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Supplementary Methods  
Variant Calling: 

FASTQ sequences were mapped using BWA mem 0.7.15 1 on GR37 reference genome using 

default parameters. BWA output (SAM format) was converted to binary BAM format using 

SAMtools 1.3.1 2 and sorted using picard tools 2.2.1 with SortSam using their coordinates. Then we 

adopted “Best Practices” recommendations from Genome analysis toolkit site 3 for every single lane 

BAM file. Unmapped sequences were removed using CleanSam and then duplicated reads were 

marked using markDuplicates both from picardtools. We realigned indels using IndelRealigner with 

already known indel interval file (1000 Genome Project 1st Phase Indel)  4 and recalibrated bases 

using BaseRecalibrator and PrintReads with dbSNP version 138 5 using GATK 3.5. If the data 

came from multiple runs, the BAM files were merged using SAMtools.  In case the BAM files were 

accessible, we directly used them for the variant calling. 

After getting all the BAM files, we followed the gvcf methods for variant calling. First every BAM 

file was called for variants using HaplotypeCaller which produced a gVCF file for single individual. 

After getting all the gVCF files together, the VCF file was constructed with GenotypegVCFs using 

all the default parameters except max alternate alleles which was put as 20 to capture more alternate 

alleles as our date set is quite diverse. We used dbSNP version 138 to mark known SNPs and 

Indels5. 

The final VCF file was re-calibrated following GATK’s Variant Quality Score Recalibration 

(VQSR) recommendations. VariantRecalibration from GATK was applied to calculate various 

statistics for both SNPs and indels using various publicly available reference datasets with known 

amount of false positives (dbSNP, HapMap, Omni genotype, 1000 Genomes Project; all of them 

were downloaded from GATK’s site dated 30/08/2016). After getting the statistics, all the variants 

are marked using ApplyRecalibration from GATK. The commands used for VariantRecalibration 

step are as follows: 

For SNPs: 

1. HapMap 3.3: hapmap,known=false,training=true,truth=true,prior=15.0  

2. Omni genotyping array 2.5 million 1000G: 
omni,known=false,training=true,truth=true,prior=12.0  
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3. 1000G phase 1 high confidence: 1000G,known=false,training=true,truth=false,prior=10.0  

4. dbSNP 138: dbsnp,known=true,training=false,truth=false,prior=2.0  

For Indels: 

1. Mills 1000G high confidence indels: mills,known=false,training=true,truth=true,prior=12.0  
2. dbSNP 138: dbsnp,known=true,training=false,truth=false,prior=2.0  

 

Filters:  

As we have used only high coverage data and D-statistics is robust for high coverage data, we 

adopted a minimal filter strategy (although stricter filters produced similar results, data not shown). 

We only retained biallelic SNPs which passed the filter tag from VQSR step using vcftools 0.1.13 6. 

We converted the VCF files to PLINK format using VCFtools and then added the Ancestral 

information from 1000 genome data site 4. We removed all the SNPs which had missing 

information for any individual, using --geno flag in PLINK-1.07 7 to remove lowly covered regions, 

which can bias the frequency estimation for populations. Although the results are similar, we 

removed all the transitions as ancient genomes are prone to have more transitions due to DNA 

degradation. The similarity is most probably due to the high coverage ancient genomes used for this 

study. ABC-DL method has used a different filtering approach (see below).  

Chimp Reference Mapping and Calling: 

To check for biases due to the use of modern human reference genome, mostly of European origin, 

we also remapped two persons per population on the chimpanzee reference genome (for Irula we 

have used data from SGDP 8) and redone the variant calling to calculate the D-statistics and F4 ratio 

test. The previously created human reference mapped BAM files were split by read groups using 

SAMtools split. Then every split BAM files were changed to unmapped BAM files using 

RevertSam from picard tools and then this unmapped BAM files were converted to FASTQ files 

using SAMtools fastq. After that this FASTQ files were remapped on the chimpanzee reference 

genome (panTro4) following a similar strategy as was done on human reference genome. Although 

CleanSam and markDuplicates were used as human reference variant calling method, we have not 

used IndelRealigner and BaseRecalibration due to lack for proper reference dataset. As low 

coverage data can bias the variant calling towards the reference genome, which is relevant here 

because we have used the chimpanzee reference for D-statistics calculation (a low coverage genome 

would have higher number of reference allele which would be translated into higher number of 



5 

ancestral alleles), we downgraded all the BAM files towards the lowest covered genome using 

SAMtools view -s command. We used HaplotypeCaller to do the variant calling. Again the 

VariantRecalibrator step was not used as due to lack of reference data set. Then we converted the 

VCF file to EIGENSTRAT format and used Admixture to calculate the D-statistics. We put the 

reference allele as Ancestral and all the alternative alleles to Derived allele.  
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Supplementary Table 1: Sources of Data used in this paper. 

Individual Population Origin of Data 

HG02922 Esan in Nigeria (AFR) 1000 Genomes 

HG03052 Mende in Sierra Leone (AFR) 1000 Genomes 

NA19238 Yoruba in Ibadan, Nigeria (AFR) 1000 Genomes 

NA19239 Yoruba in Ibadan, Nigeria (AFR) 1000 Genomes 

HG00096 British in England and Scotland (EUR) 1000 Genomes 

HG01500 Iberian Population in Spain (IBS) 1000 Genome 

NA12891 Utah Residents (CEPH) with Northern and Western Ancestry  1000 Genomes 

NA12892 Utah Residents (CEPH) with Northern and Western Ancestry  1000 Genomes 

HG00419 Southern Han Chinese (ASN) 1000 Genomes 

HG00759 Chinese Dai in Xishuangbanna, China (ASN) 1000 Genomes 

NA18525 Han Chinese in Beijing, China (ASN) 1000 Genomes 

NA18939 Japanese in Tokyo, Japan (ASN) 1000 Genomes 

ERS1358131 Australian Aborigines (PAC) SGDP 

ERS1358132 Australian Aborigines (PAC) SGDP 

ERS1042142 Papuan (PAC) SGDP 

ERS1042181 Papuan (PAC) SGDP 

ERS1358076 Irula (ILA) SGDP 

ERS1358081 Irula (ILA) SGDP 

BIR-08 Birhor (IND)  Mondal et al. 2016 

BIR-11 Birhor (IND) Mondal et al. 2016 

IL-01 Irula (IND) Mondal et al. 2016 

IL-04 Irula (IND) Mondal et al. 2016 

JAR-27 Jarawa (AND) Mondal et al. 2016 

JAR-32 Jarawa (AND) Mondal et al. 2016 

ONG-1 Onge (AND) Mondal et al. 2016 

ONG-12 Onge (AND) Mondal et al. 2016 

Altai Neanderthal (NEAN) Green et al. 2010 

Vindija 33.19 Neanderthal (NEAN) Prufer et al. 2017 

Denisova Denisova (DENI) Meyer et al. 2012 
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Supplementary Table 2: Results of D-statistics analysis mapped on the human and the 

chimpanzee reference genome. Two Europeans (EUR: British in England and Scotland [GBR], 

Utah Residents (CEPH) with Northern and Western Ancestry [CEU], two East Asians  (ASN: Han 

Chinese in Beijing, China [CHB], Japanese in Tokyo, Japan [JPT]), two Africans (AFR: Yoruba in 

Ibadan, Nigeria [YRI]), two Irulas (ILA), two Pacific Populations (PAC: Papuan, Australian 

Aborigines), two Neanderthals (NEAN: Altai and Vindija) and one Denisova (DENI). In case of 

human reference, the ancestral alleles are those of 1000 Genomes Project (which is a construct 

using human-gorilla-chimpanzee alignment) and in case of chimpanzee reference, the ancestral 

alleles are the reference alleles from pantro4.  

W X Y Z 

Human 
Reference 
D score Z score 

Chimp 
reference 
D score  

Z score 

EUR ASN AFR Ancestral 0.0008 0.333 0.0033 1.1803 

EUR IND AFR Ancestral 0.007 2.835 0.0319 11.5043 

EUR PAC AFR Ancestral 0.0337 10.651 0.0524 17.0834 

AFR EUR NEAN Ancestral -0.0435 -11.453 -0.0454 -12.5242 

AFR ASN NEAN Ancestral -0.0538 -11.667 -0.052 -12.4132 

AFR IND NEAN Ancestral -0.0493 -12.651 -0.0551 -15.0352 

AFR PAC NEAN Ancestral -0.0425 -10.322 -0.0711 -15.4772 

AFR EUR DENI Ancestral -0.0051 -1.598 -0.0139 -4.6682 

AFR ASN DENI Ancestral -0.0141 -4.285 -0.0202 -6.2322 

AFR IND DENI Ancestral -0.02 -5.885 -0.0219 -7.0152 

AFR PAC DENI Ancestral -0.0768 -16.633 -0.0731 -17.6192 
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Supplementary Figure 1. Considered models in the initial simulations. See the text for details. 
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Supplementary Table 3. Parameter values for each model. Most of the values come from 14. In 

case the value of the parameter is not available, we assumed a most plausible value. As D-statistics 

and F4 ratio are generally parameter independent, these assumptions will not affect the results. 

Model Parameter Value 

Common to all models Fragment size per region 10kb 

Number of Regions 3×105 

Mutation rate 1.45×10-8 

Recombination rate 1.3×10-8 

Ne each population 11,273 

time Split (AND, IND, ASN) 45 kya 

time Split (PAC, ASN) 55 kya 

time Split (ASN, EUR) 60 kya 

time Split (OOA, AFR) 125 kya 

time Split (DENI, NEAN) 381 kya 

time Split (EAH, AMH) 571 kya 

time Introgression of DENI in PAC 40 kya 

time Introgression of NEAN in OOA 75 kya 

Model B time Introgression of Xe to EUR 20 kya 

time Split(Xe, OOA) 100 kya 

Model C time Introgression of NEAN to ASN 58 kya 

Model D time Introgression of NEAN to ASN 58 kya 

time Introgression of DENI to ASN 58 kya 

Model F’ time Introgression of DENI to ASN 58 kya 

Model X time Split (DENI, NEAN, EEH) 381 kya 

time Introgression of EEH to ASN 58 kya 
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where kya=thousand years ago, AND=Andamanese, IND=Indian Tribal Populations, ASN=East 

Asians, PAC=Pacific/Oceania, EUR=Europeans, OOA=Out of Africa populations, 

DENI=Denisova, NEAN=Neanderthal, EAH=Eurasian archaic hominin, EEH=Eurasian Extinct 

Hominin, AMH=Anatomically Modern Human, Xe ghost population. 

Supplementary Table 4. ms code for each of the considered demographic models 

Model ms code 

Model A ms 54 300000 -I 8 8 8 8 8 8 8 4 2 -t 6.53834 -r 5.86196 10001 -es 0.0305888039 6 0.9734 -ej 
0.0305888039 9 8 -ej 0.0344124044 5 3 -ej 0.0344124044 4 3 -ej 0.0420596053 6 3 -ej 
0.0458832058 3 2 -es 0.0573540073 2 0.9788 -ej 0.0573540073 10 7 -ej 0.0955900121 2 1 -ej 
0.291358357 8 7 -ej 0.4366551755 7 1 -seeds 100 200 300 

Model B ms 54 300000 -I 9 8 8 8 8 8 8 4 2 0 -t 6.53834 -r 5.86196 10001 -es 0.0152944019 2 0.7883 -ej 
0.0152944019 10 9 -es 0.0305888039 6 0.9752 -ej 0.0305888039 11 8 -ej 0.0344124044 5 3 -ej 
0.0344124044 4 3 -ej 0.0420596053 6 3 -ej 0.0458832058 3 2 -es 0.0573540073 2 0.9738 -ej 
0.0573540073 12 7 -ej 0.0764720097 9 2 -ej 0.0917664117 2 1 -ej 0.291358357 8 7 -ej 
0.4366551755 7 1 -seeds 100 200 300 

Model C ms 54 300000 -I 8 8 8 8 8 8 8 4 2 -t 6.53834 -r 5.86196 10001 -es 0.0305888039 6 0.9742 -ej 
0.0305888039 9 8 -ej 0.0344124044 5 3 -ej 0.0344124044 4 3 -ej 0.0420596053 6 3 -es 
0.0443537656 3 0.9956 -ej 0.0443537656 10 7 -ej 0.0458832058 3 2 -es 0.0573540073 2 0.9785 
-ej 0.0573540073 11 7 -ej 0.0917664117 2 1 -ej 0.291358357 8 7 -ej 0.4358904554 7 1 -seeds 
100 200 300 

Model D ms 54 300000 -I 8 8 8 8 8 8 8 4 2 -t 6.53834 -r 5.86196 10001 -es 0.030588803886002 6 0.9783 -
ej 0.030588803886002 9 8 -ej 0.034412404371752 5 3 -ej 0.034412404371752 4 3 -ej 
0.042059605343252 6 3 -es 0.044353765634702 3 0.9962 -ej 0.044353765634702 10 7 -es 
0.045883205829003 3 0.9969 -ej 0.045883205829003 11 8 -ej 0.045883205829003 3 2 -es 
0.057354007286253 2 0.9787 -ej 0.057354007286253 12 7 -ej 0.091766411658005 2 1 -ej 
0.291358357014166 8 7 -ej 0.435890455375523 7 1 -seeds 100 200 300 

Model F’ mscode: ms 54 300000 -I 8 8 8 8 8 8 8 4 2 -t 6.53834 -r 5.86196 10001 -es 0.030588803886002 6 
0.9879 -ej 0.030588803886002 9 8 -ej 0.034412404371752 5 3 -ej 0.034412404371752 4 3 -ej 
0.042059605343252 6 3 -es 0.044353765634702 3 0.985 -ej 0.044353765634702 10 8 -ej 
0.045883205829003 3 2 -es 0.057354007286253 2 0.9783 -ej 0.057354007286253 11 7 -ej 
0.091766411658005 2 1 -ej 0.291358357014166 8 7 -ej 0.435890455375523 7 1 -seeds 100 200 
300 

Model X ms 54 300000 -I 9 8 8 8 8 8 8 4 2 0 -t 6.53834 -r 5.86196 10001 -es 0.030588803886002 6 
0.9779 -ej 0.030588803886002 10 8 -ej 0.034412404371752 5 3 -ej 0.034412404371752 4 3 -ej 
0.042059605343252 6 3 -es 0.044353765634702 3 0.984 -ej 0.044353765634702 11 9 -ej 
0.045883205829003 3 2 -es 0.057354007286253 2 0.9789 -ej 0.057354007286253 12 7 -ej 
0.091766411658005 2 1 -ej 0.291358357014166 9 7 -ej 0.291358357014166 8 7 -ej 
0.435890455375523 7 1 -seeds 100 200 300 
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Supplementary Figure 2. Flowchart example to calculate Introgression amount 

  

Supplementary Note 1: D-statistics and F4 ratio test for estimating introgression proportions 

in simple demographic scenarios. 

We run all the simulations with ms >(see Supplementary Table 4). We used five D-statistics results 

to train our dataset for different simulation models: 

1) D-statistics (EUR, AFR, NEAN, Ancestral) = 0.0457 (Equation 1). 

2) D-statistics (ASN, AFR, NEAN, Ancestral) = 0.0557 (Equation 2). 

3) D-statistics (PAC, AFR, DENI, Ancestral) = 0.0753  (Equation 3). 

4) D-statistics (ASN, EUR, NEAN, Ancestral) = 0.0126 (Equation 4). 

5) D-statistics (ASN, EUR, DENI, Ancestral) = 0.0096  (Equation 5). 

Model A: 

Under this model, there is an introgression of Neanderthal to all OOA population and one of 

Denisova in the Pacific. We first estimated the Neanderthal introgression amount in all OOA 

populations using Equation 1 and then Equation 3 was used to calculate the introgression amount of 

Denisova in Pacific populations. 
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Model B: 

We first solved the Equation 2 to find the Neanderthal introgression for all OOA populations. Then 

we estimated the amount of admixture needed from non-introgressed population to European using 

Equation 1 and at the end Equation 3 was evaluated to find the amount of Denisova introgression in 

Pacific population.  

Model C: 

This model assumes two Neanderthal introgressions and one from Denisovans. In it, we first solved 

the Neanderthal introgression amount for all OOA populations using Equation 1. Then we 

estimated the second Neanderthal introgression amount using Equation 2 and in the end the amount 

of Denisova introgression was calculated using Equation 3. 

Model D: 

In this model, there are two Neanderthal and two Denisova introgressions. Again, Equation 1 was 

used to calculate Neanderthal introgression for all OOA populations. Then Equation 4 and 5 was 

solved together which gave the amount of Neanderthal introgression and Denisova introgression for 

Asian populations. After that we estimated Denisova introgression amount for Pacific populations 

using Equation 3. 

Model F’: 

This model assume one introgression from Neanderthal to all OOA, one introgression from 

Denisova to all Asia and Pacific population and then again another Denisova to Pacific population 

only. The Neanderthal introgression amount was calculated using Equation 1. Then using Equation 

2, we calculated the introgression from Denisova for Asian populations and then using Equation 3 

we estimated the Denisova introgression in Pacific populations. 

Model X: 

We have used the Equation 1 first to calculate the amount of Neanderthal introgression for all OOA 

populations. Then we used Equation 2 to calculate the amount of introgression from unknown EEH 

population to Asia and Pacific population and in the end we estimated Denisova introgression to 

Pacific population using Equation 2. 

After estimation of above mentioned parameters for every model, we then re-calculated some of D-
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statistics and F4 ratio test for those models to compare which model is the best explaining the 

empirical results (Supplementary Figure 1).  

After optimization of the introgression amount, we ran ms code for the final time with 10 kb 

regions and 3×105 replicates, which is converted to 3×109 base pair region per individual. Then we 

converted ms output to eigenstrat format and run qpDstat on the simulated data with 859 blocks for 

block jack knife. We then compared real D-statistics and F4 ratio results (value, standard error and 

555 blocks for Jackknife) with the simulated D-statistics and F4 ratio results (value, standard error 

and 859 blocks for Jackknife) using a simple t-tests to calculate the p value (the number of blocks 

were used to calculate the degrees of freedom).  

We simulated above mentioned scenarios (3×105 replicates of 10kb regions) to calculate D-statistics 

and F4 ratio tests. We reached the conclusion from the results with these statistics that the best-

fitted model was given by the introgression in all Asian populations from an unknown EEH 

population (Model X), though the Model of double introgression from Denisova and Neanderthal 

(Model D) came close to explain the results (Supplementary Figure 3). 

The no introgression model (Model A) failed to explain the higher Neanderthal and Denisova 

ancestry in Asian populations compared to Europeans using D-statistics (Supplementary Figure 3a). 

It is interesting to note that the increase of Neanderthal ancestry in Asian populations compared to 

Europeans is >20% when the Ancestral was used as the out-group, but this increase diminished 

when the Denisova was used as the out-group in the F4 ratio test (Supplementary Figure 03b). A 

similar result was observed with D-statistics (data not shown). Our results also reject the Model B 

(dilution of Neanderthal ancestry in Europeans) and Model C (two introgressions for Asians from 

Neanderthals) since F4 ratio test should be independent of the out-group in those models and should 

show exactly the same amount. Model F’ shows an increase in the amount of Denisova ancestry 

much higher in D-statistics but that reduces the Neanderthal ancestry detected by F4 ratio tests; the 

model, thus, can be rejected (Supplementary Figure 3).  

This phenomenon is much better explained by the scenario of double introgression from both 

Neanderthal and Denisova (Model D) and the introgression from an unknown EEH population 

(Model X). Introgression from any EEH population, which is an out-group or in trichotomy with 

Neanderthal and Denisova separation (but not an out-group of modern human and Neanderthal-
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Denisova lineage), would increase the D-statistics values of Neanderthal and Denisova, as this EEH 

population shared an ancestry with them. The increase would be more or less similar as this 

population would share derived alleles present both in Neanderthal and Denisova due to incomplete 

lineage sorting. If the introgression happened either from Neanderthal or Denisova, the increase in 

D-statistics would not be uniform (Model C, Model E and Model F’). In contrast, F4 ratio test 

detects a differential Neanderthal ancestry when using different outgroups (Supplementary Figure 

03b). Interestingly under Model X, Asian populations should have a dearth of African alleles like 

Andamanese (data not shown); we detected this lack of African ancestry in case of Indian and 

Andamanese populations (as well as in a Tibeto-Burman population) but failed to detect it in case 

of East Asian populations (Mondal et al. 2016). These results were reproduced in an independent 

dataset using Chimp reference (see above).  

The alternative scenario of two independent introgressions with the similar amount from 

Neanderthal and Denisova in Asian populations (Model D) can also explain the results of D-

statistics and F4 ratio tests and cannot be ruled out on these basis only. Although this is highly 

unlikely in practicality, as the time span between Asian populations had separated from the 

Europeans and their separation from each other is small. To solve this dilemma, we used ABC-DL 

method which is much better suited to delimit this kind of situation (see later). 

In the case of Pacific populations, although they are known to have introgression from Denisova, 

we found that Papuan has much more Neanderthal ancestry than other OOA populations when 

using D-statistics (Table 1). But this higher Neanderthal ancestry in Pacific populations can be 

explained by the high Denisova introgression in these populations due to the shared ancestry 

between them. 
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Supplementary Figure 3a: Neanderthal and Denisova introgression amount of Asian 

populations compared to Europeans calculated by D-statisticss for real and different 

simulation models (ModelA-ModelX). D-statistics (European, X, Neanderthal, Ancestral) is in red 

and D-statistics (European, X, Denisova, Ancestral) is in Black. X is either East Asian, Indian 

Tribal or Andamanese populations. The bar represents the standard error. P values were calculated 

by t-test between the model and the real results (values lower than .05 were marked with red color). 

Standard error was calculated using Jackknife on 555 blocks for real data and on 859 blocks for 

simulated data. 
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Supplementary Figure 3b: Neanderthal introgression amount of Asian populations compared 

to Europeans calculated by F4 ratio test for real and different models (ModelA-ModelX). F4 

ratio (Denisova, Altai Neanderthal; Africa, X: Denisova, Altai Neanderthal; Africa, Vindija 

Neanderthal). X is either East Asian, Indian Tribal or Andamanese populations. The bar represents 

the standard error. P values were calculated by t-test between the model and the real results (values 

lower than .05 were marked with red color). Standard error was calculated using Jackknife on 555 

blocks for real data and on 859 blocks for simulated data. 
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Supplementary Note 2: Approximate Bayesian Computation (ABC) coupled to a Deep 

Learning (DL) approach (ABC-DL) 

Data preprocessing 

We considered the individuals for ABC-DL analyses: Altai, BIR-08, BIR-11, Denisova, 

ERS1358131, ERS1358132, ERS1042142, ERS1042181, HG00096, HG00419, HG00759, 

HG01500, HG02922, HG03052, IL-01, IL-04, JAR-27, JAR-32, ONG-1, ONG-12, NA12891, 

NA12892, NA18525, NA18939, NA19238 and  NA19239 (Supplementary Table 1). 

Data cleaning comprised: 

1. Masking genomic regions containing Ensembl genes ± 20kb. 

2. Masking CgP islands defined in 1> 

3. Retrieving genomic regions of at least 10kb and separated by at least 100kb. Within each 

genomic fragment we concatenate genomic fragments that were at <=5 Kb from each other 

and that were neither in genes nor not in CgP islands. 

After data cleaning, the total number of considered regions was 9,643, comprising 651 Mb. 

Demographic Models 

The considered demographic models are depicted in Figure 1. All models considered a tree 

topology shaped by the OOA, a diaspora and further admixture with other archaic populations. The 

main interest is in identifying the archaic sources of archaic introgression in Asian and 

Australian/Pacific populations, thus the evolutionary structure of the populations of modern humans 

is taken as the same in all models and it is not tested. Supplementary Table 5 shows the prior 

distributions for the different parameters considered in at least one of the compared models. 

For the parameters comprising effective population sizes, we considered a uniform distribution of 

priors with a broad interval of possible values. In the case of the time of splits, we considered 

Uniform priors distributed around previously estimated values in the literature with broad ranges. In 

the case of the time of split between Neanderthals and Denisovans, we defined a broad range 

focusing on the values reported by 1>, which used a comparable mutation rate as the considered in 

this study. 

Deep Learning 

Artificial Neural Networks (ANNs) are a biologically-inspired programming machine learning 

paradigm which enables a computer to learn from observational data. ANNs are able to model 

complex non-linear input–output mappings and are particularly suited for solving universal 
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problems to many domains of science, business and government 1>. Deep learning (DL) composes 

of simple but non-linear modules that each transforms the representation at one level (starting with 

the raw input) into a representation at a higher, slightly more abstract level 13. It has been recently 

suggested as an approach for estimating demographic parameters in complex demographic 

scenarios 14. Each ANN is defined by a large number of hyperparameters, including the neural 

network topology (number of layers, number of neurons by layer, connections between neurons 

within and between layers), the type of activation function of each neuron/layer (and associated 

parameters), the learning algorithm for estimating the weights of the connections between neurons 

(and parameters that define the ascertained strategy) and algorithms for alleviating the problem of 

overfitting the ANN with the training data such as early stop training, dropout 13 and noise injection 
15, among others. 

 

ABC-DL Implementation for Model inference 

Given the exponential nature of the multivariate joined SFS, considering the nine populations -each 

population sampled at two chromosomes- for model comparison comprises 19,681 (39-2) cells as 

input for the DL. Such a large number of input features can introduce problems of overfitting and it 

is computationally intensive. In order to reduce the number of observed cells allowing to the ANN 

while keeping the inner topology of the models, we excluded from the analyses the SFS cells 

corresponding to the Indian and Papuan populations, leading to 3⁷ -2 = 2,185 SFS cells. 

Furthermore, in order to reduce the variance and magnitude among different SFS cells, we 

standardized each SFS cell among the different simulations. We generated a supervised four layer 

feedforward DL network for inferring the demographic model using the 2,185 SFS cells. Input layer 

(top) corresponds to the SFS computed using seven populations: A (African), E (Europeans), EA 

(East Asian), AN (Andamanese), AU (Australian Aborigines), N (Neanderthal) and D (Denisova). 

Output layer (bottom) corresponds to one of the eight proposed models. Hidden layers consider a 

bias unit and 200 neurons with Elliot activation functions 1>with a modified slope s at 0.1 to 

enhance linearity: 

𝑓𝑓(𝑥𝑥) =
𝑠𝑠𝑠𝑠

2(1 + |𝑠𝑠𝑠𝑠|)
+ 0.5 

Training of the DL applied resilient propagation with a dropout rate of 0.5, a RPROP algorithm for 

adaptive learning 1> and noise injection as described previously. The proposed DL network is 
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implemented using Encog3.4 17 after extending the framework to include noise injection. 
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ABC Implementation for Model identification 

 

For DL training, we generated 15,000 simulations from each of the eight considered models, 

comprising a total of 120,000 simulations. We run 10 independent supervised DL networks with 

these simulations. Noise injection was introduced using the observed SFS computed from 

HG02922, NA12891, HG00419, ONG-1, ERS1358131, Altai and Denisova. Each DL network was 

trained to identify the model used to generate each simulation by means of a SoftMax layer. It was 

run until error decreased up to 0.01 or it has run for more than 10,000 iterations. The output of each 

DL prediction for a given simulation was combined to produce a unique output in bagging 1>, and 

the combined prediction was used for conducting a local linear regression ABC approach. We 

generated additional 100,000 simulations of each demographic model. For each simulation, we use 

the DLs to predict the model that generated it. In parallel, we estimated the model probabilities at 

each DL network with observed data not used for training or replication dataset (with the exception 

of Neanderthal Altai and Denisovan): NA19239, NA12892, NA18939, ONG-12 and ERS1358132. 

In order to evaluate the power of ABC for distinguishing between these eight independent models, 

we ran a leave one-out cross-validation algorithm using 100 randomly sampled simulations from 

each model in the replication dataset as “observed data”, and using the remaining 7 x 14,900 

simulations for the ABC. We considered the classical ABC rejection algorithm, retaining the closest 

1,000 simulations to the observed data. 

We next applied the ABC approach to the observed data using local linear regression to weight the 

accepted simulations. Supplementary Figure 4 shows the posterior distribution obtained for each of 

the eight considered models. ABC model ascertainment supports the presence of an additional 

archaic Ghost population introgressing in Asia besides Neanderthal and Denisovan (models E, F, G 

and H). The model that considers the Ghost population as an admixture of the Neanderthal and 

Denisovan population (Model H) was displayed to be getting the highest support, being only 1.2 

times more likely than the next model with the largest posterior probability (Model F). 
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ABC-DL Implementation for Parameter identification 

 

We next applied the ABC-DL implementation to model H. From the SFS, we generated the 

multidimensional unfolded site frequency spectrum -SFS- between all possible triplets of 

populations, thus reducing the total number of cells of the SFS considering all populations at once. 

For each parameter of model H we trained a DL using 10,000 simulations. The DL of each 

parameter was generated using a four-layer feedforward network. Input layer consisted on all the 

SFS computed between all possible triplets of populations. Each cell was standardized using the 

observed values in the 10,000 simulations. The output consisted on the scaled value of the 

parameter of interest, ranging between 0 and 1. We considered two hidden layers of 100 neurons 

each, using Elliot activation functions as described previously, and a bias neuron. 

We applied noise injection approach as previously described for minimizing overfitting and 

increasing parameter inference robustness. 

Next, we generated 100,000 additional simulations, computed the SFS and applied the trained DL 

to get the SS to be used at the ABC. For each parameter, we first analyzed the power of the DL for 

predicting the value used to generate a simulation given the observed SFS between triplets of 

populations. Supplementary table 07 shows the estimated correlation between the predicted value 

by the DL and the used value to generate the simulation. 

Next, we applied the ABC-DL approach to the observed data (Supplementary Table 8 and 9 and 

Figure 3), retaining the best 1,000 simulations out of the 100,000. 

Given that the time of admixture between Denisovans and Neanderthals to create the ghost 

population overlaps with the time of split between Denisovans and Neanderthals, we wondered if a 

similar trend of overlap could be observed in other models including the archaic population. 

Therefore, we conducted the ABC-DL approach with model E, F and G (Supplementary Table 10). 

We observe that the ABC-DL provides posterior distributions of the split of the proposed archaic 

ghost population tend to overlap with the time of split between Neanderthal and Denisovan. 

  



22 

Supplementary Table 5. Prior distributions of the considered models 

Parameter Distribution A B C D E F G H 

migration_African_to_European U(0.0,5.0E-4) X X X X X X X X 

migration_European_to_African U(0.0,5.0E-4) X X X X X X X X 

migration_African_to_EAsia U(0.0,5.0E-4) X X X X X X X X 

migration_EAsia_to_African U(0.0,5.0E-4) X X X X X X X X 

migration_European_to_EAsia U(0.0,5.0E-4) X X X X X X X X 

migration_EAsia_to_European U(0.0,5.0E-4) X X X X X X X X 

migration_Papuan_to_Australian U(0.0,5.0E-4) X X X X X X X X 

migration_Australian_to_Papuan U(0.0,5.0E-4) X X X X X X X X 

NeAfrican U(10000.0,100000.0) X X X X X X X X 

NeEuropean U(1000.0,20000.0) X X X X X X X X 

NeEastAsian U(1000.0,20000.0) X X X X X X X X 

NeAndamanese U(1000.0,20000.0) X X X X X X X X 

NeIndian U(1000.0,20000.0) X X X X X X X X 

NePapuan U(1000.0,20000.0) X X X X X X X X 

NeAustralian U(1000.0,20000.0) X X X X X X X X 

NeNeanderthal U(1000.0,20000.0) X X X X X X X X 

NeDenisovan U(1000.0,20000.0) X X X X X X X X 

NeErectus U(1000.0,20000.0) X X X X X X X X 

tSplitPapua_AA* U(14.5,43.5) X X X X X X X X 

NePapua_AA U(1000.0,20000.0) X X X X X X X X 

tsplitAndamese_India* U(14.5,43.5) X X X X X X X X 

NeEAsia_India U(1000.0,20000.0) X X X X X X X X 

tSplitAsia_Pacific* U(43.5,52.2) X X X X X X X X 

NeAsia_Pacific U(1000.0,20000.0) X X X X X X X X 

tSplitEuropean_Asia_Pacific U(1800.0,2500.0) X X X X X X X X 

NeOutOfAfrica U(1000.0,20000.0) X X X X X X X X 

tSplitEurasia_Africa* U(tSplitEuropean_Asia_Pacific,174) X X X X X X X X 

NeHumans U(1000.0,40000.0) X X X X X X X X 

NeBottleneckEurasia U(1000.0,5000.0) X X X X X X X X 

NeArchaics U(1000.0,80000.0) X X X X X X X X 

tSplitNeanderthal_Denisova* U(300,400) X X X X X X X X 

NeHominin U(1000.0,40000.0) X X X X X X X X 

tHominin* U(450,600) X X X X X X X X 

tIntrogressionDenisovan_Pacific* U(tSplitPapua_AA,tSplitAsia_Pacific) X X X X X X X X 

IntrogressionDenisovan_Pacific U(1.0E-9,0.05) X X X X X X X X 

tIntrogressionErectus_Denisovan* U(41,70) X X X X X X X X 

IntrogressionErectus_Denisovan U(1.0E-9,0.05) X X X X X X X X 

NeErectus_Hominin U(5000.0,100000.0) X X X X X X X X 

tHominin_Erectus* U(1000,2000) X X X X X X X X 
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tIntrogressionNeanderthal_ModernHumanOutOfAfrica* U(tSplitEuropean_Asia_Pacific,tSplitEurasia_Africa) X X X X 
    

IntrogressionNeanderthal_Eurasia U(1.0E-9,0.05) X X X X 
    

NeGhostEuropean U(2000.0,40000.0) 
 

X 
      

NeBeforeSplitEurope_Asia_Pacific U(1000.0,NeEastAsian) 
 

X 
      

tSplitGhostEuropean_OtherModernHumans* U(tSplitEuropean_Asia_Pacific,tSplitEurasia_Africa) 
 

X 
      

tIntrogressionGhostEurope_Europe* U(10,tSplitEuropean_Asia_Pacific) 
 

X 
      

IntrogressionGhostEurope_Europe U(1.0E-9,0.05) 
  

X 
     

IntrogressionNeanderthal_Eurasia U(1.0E-9,0.05) 
  

X 
     

tIntrogressionNeanderthal_Asia* U(tSplitAsia_Pacific,tSplitEuropean_Asia_Pacific) 
  

X X 
    

IntrogressionNeanderthal_Asia U(1.0E-9,0.05) 
   

X 
    

tIntrogressionDenisovan_Asia* U(tSplitAsia_Pacific,tSplitEuropean_Asia_Pacific) 
   

X 
    

IntrogressionDenisovan_Asia U(1.0E-9,0.05) 
   

X 
    

NeUnknown U(1000.0,20000.0) 
    

X X X X 

tIntrogressionAsia_Pacific* U(tSplitAsia_Pacific,tSplitEuropean_Asia_Pacific) 
    

X X X X 

IntrogressionUnknown_Asia_Pacific U(0.5,0.51) 
    

X X X X 

tIntrogressionNeanderthal_ModernHumanOutOfAfrica* U(tSplitEuropean_Asia_Pacific,tSplitEurasia_Africa) 
    

X X X X 

IntrogressionNeanderthal_Eurasia U(1.0E-9,0.05) 
    

X X X X 

tSplitNeanderthal_Unknown* U(200,tSplitNeanderthal_Denisova) 
    

X 
   

tSplitDenisovan_Unknown* U(200,tSplitNeanderthal_Denisova) 
     

X 
  

tSplitArchaic_Unknown* U(tSplitNeanderthal_Denisova,tHominin) 
      

X 
 

IntrogressionNeanderthal_Eurasia U(1.0E-9,0.05) 
       

X 

tAdmixtureNeanderthal_Denisovan_to_Unknown* U(tSplitEuropean_Asia_Pacific,75.4) 
       

X 
 
* kya assuming a generation time of 29 years 1> 
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Supplementary Table 6. Confusion matrix for the eight considered models using 100 samples 

from each model. For each simulated model (row) we performed a classical ABC rejection 

algorithm and identified the model (column) with the highest posterior probability. 

Model A B C D E F G H P(Msim | Mabc) 
A 62 0 0 0 2 3 33 0 0.58 
B 6 82 1 6 0 0 5 0 0.86 
C 0 5 87 3 1 0 0 4 0.94 
D 5 7 1 54 5 8 8 12 0.58 
E 6 0 1 2 57 14 9 11 0.57 
F 4 0 0 7 6 68 13 2 0.66 
G 20 1 0 1 1 2 74 1 0.50 
H 3 0 2 20 27 8 4 36 0.54 

 

Supplementary Figure 4. Posterior probabilities of the models. They have been estimated by 

means of classical rejection ABC algorithm at the NA19239, NA12892, NA18939, ONG-12, AUS2, 

Altai and Denisovan using 100,000 simulations of each model and the combined classification 

output from 10 DL networks. 
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Supplementary Table 7. Linear correlation between the parameter values used for the 

simulation and the predicted parameter value by the DL using the SFS between triplets of 

populations in the replication dataset of 100,000 simulations. In bold, values  <=0.1 

Parameter correlation 

migration_African_to_European 0.82 

migration_European_to_African 0.74 

migration_African_to_EAsia 0.86 

migration_EAsia_to_African -8.13E-05 

migration_European_to_EAsia 0.80 

migration_EAsia_to_European 0.88 

migration_Papuan_to_Australian 0.44 

migration_Australian_to_Papuan 0.28 

NeAfrican 0.78 

NeEuropean 0.91 

NeEastAsian 0.91 

NeAndamanese 0.92 

NeIndian 0.93 

NePapuan 0.92 

NeAustralian 0.89 

NeNeanderthal 0.95 

NeDenisovan 0.94 

NeErectus -0.0005 

tSplitPapua_AA 0.52 

NePapua_AA 0.63 

tsplitAndamese_India 0.81 

NeEAsia_India 0.82 

tSplitAsia_Pacific 0.32 

NeAsia_Pacific 0.82 
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tSplitEuropean_Asia_Pacific 0.51 

NeOutOfAfrica 0.74 

tSplitEurasia_Africa 0.84 

NeHumans 0.55 

NeBottleneckEurasia 0.25 

NeArchaics 0.90 

tSplitNeanderthal_Denisova 0.74 

NeHominin 0.94 

tHominin 0.86 

tIntrogressionDenisovan_Pacific 0.53 

IntrogressionDenisovan_Pacific 0.94 

tIntrogressionErectus_Denisovan 0.43 

IntrogressionErectus_Denisovan 0.85 

NeErectus_Hominin 0.83 

tHominin_Erectus 0.40 

NeUnknown 0.01 

tIntrogressionAsia_Pacific 0.39 

IntrogressionUnknown_Asia_Pacific 0.87 

tIntrogressionNeanderthal_ModernHumanOutOfAfrica 0.68 

IntrogressionNeanderthal_Eurasia 0.90 

AdmixtureDenisovanUnknown*NeDenisovan 0.71 

tAdmixtureNeanderthal_Denisovan_to_Unknown 0.49 
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Supplementary Table 8. Mean and 95% Credible Interval (CI) of the posterior distributions 

of the demographic parameters of model H. 

Parameter mean 2.5% CI 97.5% CI 

migration_African_to_European 0.00005 0.00000 0.00018 

migration_European_to_African 0.00007 0.00000 0.00018 

migration_African_to_EAsia 0.00021 0.00005 0.00039 

migration_EAsia_to_African 0.00024 0.00001 0.00049 

migration_European_to_EAsia 0.00036 0.00018 0.00049 

migration_EAsia_to_European 0.00003 0.00000 0.00009 

migration_Papuan_to_Australian 0.00026 0.00002 0.00049 

migration_Australian_to_Papuan 0.00018 0.00001 0.00048 

NeAfrican 23291.15 11190.96 45588.44 

NeEuropean 8174.85 5012.68 13580.43 

NeEastAsian 8630.78 5311.79 14067.76 

NeAndamanese 2869.95 1293.32 4775.42 

NeIndian 9782.06 6184.08 14532.16 

NePapuan 5115.38 3278.30 7938.23 

NeAustralian 11837.07 6681.24 18573.15 

NeNeanderthal 4230.31 1257.00 6803.71 

NeDenisovan 3631.35 1217.03 5976.19 

NeErectus 10508.45 1468.96 19416.30 

tSplitPapua_AA* 31.88 16.68 43.12 

NePapua_AA 10553.00 2617.73 19020.94 

tsplitAndamese_India* 39.54 31.67 43.37 

NeEAsia_India 15682.21 7819.05 19898.89 

tSplitAsia_Pacific* 46.95 43.67 51.81 

NeAsia_Pacific 15289.21 8173.67 19842.44 

tSplitEuropean_Asia_Pacific* 57.85 52.30 69.63 
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NeOutOfAfrica 2796.88 1091.66 5994.99 

tSplitEurasia_Africa* 121.38 78.51 166.98 

NeHumans 28414.16 10934.23 39402.11 

NeBottleneckEurasia 3507.75 1263.40 4939.78 

NeArchaics 15091.50 6502.20 24674.82 

tSplitNeanderthal_Denisova* 314.07 300.31 343.23 

NeHominin 23156.59 14956.49 33115.30 

tHominin* 558.22 503.66 596.01 

tIntrogressionDenisovan_Pacific* 43.10 29.38 50.29 

IntrogressionDenisovan_Pacific 0.016 0.004 0.025 

tIntrogressionErectus_Denisovan* 77.90 44.63 98.51 

IntrogressionErectus_Denisovan 0.013 0.003 0.029 

NeErectus_Hominin 55395.71 19859.65 93142.14 

tHominin_Erectus* 1492.86 1021.66 1973.87 

NeUnknown 10533.09 1441.02 19455.94 

tIntrogressionAsia_Pacific* 51.03 45.01 58.04 

IntrogressionUnknown_Asia_Pacific 0.026 0.007 0.047 

tIntrogressionNeanderthal_ModernHumanOutOfAfrica* 69.47 56.20 88.65 

IntrogressionNeanderthal_Eurasia 0.013 0.002 0.026 

AdmixtureDenisovanUnknown 0.511 0.079 0.792 

tAdmixtureNeanderthal_Denisovan_to_Unknown* 304.41 211.20 375.21 

* KYA assuming a generation time of 29 years. 
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Supplementary Table 9. Mean and 95% Credible Interval (CI) of the posterior distributions 

of the demographic parameters of model F. 

Parameter mean 2.5% CI 97.5% CI 

migration_African_to_European 5.58E-05 1.84E-06 0.00016 

migration_European_to_African 4.95E-05 1.41E-06 0.00014 

migration_African_to_EAsia 0.00016 2.24E-05 0.00034 

migration_EAsia_to_African 0.00025 1.48E-05 0.00049 

migration_European_to_EAsia 0.00042 0.00028 0.00049 

migration_EAsia_to_European 3.08E-05 1.17E-06 9.64E-05 

migration_Papuan_to_Australian 0.000235 1.79E-05 0.000474528 

migration_Australian_to_Papuan 0.00021 9.40E-06 0.000476128 

NeAfrican 30504.462 14022.482 69572.006 

NeEuropean 9931.110 6125.860 16282.749 

NeEastAsian 7569.396 4673.461 11286.004 

NeAndamanese 3858.272 2150.128 5637.242 

NeIndian 8118.892 4894.395 11702.754 

NePapuan 5076.282 3224.087 7626.228 

NeAustralian 12309.795 6792.164 19259.710 

NeNeanderthal 3918.538 1384.270 5875.804 

NeDenisovan 2888.284 1353.423 3890.069 

NeErectus 10943.903 1781.151 19414.566 

tSplitPapua_AA* 31.37 15.82 43.01 

NePapua_AA 10141.002 2577.949 19173.600 

tsplitAndamese_India* 37.77 28.87 43.11 

NeEAsia_India 15996.938 8755.218 19810.871 

tSplitAsia_Pacific* 47.6 43.77 51.88 

NeAsia_Pacific 14614.393 7011.954 19762.659 

tSplitEuropean_Asia_Pacific* 56.60 52.33 67.89 

NeOutOfAfrica 2786.436 1071.906 6105.232 

tSplitEurasia_Africa* 137.68 95.77 171.43 

NeHumans 29728.932 13158.831 39292.484 

NeBottleneckEurasia 3354.725 1209.499 4923.358 

NeArchaics 14481.352 5792.521 23939.461 

tSplitNeanderthal_Denisova* 320.25 300.68 360.48 

NeHominin 21400.065 13545.418 30645.232 

tHominin* 531.23 469.94 587.7 

tIntrogressionDenisovan_Pacific* 43.12 31.97 50.32 

IntrogressionDenisovan_Pacific 0.016 0.004 0.025 

tIntrogressionErectus_Denisovan* 68.018 42.92 96.54 

IntrogressionErectus_Denisovan 0.011 0.002 0.025 

NeErectus_Hominin 46706.916 11924.078 92384.701 
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tHominin_Erectus* 1474.61 1025.78 1972.40 

NeUnknown 10409.164 1395.235 19748.086 

tIntrogressionAsia_Pacific* 53.73 45.75 64.68 

IntrogressionUnknown_Asia_Pacific 0.034 0.019 0.048 

tIntrogressionNeanderthal_ModernHumanOutOfAfrica* 77.49 58.81 111.15 

IntrogressionNeanderthal_Eurasia 0.019 0.007 0.034 

NeDenisovanUnknown 13428.450 3881.706 19710.933 

tSplitDenisovan_Unknown* 279.15 206.25 359.88 
* KYA assuming a generation time of 29 years. 
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Supplementary Table 10. Posterior distributions of the time of divergence between 

Neanderthal and Denisovan and between the archaic population source in each model and the 

unknown ghost archaic population (Xe). 

Model tSplitNeanderthal_Denisova (95 CI) tSplitXe (95 CI) 
E 312,37 (300,53 , 339,18) 261,3 (202,6 , 351,01) 
F 320,25 (300,68 , 360,48) 279,1 (206,25 , 359,9) 
G 310,75 (299,98 , 332,48) 416,9 (333,77 , 511,76) 
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Supplementary Figure 5. Posterior distributions (in black) obtained after running the ABC-

DL approach with Model H. Red lines correspond to the prior distributions. 
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