB1, red). Arrow

indicates tau within a nuclear invagination, in close proximity to the laminB1-positive inner nuclear lamina.
contained nuclear pores within these membrane folds, with

nuclear pores (labeled by NUP98) co-localizing with laminB1-

positive invaginations (Figure S5A).

To assess whether alterations in the nuclear membrane in FTD-

MAPT neurons result in defects in nucleocytoplasmic transport,

we expressed NES:GFP and NLS:RFP from a single construct

in iPSC-derived neurons (Mertens et al., 2015). This assay enables

measurement of the integrity of both nuclear localization and

accumulation and cytoplasmic retention and nuclear exclusion

within individual neurons (Figures 6A and S5B). Control iPSC-

derived neurons had discrete cellular distributions of each pro-

tein, with prominent nuclear RFP and cytosolic GFP (Figure 6B).

In contrast, localization of NLS:RFP was altered in FTD-MAPT

neurons such that there was a marked decrease in the nuclear/

cytoplasmic RFP ratio (Figure 6C). Conversely, nuclear exclusion

ofNES:GFPwas reduced in FTD-MAPT neurons, with an increase

of GFP within the nucleus (Figure 6C). Together, these data

demonstrate defects in the selective permeability of the nuclear

envelope in FTD-MAPT neurons, indicating a general failure of

nucleocytoplasmic transport within FTD-MAPT neurons.
Defective nucleocytoplasmic transport may be a cumulative

phenomenon due to protracted nuclear membrane damage, or

an acute process due to microtubule-mediated nuclear mem-

brane deformation. To distinguish between these mechanisms,

we acutely depolymerized microtubules with nocodazole in con-

trol and FTD-MAPT neurons and quantified nucleocytoplasmic

transport using the NES:GFP/NLS:RFP assay. This treatment

corrected the distribution of both NES:GFP and NLS:RFP in

FTD-MAPT neurons, restoring the nucleocytoplasmic ratios to

the level of healthy control neuron (Figure 6D). We conclude

that defective nucleocytoplasmic transport in FTD-MAPT neu-

rons is an ongoing process due to microtubule-mediated defor-

mation of the nuclear membrane.

DISCUSSION

The cellular and molecular biology of the pathogenesis of

FTD due to MAPT mutations is not well understood. Currently,

it is thought that MAPT mutations all lead to tau protein

aggregation and that protein aggregation is the primary driver
Cell Reports 26, 582–593, January 15, 2019 587



Figure 5. Tau-Containing Nuclear Lamina Invaginations in Neurons of the Post-mortem FTD-MAPT Cerebral Cortex

(A) Increased incidence of laminB1-positive nuclear invaginations in vivo, in post-mortem FTD-MAPT IVS10+16 cortex compared with age-matched controls

(cohort 1). Immunohistochemistry of laminB1 in (top) frontal and (bottom) temporal cortex from individuals with FTD due to theMAPT IVS10+16 mutation or age-

matched controls (non-demented). Red arrows indicate nuclei exhibiting nuclear invaginations.

(B) Percentage of invaginated nuclei in deep layers of frontal and temporal cortex of two control (green) and twoMAPT IVS10+16 individuals (red), calculated from

20 individual imaging fields (cohort 1). Nuclei were scored by three observers, blinded to the identity of the post-mortem samples, and the averages of the three

measurements are shown. Error represents SEM.

(C) Hyperphosphorylated, AT8+ tau within nuclear lamina invaginations in neurons of the frontal (top) and temporal (bottom) cortex of an individual carryingMAPT

IVS10+16 mutation. Representative neurons, showing an extensive nuclear invagination (laminB1, green; DAPI, gray) containing hyperphosphorylated tau (AT8,

red). White arrows indicate nuclear invaginations. Scale bars, 10 mm. See also Figure S4.

(D) Representative confocal images from post-mortem FTD-MAPT IVS10+16 cortex compared with age-matched controls (cohort 2) showing laminB1 (red) and

DAPI (blue); white arrows indicate nuclear invaginations. Scale bar, 10 mm.

(E and F) Left: percentage of invaginated nuclei in deep layers of frontal (E) and temporal (F) cortex from six aged-matched controls and six FTD-MAPT IVS10+16

individuals (cohort 2) quantified using the analysis method described in Figures 3 and S3. Points indicate quantifications from individual fields. Right: pairwise

comparison of the control and FTD-MATP groups show increased percentage of invaginated nuclei in pathology (points indicate individuals; cohort 2) carried out

using Student’s t test (***p < 0.001); error bar represents SEM.
of neurodegeneration (Ballatore et al., 2007; Spillantini and Goe-

dert, 2013). However, protein aggregation may represent only

the late stage of the disease, and the processes preceding and

leading to neurofibrillary tangle formation and cellular dysfunc-

tion remain to be elucidated. Here we report the use of human

stem cell systems to study the effects of those mutations on
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neuronal cell biology, finding that tau-mediated dementias

are accompanied by defective neuronal nucleocytoplasmic

transport.

Focusing on two different types ofMAPTmutations causal for

FTD, we have found that both IVS10+16 and P301L mutations

lead to marked defects in nucleocytoplasmic transport in human



Figure 6. Disrupted Nucleocytoplasmic Transport in FTD-MAPT Neurons

(A) Functional assay demonstrates disrupted nucleocytoplasmic transport in human iPSC-derived FTD-MAPT neurons. Schematic illustrates lentiviral vector for

co-expression of NES:GFP (nuclear export signal fused to GFP) and NLS:RFP (nuclear localization signal fused to RFP) within human neurons and relative

distributions of both proteins in healthy neurons and in cells with defective nucleocytoplasmic transport.

(B) Representative confocal images of control and FTD-MAPT neurons (MAPT IVS10+16-A/B andMAPT P301L; all 120 DIV) expressing GFP:NES and RFP:NLS

(GFP, green; RFP, red; b3-tubulin). Grayscale images of NES-GFP and NLS-RFP localization in representative cells of each genotype are shown: FTD-MAPT

neurons show an increase of GFP within the nucleus and a reduction in nuclear localization of NLS-RFP. Scale bars, 20 mm.

(C) Quantification of the nuclear/cytoplasmic ratio for both NES:GFP and NLS:RFP demonstrates altered nuclear transport in FTD-MAPT genotypes relative to

controls: NES:GFP is increased in the nuclei of FTD-MAPT neurons, whereas NLS:RFP is decreased (points indicate quantifications from individual fields,

different shapes indicatemeasurements fromdifferent experiments). Significancewas determined for non-demented control and twoMAPT IVS10+16 lines using

one-way ANOVA followed by Dunnett’s test (*p < 0.05, **p < 0.01, and ***p < 0.001). Pairwise comparison of the MAPT P301L line and its isogenic control was

performed using Student’s t test (*p < 0.05); error bar represents SEM; n = 4 independent experiments.

(legend continued on next page)
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neurons. We find that both missense and splicing mutations in

MAPT alter tau protein localization and phosphorylation within

iPSC-derived neurons within 4 months in cell culture, recapitu-

lating a well-described aspect of early FTD pathology in vivo

(Götz et al., 1995; Hoover et al., 2010; Kowall and Kosik, 1987),

without detectable tau aggregation. Mislocalization of tau in

the cell bodies of FTD-MAPT neurons in culture leads to marked

changes in microtubule dynamics, causing deformation of the

nuclear membrane both in cell culture and in the human FTD-

MAPT cortex in vivo. Disruption of the nuclear lamina is

commonly associated with dysfunction of the nuclear envelope,

and we findmarked disruption of nucleocytoplasmic transport in

FTD-MAPT neurons. Disrupted nucleocytoplasmic transport is

due to ongoing microtubule-mediated nuclear membrane defor-

mation, as it is corrected by acutemicrotubule depolymerization.

Together, these data indicate that perturbation of the function of

the nuclear membrane and disruption of nucleocytoplasmic

transport is an important pathological process in FTD due to

MAPT mutations.

An early event in FTD is themislocalization of tau from axons to

cell bodies and dendrites, and this key stage in disease progres-

sion is also an early event in iPSC-derived models of FTD-MAPT.

In vivo, mislocalization of tau is typically associated with tau hy-

perphosphorylation (Götz et al., 1995; Spillantini and Goedert,

2013). We find this also occurs in iPSC-derived FTD-MAPT neu-

rons, wherewe detected increased tau phosphorylation at serine

202/threonine 205 (the AT8 epitope) and also at serine 404. The

sequence in which mislocalization and hyperphosphorylation

take place in FTD in vivo, and in iPSC-derived FTD-MAPT neu-

rons in culture, is not currently clear, nor are the mechanisms

by which these processes occur. The appearance of tau within

cell bodies and dendrites indicates a breakdown of the cellular

polarity mechanisms that maintain the axonal enrichment of

tau protein and its exclusion from the somatodendritic compart-

ment, mechanisms that are poorly understood.

The two heterozygous, dominant MAPT mutations studied

here have different effects on tau protein in neurons. The

MAPT P301L missense mutation, like many missense mutations

in the microtubule-binding region domain of MAPT, increases

the tendency of tau to aggregate in cell-free assays and in trans-

genic mouse models (von Bergen et al., 2005; Lewis et al., 2000;

Shammas et al., 2015). In contrast, the IVS10+16 mutation is not

a coding mutation but rather is an intronic single base change

that favors the inclusion of exon 10 in the MAPT mRNA,

increasing the amount of tau containing four microtubule-bind-

ing repeats (4R), relative to the three-repeat (3R) form (Hutton

et al., 1998). However, despite these differences, the changes

in the forms of tau in both MAPT P301L and IVS10+16 neurons

both lead to mislocalization and increased phosphorylation of

tau. This finding suggests that either the presence of a pool of

P301L tau, or a shift in the 3R/4R tau ratio, alter a common
(D) Effect of nocodazole (Noc) on the nuclear/cytoplasmic ratio for both NES:G

nocodazole (+) in FTD-MATP neurons compared with vehicle (�) treated neurons

measurements from different experiments).

Significance was determined using one-way ANOVA followed by Dunnett’s tes

independent experiments.

See also Figure S5.
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pathway that regulates tau distribution within neurons, tau phos-

phorylation, or both.

In both MAPT IVS 10+16 and P301L mutant neurons, the

appearance of tau in cell bodies is accompanied by marked

qualitative changes in neuronal microtubule dynamics. Microtu-

bules in FTD-MAPT neurons actively deform the nuclear enve-

lope, which we find can be reversed by depolymerization of

microtubules. Tau has multiple roles in stabilizing microtubules

(Wang and Mandelkow, 2016), and microtubules are coupled

to the nuclear membrane through the LINC complex (Chang

et al., 2015; Crisp et al., 2006; Luo et al., 2016). Therefore, it is

likely that the overall effect of the presence of tau in the cell

body is to promote microtubule stability, leading to increased

pushing forces on the nuclear membrane and the formation of in-

vaginations in the nuclear membrane. As tau has recently also

been found to promote microtubule nucleation when undergoing

phase transitions at high concentration (Hernández-Vega et al.,

2017), accumulation of tau in the cell body may also lead

to increased pushing forces on the nucleus by facilitating micro-

tubule nucleation.

Alterations in nuclear shape and nuclear membrane function

are a common feature of cellular aging, including in the nervous

system, and are associated with multiple deleterious changes

in nuclear biology, including chromatin changes and disrupted

nucleocytoplasmic transport (Frost, 2016; Oberdoerffer and

Sinclair, 2007). Drosophila models of FTD, with neuronal

expression of humanMAPT R406W, have nuclear shape abnor-

malities and chromatin changes (Frost et al., 2016). Recently,

nuclear membrane disruption has been reported in a MAPT

P301L transgenic mouse model of FTD (Eftekharzadeh et al.,

2018). Perturbations of the nuclear lamina have been described

in the post-mortem AD brain (Frost et al., 2016), including the

juxtaposition of neurofibrillary tangles of tau with the nuclear

membrane (Sheffield et al., 2006). We also find here an increase

in nuclear invaginations in neurons of the human post-mortem

MAPT IVS10+16 cortex, and the presence of hyperphosphory-

lated tau within nuclear invaginations in tangle-bearing neu-

rons. Together, these different studies are consistent with a

pathological effect of tau within the neuronal cell body in FTD

and AD, whereby the presence of tau alters microtubule

biology, resulting in pronounced abnormalities of the neuronal

nucleus and defective nucleocytoplasmic transport. Recent

findings have shown a direct interaction of aggregated tau

with the nuclear pore complex (Eftekharzadeh et al., 2018),

suggesting that the microtubule disruption of nuclear pore

function reported here may be mediated by tau protein at the

nuclear membrane.

Microtubule deformation of the nucleus is a phenotype also

seen in classic laminopathies such as the accelerated aging dis-

order Hutchinson-Gilford progeria syndrome (HGPS), in which

the primary defect is due to mutant lamin A/C protein (Capell
FP and NLS:RFP. Nuclear/cytoplasmic ratio is restored in the presence of

(points indicate quantifications from individual fields, different shapes indicate

t (*p < 0.05, **p < 0.01, and ***p < 0.001); error bar represents SEM; n = 3



and Collins, 2006). In that case, microtubules also contribute to

nuclear deformations, leading to defects in nucleocytoplasmic

transport (Kelley et al., 2011; Larrieu et al., 2014; Snow et al.,

2013). Changes in nuclear envelope function in other neurode-

generative diseases, including ALS-FTD due to repeat expan-

sions in C9orf72, Huntington’s disease, and AD, have recently

been reported (Freibaum et al., 2015; Grima et al., 2017; Jovi�ci�c

et al., 2015; Zhang et al., 2015).

Our finding here of disruption of the neuronal nuclear mem-

brane as a consequence of MAPT mutations in FTD extends

this pathogenicmechanism to dementias inwhich protein aggre-

gation has been thought to be the primary driver of neurodegen-

eration. These data suggest that dysfunction of the nuclear

membrane may be a common pathogenic process in diverse

neurodegenerative diseases, which could be targeted therapeu-

tically with agents that regulate microtubule functions, nucleocy-

toplasmic transport, and/or associated processes.
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Tissue request No 1827
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TRIzol Thermo Fisher Scientific Cat#15596026

Tween 20 Sigma Cat#P9416

Trisodium citrate dihydrate Sigma Cat#S1804

Critical Commercial Assays

Precision Red Advanced Protein Assay Cytoskeleton, Inc. Cat# ADV02-A

Experimental Models: Cell Lines

Human: non-demented control (NDC) iPSC line Israel et al., 2012 N/A

Human: MAPT IVS10+16-A and MAPT IVS10+16-B iPSC

lines

Sposito et al., 2015 N/A

Human: MAPT P301L and MAPT P301L-isogenic iPSC
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4RMAPT For 50 – AAGATCGGCTCCACTGAGAA – 30 This paper N/A
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RPS9 Rev 50 – CTGCTGACGCTTGATGAGAA – 30 This paper N/A
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Recombinant DNA

dsEGFP-EB3-7 Michael Davidson Addgene plasmid # 56474; RRID:

Addgene_56474

pLVX-EF1alpha-2xGFP:NES-IRES-2xRFP:NLS Mertens et al., 2015 Addgene plasmid #71396; RRID:
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Software and Algorithms

ABI StepOnePlus software Thermo Fisher Scientific N/A; RRID:N/A

Fiji Schindelin et al., 2012 RRID:SCR_002285

Image Studio Lite LI-COR RRID:SCR_013715

Mascot MATRIX Science RRID:SCR_014322

plusTipTracker Applegate et al., 2011 N/A; RRID:N/A

Prism 6 GraphPad RRID:SCR_002798
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rick

Livesey (r.livesey@ucl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human iPSC lines
MAPT IVS10+16-A andMAPT IVS10+16-Bmutant iPSCswere as reported in (Sposito et al., 2015).MAPT P301Lwas generated from

Janssen Pharmaceutica by TALEN editing the lineMAPT P301-isogenic, under the IMI STEMBANCC project agreement ICD 483960.

The non-demented control line was previously reported (Israel et al., 2012). iPSC cells were growth and expanded in feeder-free con-

ditions using Essential 8 Medium (Thermo Fisher Scientific), at 37�C with 5% CO2. Essential 8 Medium was replaced daily.

Human post-mortem brain sections
Human brain sections were obtained from the Queen’s Square Brain Bank, Institute of Neurology, University College London (cohort

one) and from the London Neurodegenerative Diseases Brain Bank and Brains for Dementia Research (cohort two). For cohort one,

control brains included onemale (age 71) and one female (age 56). FTD-MAPT IVS10+16 brains were from twomales (age 52 and 66).

For cohort two, control brains were from five males (age 63-77) and one female (age 43). FTD-MAPT IVS10+16 brains were from four

males (age 48-71) and two females (age 58 and 63). The use of human post-mortem tissues for this study has been approved with

Research Ethics Committee reference ID 08/H0718/54+5 for cohort one and reference ID 08/MRE09/38+5 for cohort two.

METHOD DETAILS

Generation of iPSC-derived cortical neurons and drug treatments
Differentiation of iPSCs to cortical neurons was carried out as described, with minor modifications (Shi et al., 2012b; 2012a). Briefly,

dissociated iPSCs were plated on Geltrex (Thermo Fisher Scientific)-coated plates to reach full confluence. Neural induction was

initiated the next day (Day 0) by changing the culture medium to a 1:1 mixture of DMEM/N-2 (DMEM/F-12 GlutaMAX; 1 3 N-2;

5 mg ml�1 insulin; 1 mM L-glutamine; 100 mm non-essential amino acids; 100 mM b-mercaptoethanol; 50 U ml�1 penicillin and

50 mg ml�1 streptomycin) and Neurobasal/B-27 (Neurobasal; 1 3 B-27; 200 mM L-glutamine; 50 U ml�1 penicillin and 50 mg

ml�1 streptomycin) media (hereafter referred as N2B27) supplemented with 1 mM dorsomorphin and 10 mM SB431542 to inhibit

TGFb signaling and support neuronal differentiation and neurogenesis, media was replaced every 24 hours. At day 12 neuroepithelial

sheet was harvested and dissociated using the enzyme Dispase and replated on laminin-coated plates. The day after, media was

replaced with N2B27 containing 20 ng/mL FGF2. N2B27+FGF2 was added freshly daily for 4 days to promote the maturation of

neural rosettes. After 4 days FGF2 was withdrawn and neural rosettes were maintained in N2B27 refreshing medium every other

day. At day 30 neural rosettes were dissociated using Accutase and neural progenitor cells were plated on laminin-coated plates

at 150,000 cells/mm2. Plated neurons were maintained for up to 120 days with a medium change every other day. To establish

identity and quality of cortical neuronal inductions, gene expression profiling was performed on a custom gene expression panel.

RNA was isolated from induced cortical neurons using TRIzol (Thermo Fisher Scientific), according to the manufacturer’s

instructions. Expression levels of mRNAs enriched in deep and upper layer cortical neurons were assessed using a nanoString

(nanoString Technologies) gene expression panel of approximately 250 genes. After subtracting the maximum negative control
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probe counts, gene counts were normalized using the geometric mean of 6 positive control probes and of 7 housekeeping genes

(CLTC, GAPDH, GUSB, PPIA, RPLP1, RPS15A, RPS9). For nocodazole (Tocris) treatment, neurons were grown for 120 days

in vitro (DIV) and compound was added at 33 mM for 2 hours before imaging. DMSO was used as vehicle.

Protein extraction and western blot analysis
Total cell protein was extracted using RIPA buffer (Sigma) supplemented with protease inhibitors (Sigma) and Halt phosphatase

inhibitors (Thermo Fisher Scientific). Protein quantification was performed using Precision Red Advanced Protein Assay buffer

(Cytoskeleton, Inc.). For each sample, 30 mg of protein were mixed with 1X NuPAGE LDS Sample Buffer (Thermo Fisher Scientific) +

1 mM Dithiothreitol. Samples were heated at 100�C for 10 minutes and loaded on NuPAGE 4%–12% Bis-Tris gel (Thermo Fisher

Scientific). Afterward, proteins were transferred on PVDFmembrane (Millipore) for 1 h at 100 V. Membranes were blocked for another

60 min in 5% BSA in PBST (PBS containing 0.05% Tween 20). All primary antibodies were incubated overnight in 5% milk in PBST

at 4�C. Next day, membranes were incubated for at least 1 h in secondary antibody and washed gently in PBST buffer for further

30-60 min. Immunoblots were detected using LI-COR Odyssey CLx Infrared Imaging System and processed with the Image Studio

Software (LI-COR).

Sarkosyl extraction
iPSC-derived neurons (120 DIV) were homogenized in Tris-NaCl buffer (25 mM TrisHCl, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA,

5 mMNa4P2O7, pH 7.6) supplemented with 1 mMPMSF, protease inhibitors (Sigma) and Halt phosphatase inhibitors (Thermo Fisher

Scientific). Homogenate was subjected to ultracentrifugation at 150,000 g for 30 min at 4�C. The pellet was re-suspended in an equal

volume of 10 mM TrisHCl, 0.8 M NaCl, 10% sucrose, pH 7.6 supplemented with 1 mM PMSF, protease inhibitors and Halt phospha-

tase inhibitors. The re-suspended pellet was centrifuged at 20,000 g for 30 min at 4�C, the supernatant was incubated with 1% sar-

kosyl (N-lauroylsarkosine sodium salt; Sigma) for 1 hour at room temperature and ultracentrifuged at 150,000 g for 30min at 4�C. The
resulting pellet (sarkosyl insoluble fraction) was resuspended in 1X NuPAGE LDS Sample Buffer (Thermo Fisher Scientific) + 1 mM

Dithiothreitol. Samples were heated at 100�C for 10minutes and loaded on NuPAGE 4%–12%Bis-Tris gel (Thermo Fisher Scientific).

Immunoprecipitation and mass spectrometric analysis of intracellular tau
Tau was immunoprecipitated from 1 mg of total protein extracted from iPSC-derived neurons (120 DIV) using a polyclonal anti-tau

antibody (Dako Cytomation). Immunoprecipitated samples were analyzed by western blot using a monoclonal tau antibody

(MN1000; Thermo Fisher Scientific) or stained with colloidal blue (Thermo Fisher Scientific). Bands that corresponded to tau by

western blot analysis were excised from the colloidal blue SDS-PAGE. Peptidemasses of digested protein samples were determined

using a Bruker ultrafleXtreme Maldi mass spectrometer in reflectron mode and ms/ms fragmentation performed in LIFT mode.

Data analysis was with FlexAnalysis, BioTools and ProteinScape software (Bruker). Database searches of the combined mass

fingerprint-ms/ms data were performed using Mascot (http://www.matrixscience.com).

RNA extraction and qRT-PCR analysis
Total RNA was extracted using TRIzol according to manufacturer protocol (Invitrogen). 1 mg of RNA was treated with DNase I (New

England BioLabs) and 500 ng were retrotranscribed using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems).

qRT-PCR were performed in a StepOnePlus instrument (Applied Biosystems) using the SYBR Green JumpStart Taq Ready Mix

(Sigma) in a final volume of 15 ml, using the following protocol: 95�C for 2 min, 40 cycles at 94�C for 15 s, 60�C for 30 s. MAPT

mRNA expression was assessed relative to GAPDH and RPS9 housekeeping genes using the specific primers reported in the

Key Resource Table. Results were analyzed using the ABI StepOnePlus software (Thermo Fisher Scientific).

Confocal microscopy and image analysis
For immunofluorescent labeling and imaging, cells were washed 3 times in PBS and then fixed using 4% paraformaldehyde (v/v) in

PBS for 15 minutes at RT. After 3 washes in PBS, cells were permeabilised in PBS+0.3% Triton X-100 (Sigma; Tx) for 15 minutes at

room temperature (RT). After 3 washes in PBS, cells were blocked using 5% donkey serum in PBS+0.3% Triton X-100 (PBS-Tx+5%

DS) for 1 hr at RT. For AT8-tau immunostaining (ThermoFisher; MN1020), 5% BSA (Sigma) (w/v) in PBS+0.3% Triton X-100 (PBS-

Tx+5% BSA) was used as a blocking agent. Primary antibodies were diluted in PBS-Tx+5% DS or PBS-Tx+5% BSA as indicated

below and incubated overnight at 4�C. Cells were washed 3 times in PBS and incubated 1 hr in the dark at RT with secondary an-

tibodies diluted 1:1000 in PBS-Tx+5% DS or PBS-Tx+5% BSA. After 3 washes in PBS, samples were incubated for 5 minutes at RT

with DAPI diluted 1:5000 in PBS and then washed 3 additional times with PBS. Samples were mounted using ProLong Gold antifade

(Thermo Fisher Scientific).

Standard confocal images were acquired with an Olympus Inverted FV1000 confocal microscope and processed using Fiji soft-

ware (Schindelin et al., 2012). STED imaging was performed on a custom built, dual color, beam scanning system with gated detec-

tion optically identical to the instrument described in (Bottanelli et al., 2016).

For image analysis of colocalization of tau and MAP2, Pearson’s R correlation was calculated using the Coloc2 plugin for Fiji

(https://imagej.net/Coloc2). To quantify nuclear invaginations neurons were co-stained for LaminB1 and DAPI. Nuclear lamina signal

was assigned as either nuclear boundary or invaginated (i.e., within the DAPI stained area defining the nucleus) using a custom plugin
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for the Fiji bioimage analysis software. Nuclei with a proportion of invaginated laminB1 that exceeded 0.3 were considered as invag-

ination positive (see Figure 3B and S3 for details). At least 5 imaging fields from three independent experiments for genotype were

analyzed.

Staining of human formalin-fixed paraffin embedded (FFPE) brain sections
FFPE slides were deparaffinised and rehydrated, then boiled for 20 minutes in 10 mM Tri-sodium citrate buffer, pH6 + 0.05% Tween

20, for antigen retrieval. Slides were cooled to RT before staining. 3,30-Diaminobenzidine (DAB) staining was performed using the

DAB Peroxidase (HRP) Substrate Kit (Vector Laboratories) according to manufacturer’s instructions. After DAB staining, whole sec-

tions were imaged using an Axio Scan.Z1 microscope (Zeiss). For immunofluorescence, after antigen retrieval slides were blocked

using 5% BSA in PBS+0.3% Triton X-100 (PBS-Tx+5% BSA) for 20 minutes at RT. Primary antibodies were diluted in PBS-Tx+5%

BSA as indicated below and incubated O/N at 4�C in humidified chamber. Slides were washed 3 times in PBS and incubated for

30 minutes in the dark at RT with secondary antibodies diluted 1:1000 in PBS-Tx+5% BSA. After 3 washes in PBS, samples were

incubated 5minutes with DAPI diluted 1:5000 in PBS. After 3 washes in PBS, slides were incubated for 20minutes with 0.01%Sudan

Black B (Sigma) in 70% ethanol. Samples were mounted using ProLong Gold antifade (Thermo Fisher Scientific). Images were ac-

quired through Olympus Inverted FV1000 confocal microscope and processed using the Fiji software.

For cohort one, nuclear lamina invaginations were quantified after 3,30-Diaminobenzidine (DAB) staining of LaminB1. Nuclei were

scored from 20 randomly acquired imaging fields from each individual. Nuclei were considered positive (folded) if invaginations

extended into the nuclear interior for at least 3 mm. The percentage of folded respect to total nuclei was calculated for each imaging

field. For cohort two, neurons were co-stained for LaminB1 andDAPI. Nuclear lamina signal was assigned as either nuclear boundary

or invaginated (i.e., within the DAPI stained area defining the nucleus) using custom plugin for the Fiji bioimage analysis software.

Nuclei with a proportion of invaginated laminB1 that exceeded 0.3 were considered as invagination positive (see Figure 3B and

S3 for details).

Live imaging of microtubule dynamics
Neurons were grown to 100 DIV in individual m-Dish 35 mm dishes (Ibidi) and transfected with a plasmid encoding for GFP-EB3 (gift

fromMichael Davidson; Addgene plasmid # 56474). 48h after transfection, neurons were subjected to live imaging using a Leica SP5

microscope equipped with a controlled environment chamber (37�C; 5% CO2). Images were acquired at resonant scanning with a

63x objective (1frame/sec). Resulting movies were analyzed using the plusTipTracker software (Applegate et al., 2011).

Nucleocytoplasmic transport assay
Nucleocytoplasmic trafficking was analyzed by infection of 120 DIV human iPSC-derived neurons with the pLVX-EF1alpha-

2xGFP:NES-IRES-2xRFP:NLS construct (Addgene plasmid #71396; Mertens et al., 2015). After 6 days, neurons were fixed and

immunostained for b3-tubulin and GFP. Only cells positive for neuron-specific b3-tubulin were considered. The nuclear to cyto-

plasmic ratios of both GFP and RFP (nucRFP:cytRFP and nucGFP:cytGFP) were calculated separately using the integrated density

of ROIs drawn within and outside the nucleus (see Fig.S5 for details).

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise specified, data are presented as mean values of the number of independently conducted experiments indicated in

the legend of each figure. Error bars represent the standard error of mean (SEM). Statistical analysis was performed using the Prism6

analytical software (GraphPad). Unpaired Student’s t test was used to compare differences between two groups, assuming the data

were normally distributed. One-way ANOVA followed by Tukey’s or Dunnett’s correction for multiple testing (as indicated in figure

legends) was used to analyze the differences between more than two groups. *** p < 0.01, **p < 0.01, *p < 0.05.
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Related to Figure 1; Figure S1. Generation and characterization of 

human iPSC-derived neurons from familial FTD-MAPT. 

(A) Heat map showing the relative expression of 38 genes (clustered by cell 

type) from FTD-MAPT neurons (MAPT IVS10+16-A/B and MAPT P301L) and 

non-demented and MAPT P301 isogenic control neurons (iPSC-derived 

neurons at 120 DIV; three biological replicates). (B) Immunofluorescences of 

iPSC-derived cerebral cortex excitatory neurons generated from control (non-

demented control and MAPT P301-isogenic) and familial FTD-MAPT (MAPT 

IVS10+16-A/B and MAPT P301L), expressing the cortical layer 6 transcription 

factor Tbr1 (green) and β3-tubulin (red). DNA counterstain (DAPI, blue) is 

also shown. Scale bar = 20 m. (C) qRT-PCR showing the relative 

abundance of MAPT mRNA containing the exon 10 (encoding for the 

additional microtubule binding repeat). FDT-MAPT (red) neurons are shown 

with respect to their respective controls (green). GAPDH and RPS9 were 

used as housekeeping genes (one-way ANOVA followed by Tukey’s test, *** 

= P<0.001; error bar represents s.e.m.; n = 3 independent experiments). (D) 

Schematic of mass spectrometry peptide coverage (red line) for tau protein 

following immunoprecipitation of neuronal cell lysates from FTD-MAPT and 

control neurons (same genotypes as A; 120 DIV). 1 and 441 represent the 

NH- and COOH- protein extremities respectively. The position of alternatively 

spliced N1 and N2 domains (yellow), the proline rich domain (blue). The 

microtubule binding region domain (MBRD) has four microtubule binding 

regions R1,3 and 4 are shown in green, while the alternatively spliced R2 is 

shown in red. (E) Total tau detected in the sarkosyl-insoluble fraction across 

the indicated genotypes. No significant difference was detected in the amount 

of tau detected from neurons of each genotype.  

 
 
 
 
 
 
 
 
 
 
 



 
 
 

 

 

 

 

 

 
 
 
 



 
 

Related to Figure 2; Figure S2. Expression of GFP-EB3 recombinant 

protein in human iPSC-derived neurons. 

(A) Immunofluorescence of iPSC-derived neurons (non-demented control; 

120DIV) expressing GFP-EB3 protein, following (48 hr) lentivirus transfection. 

Left panel shows β3-tubulin (grey) and DAPI (blue). Middle panel shows β3-

tubulin (grey) and DAPI (blue). Right panel shows merge of GFP-EB3 (green), 

β3-tubulin (red) and DAPI (blue). Scale bar = 10 µm. (B) Total microtubule 

trajectories (200-second interval; identified using plusTip track software) 

demonstrate reduction of EB3 comets after nocodazole treatment in FTD-

MAPT neurons (MAPT IVS10+16-A; 120 DIV), overlaid on stills from GFP-

EB3 live imaging (grey), white dotted line indicates the nucleus. (C) 

Quantification of reduction in EB3 growth events and (D) EB3 growth life time 

after two hours of nocodazole treatment. Pair-wise comparison of the vehicle 

and nocodazole treated neurons was performed using Student’s t test; 

*=P<0.05; error bar represents s.e.m.; n >10 cells). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 



Related to Figure 3; Figure S3. Analysis used to quantify nuclear 

invaginations in iPSC-derived neurons. 

(A) Immunofluorescence of iPSC-derived neurons (MAPT P301L; 120DIV), 

left panel shows LaminB1 (black) and right panel shows processing algorithm 

performed using the Fiji software. Distinct nuclei are identified by yellow 

boundaries. LaminB1 signal was assigned as either proximal to the nuclear 

boundary (cyan) or invaginated (i.e., within the nucleus; magenta). The 

invaginated laminB1 proportion is calculated from the invaginated laminB1 

divided by the total laminB1 signal per nucleus. (B) Percentage of nuclei with 

binned invaginated laminB1 proportions (0.05 intervals) was used to threshold 

nuclei that are positive for invagination. A distinct population is evident >0.25 

invaginated laminB1, this was assigned as invagination positive. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Related to Figure 5; Figure S4. Phosphorylated disease associated tau is 

present in post-mortem sections from frontal and temporal lobe of FTD-

MAPT. 

(A) 3,3′-Diaminobenzidine (DAB) staining for phosphorylated tau AT8 (brown) 

in frontal and temporal lobe of subjects carrying MAPT IVS10+16 mutation or 

non-demented controls (age matched), hematoxylin (blue) was used as 

nuclear counterstain. Lower panels, detail from white boxes in upper panels. 

Asterisk indicates white matter position. Scale bars; upper panel = 400 µm, 

lower panel = 4 µm. (B) Confocal images of representative post-mortem 

neurons from frontal and temporal lobe of subjects carrying MAPT IVS10+16 

mutation showing nuclear lamina (green) invaginations (white arrows) in 

phosphorylated tau (AT8; pS202/pT205; red) containing neurons. Scale bar = 

20 µm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 



 

Related to Figure 6; Figure S5. Analysis of functional assay 

demonstrating disruption of nucleocytoplasmic transport in human 

iPSC-derived FTD-MAPT neurons. 

(A) Nuclear pores are clustered within nuclear membrane invaginations in 

FTD-MAPT neurons. Nuclear pore subunit NUP98 (green) remains co-

localised with laminB1 (red) within nuclear invaginations in MAPT P301-

isogenic neurons and MAPT P301L, (120 DIV). Arrows indicate nuclear 

membrane invaginations. Scale bars = 5 µm. (B) Left panels, 

immunofluorescence of iPSC-derived neurons (MAPT P301-isogenic; 

120DIV), showing β3-tubulin (grey), NLS:RFP (nuclear localisation signal 

fused to red fluorescent protein; red) and NES:GFP (nuclear export signal 

fused to green fluorescent protein; green), individual panels show 

combinations of signals described above from the same field. Scale bar = 10 

µm. To establish the efficiency of nucleocytoplasmic transport in FTD-MAPT 

neurons, we calculated the ratios of NLS:RFP and NES:GFP inside nucleus 

and within the cytoplasm. Background (Blue), Nuclear (Nuc; yellow) and 

cytosolic (as determined by β3-tubulin signal; Cyt; orange) boxed areas were 

randomly selected and intensity of signal quantified. After background 

subtraction, intensity values for the nucleus and cytosol were averaged and a 

ratio established. Four different experiments were performed on each 

genotype (MAPT IVS10+16-A/B, MAPT P301L, non-demented control and 

MAPT P301-isogenic control) with at least six neurons per genotype. 
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