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Effect of cost (𝛆) is independent of partner density 

𝒅𝜲𝟏

𝒅𝝉
= (𝟏 − 𝜹𝟏)𝜲𝟏(𝟏 − 𝜲𝟏) 

1.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿𝜀
1

𝛽𝛸2 + 1
)𝛸1(1 − 𝛸1) 2.

𝑑𝛸1
𝑑𝜏

= (1 − 𝛿)
1

𝜀
𝛸1 (1 +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1) 3.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿𝜀)𝛸1(1 − 𝛸1) +
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1 

𝛽𝛸0 + 1

𝜀
> 𝛿 Violates assumption d) and unbounded growth Unbounded growth 

4.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿
1

𝛽𝛸2 + 1
)𝛸1 (

1

𝜀
 − 𝛸1) 5.

𝑑𝛸1
𝑑𝜏

=  (1 − 𝛿)𝛸1 (1 +
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1) 6.
𝑑𝛸1
𝑑𝜏

=   (1 − 𝛿)𝛸1 (
1

𝜀
− 𝛸1) +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

𝛽𝛸0 + 1 > 𝛿 Violates assumption d) and unbounded growth Violates assumption d) and unbounded growth 

7.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿
1

𝛽𝛸2 + 1
)𝛸1(1 − 𝛸1) − 𝜀𝛸1 8.

𝑑𝛸1
𝑑𝜏

=  (1 − 𝛿)𝛸1 (1 +
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
− 𝛸1) − 𝜀𝛸1 9.

𝑑𝛸1
𝑑𝜏

=   (1 − 𝛿)𝛸1(1 − 𝛸1) +
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

(√𝛽 + 1 − √𝛽𝜀)
2
> 𝛿 Violates assumption d) Unbounded growth 

𝒅𝜲𝟏

𝒅𝝉
= 𝜲𝟏((𝟏 − 𝜹𝟏) − 𝜲𝟏) 

10.
𝑑𝛸1
𝑑𝜏

=
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1((1 − 𝛿) − 𝛸1) 11.
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1 ((1 − 𝛿

1

𝛽𝛸2 + 1
) − 𝛸1) 12.

𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1(1 − 𝛿 − 𝛸1) +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

Violates assumption d) 
(𝛽 + 1)2

4𝛽
> 𝛿 Violates assumption d) 

13.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1 ((1 − 𝛿)

1

𝜀
 − 𝛸1) 14.

𝑑𝛸1
𝑑𝜏

=  𝛸1 ((1 − 𝛿
1

𝛽𝛸2 + 1
)
1

𝜀
 − 𝛸1) 15.

𝑑𝛸1
𝑑𝜏

=   𝛸1 (
1

𝜀
− 𝛿 − 𝛸1) +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

Violates assumption d) Violates assumption d) 
(√𝛽𝛽′𝜀 − √𝜀)

2

+ 𝛽

𝛽𝜀
> 𝛿 

 

16.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1((1 − 𝛿) − 𝛸1) − 𝜀𝛸1 17.

𝑑𝛸1
𝑑𝜏

=  𝛸1 ((1 − 𝛿
1

𝛽𝛸2 + 1
) − 𝛸1) − 𝜀𝛸1 18.

𝑑𝛸1
𝑑𝜏

=   𝛸1(1 − 𝛿 − 𝛸1) +
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

Violates assumption d) 
(𝛽 − 𝛽𝜀 + 1)2

4𝛽
> 𝛿 

(√𝛽′𝛽 − √𝜀)
2

+ 𝛽𝜀

𝛽𝜀
> 𝛿 

𝒅𝜲𝟏

𝒅𝝉
= 𝜲𝟏(𝟏 − 𝜲𝟏) − 𝜹𝟏𝜲𝟏 

19.
𝑑𝛸1
𝑑𝜏

=
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1(1 − 𝛸1) − 𝛿𝛸1 20.
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1 (

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1) − 𝛿𝛸1 21.
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1(1 − 𝛸1) − 𝛿

1

𝛽𝛸2 + 1
𝛸1 

2𝛽′ − 2𝛽′√𝛽 + 1 + 𝛽𝛽′

𝛽𝜀
> 𝛿 

(√𝛽𝛽′ − 1)
2

𝛽𝜀
> 𝛿 

(𝛽 + 1)2

4𝛽𝜀
> 𝛿 

22.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1 (

1

𝜀
 − 𝛸1) − 𝛿𝛸1 23.

𝑑𝛸1
𝑑𝜏

=  𝛸1 (
1

𝜀
 

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1) − 𝛿𝛸1 24.
𝑑𝛸1
𝑑𝜏

=   𝛸1 (
1

𝜀
− 𝛸1) − 𝛿

1

𝛽𝛸2 + 1
𝛸1 

2𝛽′𝜀 − 2𝛽′√𝛽𝜀 + 𝜀2 + 𝛽𝛽′

𝛽𝜀
> 𝛿 

(√𝛽𝛽′ − √𝜀)
2

+ 𝛽𝜀

𝛽𝜀
> 𝛿 

(𝛽 + 𝜀)2

4𝛽𝜀2
> 𝛿 

25.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1(1 − 𝛸1) − 𝛿𝜀𝛸1 26.

𝑑𝛸1
𝑑𝜏

=  𝛸1 (
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
− 𝛸1) − 𝛿𝜀𝛸1 27.

𝑑𝛸1
𝑑𝜏

=   𝛸1(1 − 𝛸1) − 𝛿𝜀
1

𝛽𝛸2 + 1
𝛸1 

2𝛽′ − 2𝛽′√𝛽 + 1 + 𝛽𝛽′

𝛽𝜀
> 𝛿 

(√𝛽𝛽′ − 1)
2

𝛽𝜀
> 𝛿 

(𝛽 + 1)2

4𝛽𝜀
> 𝛿 
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Sharing carrying capacity 

𝒅𝜲𝟏

𝒅𝝉
= (𝟏 − 𝜹𝟏)𝜲𝟏(𝟏 − 𝜲𝟏 −𝜲𝟐) 

28.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿𝜀
1

𝛽𝛸2 + 1
)𝛸1(1 − 𝛸1 − 𝛸2) 29.

𝑑𝛸1
𝑑𝜏

= (1 − 𝛿)
1

𝜀
𝛸1 (

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1 − 𝛸2) 30.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿𝜀)𝛸1(1 − 𝛸1 − 𝛸2) +
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1 

𝛽𝛸0 + 1

𝜀
> 𝛿 Violates assumption d) and unbounded growth Unbounded growth 

31.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿
1

𝛽𝛸2 + 1
)𝛸1 (

1

𝜀
 − 𝛸1 − 𝛸2) 32.

𝑑𝛸1
𝑑𝜏

=  (1 − 𝛿)𝛸1 (
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1 − 𝛸2) 33.
𝑑𝛸1
𝑑𝜏

=  (1 − 𝛿)𝛸1 (
1

𝜀
− 𝛸1 − 𝛸2) +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

𝛽𝛸0 + 1 > 𝛿 Violates assumption d) and unbounded growth Violates assumption d) and unbounded growth 

34.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿
1

𝛽𝛸2 + 1
)𝛸1(1 − 𝛸1 −𝛸2) − 𝜀𝛸1 35.

𝑑𝛸1
𝑑𝜏

=  (1 − 𝛿)𝛸1 (
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
− 𝛸1 − 𝛸2) − 𝜀𝛸1 36.

𝑑𝛸1
𝑑𝜏

=   (1 − 𝛿)𝛸1(1 − 𝛸1 − 𝛸2) +
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

1

2
(√𝛽 + 2 − √𝛽𝜀)

2
> 𝛿 Violates assumption d) Unbounded growth 

𝒅𝜲𝟏

𝒅𝝉
= 𝜲𝟏((𝟏 − 𝜹𝟏) − 𝜲𝟏 −𝜲𝟐) 

37.
𝑑𝛸1
𝑑𝜏

=
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1((1 − 𝛿) − 𝛸1 − 𝛸2) 38.
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1 ((1 − 𝛿

1

𝛽𝛸2 + 1
) − 𝛸1 −𝛸2) 39.

𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1(1 − 𝛿 − 𝛸1 − 𝛸2) +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

Violates assumption d) 
(𝛽 + 2)2

8𝛽
> 𝛿 Violates assumption d) 

40.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1 ((1 − 𝛿)

1

𝜀
 − 𝛸1 −𝛸2) 41.

𝑑𝛸1
𝑑𝜏

=  𝛸1 ((1 − 𝛿
1

𝛽𝛸2 + 1
)
1

𝜀
 − 𝛸1 −𝛸2) 42.

𝑑𝛸1
𝑑𝜏

=   𝛸1 (
1

𝜀
− 𝛿 − 𝛸1 −𝛸2) +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

Violates assumption d) Violates assumption d) 
𝜀(√𝛽𝛽′ − √2)

2

+ 𝛽

𝛽𝜀
> 𝛿 

43.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1((1 − 𝛿) − 𝛸1 −𝛸2) − 𝜀𝛸1 44.

𝑑𝛸1
𝑑𝜏

=  𝛸1 ((1 − 𝛿
1

𝛽𝛸2 + 1
) − 𝛸1 − 𝛸2) − 𝜀𝛸1 45.

𝑑𝛸1
𝑑𝜏

=   𝛸1(1 − 𝛿 − 𝛸1 − 𝛸2) +
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

Violates assumption d) 
(𝛽 + 2 − 𝛽𝜀)2

8𝛽
> 𝛿 

(√𝛽′𝛽 − √2𝜀)
2

+ 𝛽𝜀

𝛽𝜀
> 𝛿 

𝒅𝜲𝟏

𝒅𝝉
= 𝜲𝟏(𝟏 − 𝜲𝟏 −𝜲𝟐) − 𝜹𝟏𝜲𝟏 

46.
𝑑𝛸1
𝑑𝜏

=
1

𝜀

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1(1 − 𝛸1 − 𝛸2) − 𝛿𝛸1 47.
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1 (

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1 −𝛸2) − 𝛿𝛸1 48.
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1(1 − 𝛸1 − 𝛸2) − 𝛿

1

𝛽𝛸2 + 1
𝛸1 

4𝛽′ − 2𝛽′√2𝛽 + 4 + 𝛽𝛽′

𝛽𝜀
> 𝛿 

(√𝛽𝛽′ − √2)
2

𝛽𝜀
> 𝛿 

(𝛽 + 2)2

8𝛽𝜀
> 𝛿 

49.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1 (

1

𝜀
 − 𝛸1 − 𝛸2) − 𝛿𝛸1 50.

𝑑𝛸1
𝑑𝜏

=  𝛸1 (
1

𝜀
 

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1 − 𝛸2) − 𝛿𝛸1 51.
𝑑𝛸1
𝑑𝜏

=   𝛸1 (
1

𝜀
− 𝛸1 − 𝛸2) − 𝛿

1

𝛽𝛸2 + 1
𝛸1 

4𝛽′𝜀 − 2𝛽′√2𝛽𝜀 + 4𝜀2 + 𝛽𝛽′

𝛽𝜀
> 𝛿 

(√𝛽𝛽′ − √2𝜀)
2

𝛽𝜀
> 𝛿 

(𝛽 + 2𝜀)2

8𝛽𝜀2
> 𝛿 

52.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1(1 − 𝛸1 −𝛸2) − 𝛿𝜀𝛸1 53.

𝑑𝛸1
𝑑𝜏

=  𝛸1 (
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
− 𝛸1 − 𝛸2) − 𝛿𝜀𝛸1 54.

𝑑𝛸1
𝑑𝜏

=   𝛸1(1 − 𝛸1 − 𝛸2) − 𝛿𝜀
1

𝛽𝛸2 + 1
𝛸1 

4𝛽′ − 2𝛽′√2𝛽 + 4 + 𝛽𝛽′

𝛽𝜀
> 𝛿 

(√𝛽𝛽′ − √2)
2

𝛽𝜀
> 𝛿 

(𝛽 + 2)2

8𝛽𝜀
> 𝛿 
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Effect of cost (𝛆) increases with partner density 

𝒅𝜲𝟏

𝒅𝝉
= (𝟏 − 𝜹𝟏)𝜲𝟏(𝟏 − 𝜲𝟏) 

55.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿(1 + 𝜀𝛸2)
1

𝛽𝛸2 + 1
)𝛸1(1 − 𝛸1) 56.

𝑑𝛸1
𝑑𝜏

= (1 − 𝛿)
1

(1 + 𝜀𝛸2)
𝛸1 (

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1) 57.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿(1 + 𝜀𝛸2))𝛸1(1 − 𝛸1) +
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1 

𝛽𝛸0 + 1

𝜀𝛸0 + 1
> 𝛿 Violates assumption d) and unbounded growth Unbounded growth 

58.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿
1

𝛽𝛸2 + 1
)𝛸1 (

1

(1 + 𝜀𝛸2)
 − 𝛸1) 59.

𝑑𝛸1
𝑑𝜏

=  (1 − 𝛿)𝛸1 (
1

(1 + 𝜀𝛸2)

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1) 60.
𝑑𝛸1
𝑑𝜏

=   (1 − 𝛿)𝛸1 (
1

(1 + 𝜀𝛸2)
− 𝛸1) +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

𝛽𝛸0 + 1 > 𝛿 Violates assumption d) and unbounded growth Violates assumption d) and unbounded growth 

61.
𝑑𝛸1
𝑑𝜏

= (1 − 𝛿
1

𝛽𝛸2 + 1
)𝛸1(1 − 𝛸1) − (𝜀𝛸2)𝛸1 62.

𝑑𝛸1
𝑑𝜏

= (1 − 𝛿)𝛸1 (
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
− 𝛸1) − (𝜀𝛸2)𝛸1 63.

𝑑𝛸1
𝑑𝜏

=   (1 − 𝛿)𝛸1(1 − 𝛸1) +
1

(1 + 𝜀𝛸2)

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

(√𝛽𝜀 − √(𝜀 + 1)(𝛽 + 1))
2

> 𝛿 Violates assumption d) Unbounded growth 

𝒅𝜲𝟏

𝒅𝝉
= 𝜲𝟏((𝟏 − 𝜹𝟏) − 𝜲𝟏) 

64.
𝑑𝛸1
𝑑𝜏

=
1

(1 + 𝜀𝛸2)

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1((1 − 𝛿) − 𝛸1) 65.
𝑑𝛸1
𝑑𝜏

=
1

(1 + 𝜀𝛸2)
𝛸1 ((1 − 𝛿

1

𝛽𝛸2 + 1
) − 𝛸1) 66.

𝑑𝛸1
𝑑𝜏

=
1

(1 + 𝜀𝛸2)
𝛸1(1 − 𝛿 − 𝛸1) +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

Violates assumption d) 
(𝛽 + 1)2

4𝛽
> 𝛿 Violates assumption d) 

67.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1 ((1 − 𝛿)

1

(1 + 𝜀𝛸2)
 − 𝛸1) 68.

𝑑𝛸1
𝑑𝜏

=  𝛸1 ((1 − 𝛿
1

𝛽𝛸2 + 1
)

1

(1 + 𝜀𝛸2)
 − 𝛸1) 69.

𝑑𝛸1
𝑑𝜏

=   𝛸1 (
1

1 + 𝜀𝛸2
− 𝛿 − 𝛸1) +

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

Violates assumption d) Violates assumption d) 𝑓(𝛽, 𝛽′, 𝜀) > 𝛿 

70.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1((1 − 𝛿) − 𝛸1) − (𝜀𝛸2)𝛸1 71.

𝑑𝛸1
𝑑𝜏

= 𝛸1 ((1 − 𝛿
1

𝛽𝛸2 + 1
) − 𝛸1) − (𝜀𝛸2)𝛸1 72.

𝑑𝛸1
𝑑𝜏

=   𝛸1(1 − 𝛿 − 𝛸1) +
1

(1 + 𝜀𝛸2)

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1 

Violates assumption d) 
(𝛽 + 𝜀 + 1)2

4𝛽(𝜀 + 1)
> 𝛿 𝑓(𝛽, 𝛽′, 𝜀) > 𝛿 

𝒅𝜲𝟏

𝒅𝝉
= 𝜲𝟏(𝟏 − 𝜲𝟏) − 𝜹𝟏𝜲𝟏 

73.
𝑑𝛸1
𝑑𝜏

=
1

(1 + 𝜀𝛸2)

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1(1 − 𝛸1) − 𝛿𝛸1 74.
𝑑𝛸1
𝑑𝜏

=
1

(1 + 𝜀𝛸2)
𝛸1 (

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1) − 𝛿𝛸1 75.
𝑑𝛸1
𝑑𝜏

=
1

(1 + 𝜀𝛸2)
𝛸1(1 − 𝛸1) − 𝛿

1

𝛽𝛸2 + 1
𝛸1 

𝛽𝛽′ (√(𝛽 + 1) − √(𝜀 + 1))
2

(𝛽 − 𝜀)2
> 𝛿 

(√𝛽2𝛽′ − √ 𝛽 − 𝜀 + 𝛽𝛽′𝜀)
2

(𝛽 − 𝜀)2
> 𝛿 

(√𝛽 −√(1 + 𝜀)(𝛽 − 𝜀))
2

𝜀2
+ 1 > 𝛿 

76.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1 (

1

(1 + 𝜀𝛸2)
 − 𝛸1) − 𝛿𝛸1 77.

𝑑𝛸1
𝑑𝜏

= 𝛸1 (
1

(1 + 𝜀𝛸2)
 

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛸1) − 𝛿𝛸1 78.
𝑑𝛸1
𝑑𝜏

=   𝛸1 (
1

(1 + 𝜀𝛸2)
− 𝛸1) − 𝛿

1

𝛽𝛸2 + 1
𝛸1 

𝑓(𝛽, 𝛽′, 𝜀) > 𝛿 𝑓(𝛽, 𝛽′, 𝜀) > 𝛿 𝑓(𝛽, 𝛽′, 𝜀) > 𝛿 

79.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1(1 − 𝛸1) − 𝛿(1 + 𝜀𝛸2)𝛸1 80.

𝑑𝛸1
𝑑𝜏

=  𝛸1 (
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
− 𝛸1) − 𝛿(1 + 𝜀𝛸2)𝛸1 81.

𝑑𝛸1
𝑑𝜏

=   𝛸1(1 − 𝛸1) − 𝛿(1 + 𝜀𝛸2)
1

𝛽𝛸2 + 1
𝛸1 

𝛽𝛽′ (√(𝛽 + 1) − √(𝜀 + 1))
2

(𝛽 − 𝜀)2
> 𝛿 

(√𝛽2𝛽′ − √ 𝛽 − 𝜀 + 𝛽𝛽′𝜀)
2

(𝛽 − 𝜀)2
> 𝛿 

(√𝛽 −√(1 + 𝜀)(𝛽 − 𝜀))
2

𝜀2
+ 1 > 𝛿 
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Supplementary Table 1: Diverse coexistence criteria derived from a set of 81 mutualism models. The 

formulations are based on the locations of benefit (𝛽, 𝛽′), cost (𝜀), and stress (𝛿) in logistic growth equations 

(see Supplementary Note 2 for detailed rationale and method). Each 3 × 3  block represents different 

locations of the 𝛿 term. Each column and row represent a location of the benefit and cost term, respectively. 

Because we assume symmetry between the two populations, only the equation representing Χ1 is shown for 

simplicity of presentation. Models in the first table assume cost is independent of partner density. In natural 

mutualism systems, mutualists can also compete for resources, so the third table contains models that 

describe the two partners sharing the same carrying capacity. In addition, cost can also scale with partner 

densities, so models in the second table add density-dependent cost as linear dependencies. Models 

highlighted in grey either violate model assumption or generate unbounded growth, or both. The rest of the 

48 models satisfy the 4 model assumptions and have bounded growth. For criteria that have a long left-

hand side are written as 𝑓(𝛽, 𝛽′, 𝜀) > 𝛿 . The specific forms of 𝑓(𝛽, 𝛽′, 𝜀) > 𝛿  can be found in the 

Supplementary Software. The Supplementary Software also includes all 81 models in this table and the 

process of testing assumptions, calculating and verifying the above criteria.  
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Adding complexities Inequality Parameters 

Base model criterion 21.
(𝛽 + 1)2

4𝛽𝜀
> 𝛿 𝛽, 𝜀 

Include competition 82.
(𝛽 + 𝑎 + 1)2

4𝛽𝜀(𝑎 + 1)
> 𝛿 𝛽, 𝜀, 𝑎 

Include initial density 83.
1

𝜀
(1 − 𝑥0)𝑥0𝛽 +

1

𝜀
(1 − 𝑥0) > 𝛿 𝛽, 𝜀, 𝑥0 

Include asymmetry 84.
𝜌(𝛽1 + 1/𝜃1 + 1)2

4𝛽1𝜀1(𝜌/𝜃1 + 𝜃2)
> 𝛿1 𝜃1 =  

𝛽2
𝛽1
, 𝜃2 =  

𝜀2𝛿2
𝜀1𝛿1

 𝛽, 𝜀, 𝜌, 𝜃1, 𝜃2 

Include turnover rate 85.
(𝛽(1 − 𝜀𝛿0) + 2)2

4𝛽𝜀
(

𝜌

𝜌 + 1
) > 𝛿 𝛽, 𝜀, 𝜌, 𝛿0 

N-mutualist system 86.
(𝛽 +

𝑛
𝑛 − 1)

2

4𝛽𝜀
𝑛

𝑛 − 1

> 𝛿 𝛽, 𝜀, 𝑛 

 

Supplementary Table 2: Increasing model complexity increases criterion complexity. The base model is 

identical to model 21 in Supplementary Table 1. Number 82-86 and their corresponding criteria are obtained 

by relaxing assumptions in model 21. Including the 48 models in Supplementary Table 1, we in total 

obtained coexistence criteria for 52 models. Note that number 21 and number 83 used the same model 

structure. The detailed models and criterion derivations are shown in Supplementary Note 3. Also see 

Supplementary Software for the above models and the process of calculating and verifying the 

corresponding criteria.   
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Supplementary Figure 1: Typical bifurcation diagrams of models that create unbounded growth. 

Previously-developed general coexistence criteria describe the boundary between stable coexistence (white 

regions) and unbounded growth (grey regions). Solid lines represent stable steady state for coexistence. 

Grey dashed lines represent steady states of a mutualist with the absence of its partner. This diagram is 

generated using model:  

𝑑𝛸1
𝑑𝜏

=  𝛸1(1 − 𝛿𝛸1) + 𝛽𝛸2𝛸1 

𝑑𝛸2
𝑑𝜏

=  𝛸2(1 − 𝛿𝛸2) + 𝛽𝛸1𝛸2 

The left panel is generated with 𝛽 = 1 and the right panel is generated with 𝛿 = 1.  
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Supplementary Figure 2: The predictor 𝑩 δ⁄  is a general metric for quantitative predictions. All the 

traces are comprised of individual dots. Each dot represents a result from one set of model parameter. See 

Supplementary Note 4.1 for models and parameter values used in generating this panel a-f. 

a. Mutualistic systems have initial-density-dependent coexistence. In the left panel, we assume the same 

initial density of both populations that is a uniform random variable. In the right panel, we varied the 

ratio of the two initial densities and kept the total initial density constant. In both cases, 𝐵 𝛿⁄  is 

predictive of coexistence probability.  

b. When cheaters can arise in a system, 𝐵 𝛿⁄  is predictive of the time duration the system can persist 

before cheater exploitation.  

c. An asymmetric mutualistic system can be either obligatory (left panel), where both populations extinct 

when 𝐵 𝛿⁄ < 1 or facultative (right panel), where one population can persist even when 𝐵 𝛿⁄ < 1. The 

black dots represent total density and the two colors represent the total density of the two partners. The 

same representations are used in panel d.  

d. The predictive power of 𝐵 𝛿⁄  also holds for asymmetric systems that share carrying capacity.  

e. 𝐵 𝛿⁄  is predictive of probability of coexistence for asymmetric systems.  

f. The predictive power of 𝐵 𝛿⁄  for resistance to cheater exploitation also holds for asymmetric systems. 

The accuracy of criterion is robustly maintained after addition of extrinsic Gaussian noise. The x axis 

indicates the standard deviation of the Gaussian noise. Note that the noise is significant considering the 

maximum total density of the system is 1. Please see Supplementary Note 4.2 for the model and 

simulation details.  
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Supplementary Figure 3: General methods for quantifying 𝜹. 𝛿 can be measured using either growth 

rate or final population size with the absence of partner.  

a. We simulated the growth of a population that is modulated by a death term 𝑑. Stress 𝛿 is simply 𝑑 

normalized by growth rate 𝑟. In the simulations, the true 𝛿 (𝛿𝑡) depends on an independent variable 𝑣.  

b. One type of model structure has 𝛿 modulating both growth rate (𝑟) and yield (𝑦, final density). 𝑁 is the 

population size and 𝐾 is the carrying capacity. Based on the growth curve or final population size, 

measurements of growth rate (𝑟𝑚) and yield (𝑦𝑚) can be obtained by varying 𝑣. The 𝛿 measurement 

(𝛿𝑚) can be calculated by 1 −
𝑟𝑚

max (𝑟𝑚)
 or 1 −

𝑦𝑚

max (𝑦𝑚)
. Note that since 𝑦𝑚 is always non-negative, 1 −

𝑦𝑚

max (𝑦𝑚)
 is always ≤ 1, but 𝛿 can be greater than 1 when the population experiences negative growth. 

To address this discrepancy, extrapolation of 𝛿𝑚 is needed to capture death rate (the black trace in the 

𝛿𝑚 versus 𝑣 plot).  

c. In another type of model formulation, 𝛿 only modulates growth rate. Simulation shows that 𝑦𝑚 either 

equals to carrying capacity or 0. Thus, in this case, only 𝑟𝑚 can be used to calculate 𝛿. The right-most 

panels show the comparison between the measured 𝛿 (𝛿𝑚) and true 𝛿 (𝛿𝑡). In all cases, 𝛿𝑚 is a good 

approximation of 𝛿𝑡 (the solid black line represents 𝛿𝑚 = 𝛿𝑡). To summarize, 𝛿 can be obtained using 

either growth rate or yield of a mutualistic partner with the absence of its partner.  

  

𝛿𝑡 =
2𝑣

𝑣 + 0.5
 

𝑑𝑁

𝑑𝑡
= (𝑟 − 𝑑)𝑁 (1 −

𝑁

𝐾
) 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾
) − 𝑑𝑁 or 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 − 𝑑 −

𝑁

𝐾
) 

𝛿𝑚 = 1−
𝑟𝑚

max(𝑟𝑚)
 

𝛿𝑚 = 1−
𝑦𝑚

max(𝑦𝑚)
 

𝛿𝑚 = 1−
𝑟𝑚

max(𝑟𝑚)
 

c 

b a 
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Supplementary Figure 4: The general calibration procedure using SVM.  

a. General procedure of the calibration. 𝒗 and 𝛿 are standardized to have mean of 0 and standard deviation 

of 1. The standardized data are used as inputs to train SVM models with different kernels and kernel 

parameters. Cross validation accuracy loss (𝐶𝑉𝑙𝑜𝑠𝑠) and bootstrapped variance (𝑉𝑎𝑟) for each parameter 

combination are calculated to choose the optimal 𝐵(𝒗) . Finally, calculate the top 𝐵(𝒗) . See 

Supplementary Note 5.7 for a more detailed step-by-step graphical procedure.  

b. To show that 0.2 ∙ 𝑉𝑎𝑟 + 0.8 ∙ 𝐶𝑉𝑙𝑜𝑠𝑠  is a consistent indicator of high correlation (indicated by R2 

values) between 𝐵(𝒗) and the true 𝐵, we constructed 20 models that have known 𝐵(𝒗) (each subplot 

represents one model). Each dot represents the result of one set of kernel. These models show that 

minimizing 0.2 ∙ 𝑉𝑎𝑟 + 0.8 ∙ 𝐶𝑉𝑙𝑜𝑠𝑠 leads to higher R2 values (indicated by the black arrows), with a 

few exceptions. See Supplementary Note 5.5 for model and model parameters used in this panel.  

c. Mean R2 value at each 𝜆 was calculated using the top 3 𝐵(𝒗) selected by (1 − 𝜆) ∙ 𝑉𝑎𝑟 + 𝜆 ∙ 𝐶𝑉𝑙𝑜𝑠𝑠. 

The max mean R2 occurs at 𝜆 = 0.8.  

d. Bias decreases exponentially with increasing sample size. Using the model corresponding to the third 

subplot in the first column of panel b, we sampled a subset of the 100 data points without replacement 

to train 𝐵(𝒗) and the bias of 𝐵(𝒗) is calculated. The black trace represents the data points fitted to the 

function 𝐵𝑖𝑎𝑠 =  𝑎 ∙ (𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒)−𝛼 + 𝑏.   

Kernel 2,  Kernel 1,  Kernel m … 

𝜹𝒔 = [𝛿1, 𝛿2,⋯ , 𝛿𝑛  𝒗𝒔 = [𝒗1, 𝒗2,⋯ , 𝒗𝒏  𝒀 = [𝑦1, 𝑦2 ,⋯ , 𝑦𝑛  

p
 s

et
s 

o
f 

ke
rn

el
 p

ar
am

et
e

rs
 

System 

outcomes 𝒀: 

a 

v2 
v 1

 

𝛿: 

v2 

v 1
 

𝐶𝑉𝑙𝑜𝑠𝑠11  
𝐶𝑉𝑙𝑜𝑠𝑠12 

… 
𝐶𝑉𝑙𝑜𝑠𝑠1𝑝 

𝐶𝑉𝑙𝑜𝑠𝑠21  
𝐶𝑉𝑙𝑜𝑠𝑠22 

… 
𝐶𝑉𝑙𝑜𝑠𝑠2𝑝 

𝐶𝑉𝑙𝑜𝑠𝑠𝑚1
  

𝐶𝑉𝑙𝑜𝑠𝑠𝑚2
 

… 
𝐶𝑉𝑙𝑜𝑠𝑠𝑚𝑝

 

… 
𝑉𝑎𝑟11  
𝑉𝑎𝑟12 

… 
𝑉𝑎𝑟1𝑝 

𝑉𝑎𝑟21  
𝑉𝑎𝑟22 

… 
𝑉𝑎𝑟2𝑝 

𝑉𝑎𝑟41  
𝑉𝑎𝑟42 

… 
𝑉𝑎𝑟4𝑝 

… 

Kernel 2,  Kernel 1,  Kernel m … 

Train the SVM models with the optimal combinations of kernel and kernel parameters:  
𝑓([𝒗, 𝛿 ) = 𝛼𝑖𝑦𝑖𝐾𝑣 𝒗𝑖 , 𝒗 

𝑖

+ 𝑘𝛿𝛿 𝛼𝑖𝑦𝑖𝛿𝑖
𝑖

+ 𝜆0 

Calculate and output the top 𝐵(𝒗) functions (if no flipping is needed):  
𝐵(𝒗) = (

− 𝛼𝑖𝑦𝑖𝐾𝑥 𝒗𝑖 , 𝒗 𝑖 − 𝜆0
𝑘𝛿  𝛼𝑖𝑦𝑖𝛿𝑖𝑖

)𝑣𝑎𝑟(𝜹) +mean(𝜹) 

Choose the optimal combinations of kernel and kernel parameter  
0.2𝑉𝑎𝑟 + 0.8𝐶𝑉𝑙𝑜𝑠𝑠 

b 

0.2 ∙ 𝑉𝑎𝑟 + 0.8 ∙ 𝐶𝑉𝑙𝑜𝑠𝑠 

𝑅
2
 

c d 

𝜆 

𝑅
2
 

0.8 
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Supplementary Figure 5: Detailed simulation and calibration procedure using a complex model.  
a. The model equations of a complex mutualistic system, which cannot be easily solved analytically.  

b. Model parameters as functions of system variables 𝑣1 and 𝑣2. For an experimental system, 𝑣1 and 𝑣2 

would correspond to experimentally controllable parameters, which could affect multiple mechanistic 

parameters simultaneously. 

c. Simulated time courses with different  𝑣1 and 𝑣2 values. The group on the left simulates cocultures 

(blue: 𝑋1  and red: 𝑋2). The group on the right simulates monoculture, where 𝑋2 = 0. The growth rates 

of the monoculture can then be used to calculate 𝛿. Note that we directly used the parameter value of 

𝛿 in our procedure. 

d. The calibrated 𝐵(𝒗) along with 𝛿 is predictive of probability of coexistence. To get the probability of 

coexistence at each (𝑣1, 𝑣2), we ran 100 simulations with 100 different ratios of initial densities while 

keeping the total initial density the same.  

e. 𝐵(𝒗)/𝛿 is also predictive of how well the system can resist cheater exploitation. The y axis indicates 

the time the system can persist before the cheater populations compete out the cooperators.   
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Supplementary Figure 6: The QS-based mutualism system.  

a. The schematic of the synthetic gene circuit. 𝛿1, 𝛿2, 𝛽1, 𝛽2, 𝜀1, and 𝜀2 are indicated in the diagram to 

show the molecular mechanisms each term is primarily associated with.  

b. Verification of the basic system dynamics. The final OD values of coculture and monocultures are 

recorded. Monocultures of M1 and M2 are significantly suppressed by IPTG, while the cocultures 
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exhibit synergistic growth. The total density of the cocultures increases with increasing [aTc]. The 

comparison between experimental and simulated temporal dynamics indicate that our model captures 

the basic mutualistic dynamics observed empirically. The four red dots in the heatmaps indicate the 

four experimental conditions of the simulated and experimental time courses. We used Supplementary 

Equations 3.22 and 3.23 in the Supplementary Information for the simulation. The parameter values 

are: 𝛿1([IPTG = 0) = 𝛿2([IPTG = 0) = 0 ; 𝛿1([IPTG = 1000μM) = 0.63 ; 𝛿2([IPTG =
1000μM) = 0.68 ; 𝛽1([aTc = 0μM) = 𝛽2([aTc = 0μM) = 2 ; 𝛽1([aTc = 1nM) = 𝛽2([aTc =
1nM) = 200; 𝜀1 = 𝜀2 = 1; 𝜌 = 1.  

c. Using higher resolution of [aTc] and [IPTG] gradients, we obtained the total density of cocultures using 

OD measurements. At 32 hours, a bimodal distribution of final densities emerges with a trough at 

OD=0.3.  

d. Quantification of 𝛿  based on OD of M2 monoculture at 32 hours. The final OD is fitted using 

𝑂𝐷([𝑎𝑇𝑐 , [𝐼𝑃𝑇𝐺 ) = 𝑉𝑎
[𝑎𝑇𝑐 𝑛𝑎

[𝑎𝑇𝑐 𝑛𝑎+𝑘𝑛𝑎
+ 𝑉𝐼

𝑘𝑛𝐼

[𝐼𝑃𝑇𝐺 𝑛𝐼+𝑘𝑛𝐼
+ 𝑏  to reduce noise of the resulting 𝛿 

measurements. 𝛿 is then calculated by 𝛿 = 1 −
𝑂𝐷([𝑎𝑇𝑐 ,[𝐼𝑃𝑇𝐺 )

max (𝑂𝐷([𝑎𝑇𝑐 ,[𝐼𝑃𝑇𝐺 ))
.  

e. The top 5 𝐵(𝒗) and their corresponding relative standard deviation (𝑅𝑆𝐷) (the axes are the same as 

heatmaps in panel c and d).  
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Supplementary Figure 7: The yeast auxotroph system.  

a. The normalized equilibrium density of ∆𝑇𝑟𝑝 and ∆𝐿𝑒𝑢 were used to quantify 𝛿 for each strain. We 

only fitted density that is above the detection limit (10,000 cells/well). Since ∆𝐿𝑒𝑢 reaches below 

detection limit when [Leu] is relatively low, extrapolation is done to estimate the death rate at lower 

[Leu] (see Supplementary Figure 3a for the reasoning).   

b. 5 top 𝐵(𝒗) show both consistency and discrepancy. All 𝐵(𝒗) indicate an optimal initial density at an 

intermediate level. However, when [Trp] increase to 16μM, 𝐵(𝒗) can either increase or decrease.  

c. Our approach can also predict probability of coexistence. We excluded the ratio of initial density, 

leaving [Trp] to construct a one dimensional 𝒗. The boundary between coexistence and collapse is 

between 0.1 μM tryptophan, 0.8 μM leucine and 0.5μM tryptophan, 4.0 μM leucine. To calibrate a 

𝐵(𝒗) for this system, we assume supplementing the two amino acids does not change the cooperation 

capability. This calibration demonstrates that our procedure can also predict probability of coexistence 

for experimental systems.   
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Supplementary Figure 8: The 92 pairwise E. coli mutualistic systems constructed using 14 

auxotrophic strains. 

a. The logarithm of fold change (FC) of total final density for the 92 systems exhibit a bimodal distribution. 

The trough of the bimodal distribution corresponds to FC=10 (dashed grey line), which is used to 

classify coexistence and collapse.  

b. Quantification of 𝛿 for all 14 auxotrophs by fitting yield of the strain at different concentrations of their 

corresponding amino acid. Since none of the auxotrophs can grow without supplementary amino acid, 

𝛿 ≥ 1 is expect for all auxotrophs at [AA]=0 (AA denotes the corresponding amino acid). Therefore, 

according to the reasoning demonstrated in Supplementary Figure 3a, extrapolation of the data is 

required. We only fitted the data points that have OD>0.1, since OD<0.1 can be below the linear 

detection range of microplate readers. The data are fitted and extrapolated with Hill equations (red 

curves) or using a linear extrapolation of the fitted curves (the black trace). Green circles represent the 

values of OD of the fitted Hill equations at [AA]=0. 𝛿 is then calculated by 1 −
OD([AA =0)

max (OD([AA ))
 for all 14 

strains using OD([AA = 0) obtained from either Hill equation or linear function. The two methods 

yield comparable results. We chose the 𝛿 calculated using the Hill equation for the calibration process.  

c. The top calibrated 𝐵(𝒗) and their variability are indicated by relative standard deviation (𝑅𝑆𝐷).  
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Supplementary Figure 9: Mutualistic systems comprised of more than two partners.  

a. A mutualistic model with 5 partners. All the parameters in the model are linear functions of  𝑣1 and 𝑣2 

and the parameters of the linear function are randomly generated.  

b. Constructing a predictive metric for 3-member systems from calibrated results of 2-member systems. 

We first normalized the range of calibrated 𝐵 of 2-member systems (𝐵2) to [0, 1]. The effective benefit 

of 3-member system is simply the average of 𝐵2 for all underlying 2-member systems and stress is the 

average of 𝛿 for all 3 members. The subscripts of 𝐵2 and 𝛿 represent the indices of the 3 members. We 

swept a threshold for 𝐵 𝛿⁄  between 0 and 1 to classify coexistence (FC≥10) versus collapse (FC<10). 

The prediction accuracy reaches the maximum of 80.8% at a threshold equals to 0.24.  
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Supplementary Figure 10: Mutualistic systems in dynamic environments.  

a. Two systems were analyzed: one system is a pairwise mutualism system that is modulated by 

oscillatory signals (the left panel) and the other system contains a pair of mutualists and 5 bystander 

populations that interact with the mutualists (the right panel). We verified that theoretically calculated 

𝐵/𝛿 roughly holds as a predictor for total density. The transition between coexistence and collapse, 

however, do not occur strictly at 1. Each dot represents a simulation result from one set of model 

parameters.  

b. The input data used for the calibrations and the calibrated 𝐵(𝒗). The two 𝐵(𝒗) landscapes are used to 

generate the prediction plots shown in Figure 4c, d.  
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Supplementary Figure 11: Application to a mutualistic system displaying oscillatory dynamics. 

a. System schematic and simulation procedure. 𝑁1 is resistant to ampicillin and chloramphenicol imposes 

stress on 𝑁1. 𝑁2 is resistant to chloramphenicol and ampicillin imposes stress on 𝑁2. Both strains can 

deactivate antibiotics that they are resistant to. The simulations are done by looping through 12 cycles 

where the initial density of 𝑁1 and 𝑁2 are set to be 1/100 of the final densities of the previous cycle.  

b. Model equations are replicated from eq. [3] in SI of the original publication. Parameter values are 

copied from Figure S7 in the original publication.  

c. Replication of time course in Figure S7 of the original publication. The model used in the original 

publication also incorporates molecular details of the interaction mechanisms. Red traces represent the 

c 

d e 
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ampicillin resistant population and blue traces represent the chloramphenicol resistant population. 

Black dash lines represent total cell densities.  

d. Input data of our calibration procedure. 𝛿 is estimated according to Figure 1D in the original publication.  

e. Calibration results show that our calibration procedure still provides high prediction accuracy. The total 

densities corresponding to coexistence do not have a wide distribution.  
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1. Previous mutualism models 
 

In this section, we briefly summarize some limitations of previously published models in studying the 

transition between mutualism coexistence and collapse.  

 

1. The Lotka-Volterra model 
Consider the following model that follows the basic form of Lotka-Volterra model of mutualism. This 

formulation is a nondimensionalized form of previous models1-6. The parameters are renamed according to 

our parameter assignments.  

 
𝑑𝛸1
𝑑𝜏

=  𝛸1(1 − 𝛿1𝛸1) + 𝛽1𝛸2𝛸1 (1. 1) 

 
𝑑𝛸2
𝑑𝜏

=  𝜌𝛸2(1 − 𝛿2𝛸2) + 𝛽2𝛸1𝛸2 (1. 2) 

 

Although the model formulation captures the logic of mutualism, it can generate unbounded growth of the 

two partners, which is not a biologically relevant state. For example, when 𝜌 = 1, 𝛽1 = 𝛽2 = 2 and 𝛿1 =

𝛿2 = 1, the two populations are not bounded by their carrying capacities, but both grow exponentially. 

Importantly, the model does not capture population collapse so it cannot explain the transition between 

collapse and coexistence. Thus, this model formulation is not suitable for our purpose.  

 

A coexistence criterion for mutualism can be derived using L-V model formulation and is previously 

demonstrated1-5:  

 𝛽1𝛽2 < 𝜌𝛿1𝛿2  (1. 3) 

 

However, this criterion captures the transition between stable coexistence and unbounded growth. It also 

suggests that mutualism is destabilizing, since increasing the strength of mutualistic interaction (𝛽1𝛽2) tends 

to violate the above condition. The interpretation of this criterion can be contradictory to empirical 

observations that mutualism stabilizes community7-9. Although Lotka-Volterra models are sufficient to 

answer many questions related to mutualistic systems, it has been proposed that this discrepancy between 

model dynamics and empirical observations can be attributed to its unrealistic assumptions10-13.  

 

2. Other variants  
We found that general mutualism models that generate unbounded growth usually do not capture the 

transition between coexistence and collapse. For example, the following three models were established 

previously to find structurally stable mutualistic models10. In contrast to the L-V model which implements 

the interaction as a linear term, the following models present three alternative ways of adding the interaction 

to the basic logistic growth equation.  

 

 

𝑑𝑁1
𝑑𝑡

= 𝑟1𝑁1
𝐾1 −𝑁1 + 𝛼12𝑁2
𝐾1 + 𝛼12𝑁2

 

𝑑𝑁2
𝑑𝑡

= 𝑟2𝑁2
𝐾2 −𝑁2 + 𝛼21𝑁1
𝐾2 + 𝛼21𝑁1

 

(1. 4) 
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d𝑁1
dt

= 𝑟1𝑁1
𝐾1 −𝑁1 + 𝛼12𝑁2

𝐾1
 

d𝑁2
dt

= 𝑟2𝑁2
𝐾2 −𝑁2 + 𝛼21𝑁1

𝐾2
 

(1. 5) 

 

 

d𝑁1
dt

= 𝑟1𝑁1

(1 +
𝛼12𝑁2
𝐾1

) (𝐾1 −𝑁1)

𝐾1
 

d𝑁2
dt

= 𝑟2𝑁2

(1 +
𝛼21𝑁1
𝐾2

) (𝐾2 −𝑁2)

𝐾2
 

 

(1. 6) 

In all these three cases, some parameter combinations generate unbounded growth. For example, 𝑟1 = 𝑟2 =

1; 𝐾1 = 𝐾2 = 1; 𝛼12 = 𝛼21 = 2; 𝑁10 = 𝑁20 = 0.1 generates unbounded growth for 1.4 and 1.5 and 𝑟1 =

𝑟2 = −1; 𝐾1 = 𝐾2 = 1; 𝛼12 = 𝛼21 = 2; 𝑁10 = 𝑁20 = 2  generates unbounded growth for 1.6. 

Unbounded growth has been recognized as a limitation of many mutualism models14-16.  

 

To avoid generating unbounded growth, one strategy is to introduce saturating benefit5. However, although 

preventing unbounded growth, these models may still not generate negative growth which can be potentially 

countered by the increase of partner density. For example, the following model is adapted from a previous 

work13 which falls into this category. In addition, if no decreasing density is captured, this model will 

stabilize at its coexistence state with any positive initial density for both populations.  

 

 

𝑑𝑁1
𝑑𝑡

= 𝑟1𝑁1 (1 − 𝛿1𝑁1 +
𝛽12𝑁2

1/𝛽2 +𝑁2
) 

𝑑𝑁2
𝑑𝑡

= 𝑟2𝑁2 (1 − 𝛿2𝑁2 +
𝛽21𝑁1

1/𝛽1 +𝑁1
) 

 

(1. 7) 

Due to the limitations of previous mutualism models in studying the transition between coexistence and 

collapse, a more systematic way of modeling mutualism is required to both ensure the basic logic of 

mutualism and capture the transition between stable coexistence and collapse.  

 

2. Building various mutualism models 
 

The diversity of mutualistic systems impedes the formulation of a general mutualism model and the general 

proof of a single criterion. We generated various mutualism models to reflect the diversity of mutualistic 

systems in nature and examine how diverse the coexistence criteria are. We also aim to investigate whether 

there exists an invariant form that is preserved regardless of specific model implementations. If such an 

invariant form exists, it will then reveal a fundamental coexistence criterion that is originated from the basic 

logic of mutualism.  

 

1. Incorporation of stress 
We explicitly define stress as a reduction of growth rate or productivity of biological systems, which is 

consistent with previous works17-20. Stress is universal in biology because it is present whenever growth 
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rate is lower than the optimal growth rate. In mutualistic systems, many studies have shown that stress 

factors alter the basal fitness of individual mutualists. These factors include nutrient limitation21, rising 

temperature22,23, rising CO2 levels24, invasive species25, etc. Beyond benefit and cost, it is known that these 

stress factors also determine mutualistic outcomes26.  

 

To study quantitatively how stress affects mutualistic outcomes, we include stress as a model parameter 

that reduces the growth rate or carrying capacity of individual mutualists in various biotic/abiotic contexts. 

In previous models, stress has been included as linear turn-over rate21,27-30 or intraspecific competition1,2. 

Although these studies have more specific terms describing the downward pressure they capture, we use 

“stress” as an appropriate umbrella term.  

 

Stress, thus defined, plays an essential qualitative role in mutualism. First, an absence of stress would mean 

that populations operate at maximum fitness.  Such populations could not benefit from mutualism, because 

they would already be operating at their optimal level. Second, in mutualistic models the downward 

pressure can resolve the unrealistic exponential growth of mutualistic partners by imposing an upper limit 

to mutual benefit10. Third, using stress can dissect the baseline fitness of individual mutualists caused by 

biotic/abiotic factors from the effect of mutualistic interaction on fitness.  

 

2. Model assumptions 
The key step of generating various mutualism models is to establish the set of assumptions the models 

should follow. We first start off with the most apparent aspects of mutualism: benefit and cost. These two 

aspects lead to two assumptions:  

 

a) Benefit shall increase growth rate or carrying capacity and is positively dependent on partner 

density. 

b) Cost shall decrease growth rate or carrying capacity. 

 

To study the transition between coexistence and collapse in mutualism systems, the models must be able to 

simulate collapse, leading to the third assumption where we explicitly introduce stress to achieve negative 

growth. In addition to generating negative growth, stress has a physical meaning which is the difference 

between maximal fitness and baseline fitness in the absence of the partner: 

 

c) Stress shall produce negative growth of populations with some parameter combinations.  

 

The fourth assumption follows assumption c) to reinforce the effects of benefit and cost in mutualistic 

interaction: 

 

d) Negative growth of a population shall be potentially counteracted by benefit provided by a partner 

but is further strengthened by cost.  

 

Even when all the above assumptions are satisfied, we still need to verify that a model does not generate 

unbounded growth with any parameter set.  
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3. Modifications of the logistic growth equation 
After establishing a minimal set of assumptions, we then need to establish a systematic way of generating 

diverse models that satisfy these assumptions.  

 

Mathematically, there are infinite possible implementations of a mutualistic system. We attempt to cover 

the different common and plausible forms of kinetic models that have been adopted in previous studies. 

Previous models have captured benefit, cost and stress in many ways. The following is a short summary of 

how benefit, stress and cost are modeled previously that serve as building blocks for our own models. We 

used Hill equations to capture saturating benefit, which is the same approach used in previous 

studies13,21,27,31,32. Cost is also an aspect that is widely modeled, which can be implemented many ways13,33, 

such as independent or dependent of partner density. Although stress is not often generally discussed, one 

possible form of stress is self-regulation, also called density dependence or inter-population competition, 

which often appears in large-scale models1-3. Linear death rate (often imposed by dilution) is also another 

common form of stress21,27-30.  

 

Inspired by these observations, we first examined different methods to modify a logistic growth equation.  

 

Consider a basic logistic growth equation:  

 
𝑑𝑁

𝑑𝑡
= 𝜇𝑁 (1 −

𝑁

𝑁𝑚
) (2. 1) 

 

This equation only has two parameters, growth rate 𝜇 and carrying capacity 𝑁𝑚. If we can derive a non-

dimensionalized logistic growth equation, it can be rewritten as:  

 
𝑑𝑋

𝑑𝜏
= 𝑋(1 − 𝑋)  (𝜏 = 𝜇𝑡,  𝛸 = 𝑁 𝑁𝑚⁄ ) (2. 2) 

 

The followings are common modifications of the above equation: 

1. The growth rate can be modified by multiplying the right-hand-side with a constant:  

 
𝑑𝑋

𝑑𝜏
= 𝛼𝑋(1 − 𝑋) (2. 3) 

This equation modifies the growth rate from 1 to 𝛼, where increasing 𝛼 increases growth rate and 

leaves the carrying capacity the same. 𝛼 can take any real number in this case.  

2. The carrying capacity can also be modulated, leaving the growth rate unchanged:  

 
𝑑𝑋

𝑑𝜏
= 𝑋(1 − 𝛼𝑋) (2. 4) 

The carrying capacity becomes 1 𝛼⁄  and 𝛼 > 0. This formulation does not generate negative growth.  

3. The "1" in the logistic growth equation can also be modified:  

 
𝑑𝑋

𝑑𝜏
= 𝑋(𝛼 − 𝑋)  (2. 5) 

It can be rewritten as the same form of logistic growth equation:  

 
𝑑𝑋

𝑑𝜏
= 𝛼𝑋 (1 −

𝑋

𝛼
) (2. 6) 

In this case, both growth rate and carrying capacity are scaled by a factor of 𝛼. 𝛼 can take any real 

number because if the carrying capacity is negative, the growth rate will also be negative and thus the 

model will only generate bounded growth.  
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4. A first order term can be added to the equation:  

 
𝑑𝑋

𝑑𝜏
= 𝑋(1 − 𝑋) − 𝛼𝑋 (2. 7) 

Although this modification is equivalent to the previous one, it is worth noting since this form is 

commonly used to represent death rate or turnover rate.  

 

The above analysis demonstrates that 1, 3, and 4 are robust modifications that provide consistent model 

modulations with any real value of 𝛼 parameter. Following this analysis, we will then model stress, benefit 

and cost at these three locations in the logistic growth equation to capture the four assumptions presented 

above for mutualistic interactions.  

 

4. Specific implementations of benefit, stress and cost 
To capture the model assumptions of a), b) and c), we used the following formulations to modify simple 

logistic growth equations at location 1, 3 or 4 mentioned above to capture the logic of mutualistic interaction.  

 

a) Benefit shall be positively dependent on partner density.  

This assumption can be modeled at all three locations by 

 
𝛽′𝑋2

𝑋2 + 1/𝛽
 (𝛽 > 0, 𝛽′ > 0) or 

−1

𝛽𝑋2 + 1
 (𝛽 > 0),  (2. 8) 

where 𝑋2 represents partner density (same as below) and 𝛽 and 𝛽′ are measures of strength of benefit. 

In both cases, the benefit function is saturating, which facilitates the stabilization of population 

densities5. The following are two specific examples of functions 2.8:  

 
 

b) Cost shall decrease growth rate or carrying capacity. 

We use 𝜀  as a measure of level of cost. Specifically, this is implemented at location 1 or 3 by 

multiplication 

 
1

𝜀
(𝜀 ≥ 1) (density-independent) or 

1

𝜀𝑋2 + 1
 (𝜀 ≥ 0) (density-dependent). (2. 9) 

Cost can also be implemented as a turnover rate at location 4  

 −𝜀 (𝜀 ≥ 0) (density-independent) or − 𝜀𝑋2 (𝜀 ≥ 0) (density-dependent). (2. 10) 

Two specific examples of the density-dependent functions in Supplementary Equations 2.9 and 2.10:  
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c) Stress shall produce negative growth of populations with some parameter combinations.  

We use 𝛿 as a measure of stress. Specifically, this is implemented by modifying the logistic growth 

equation at location 1 or 3 by  

 1 − 𝛿 where (𝛿 ≥ 0) (2. 11) 

 

Stress can also serve as a turnover rate at location 4  

 −𝛿 (2. 12) 

 

Two or more of the parameters can share one location, so we permutated the three factors in the three 

locations and systematically generated 81 models (Supplementary Table 1). The 81 models are then 

checked against assumption d) and verify that the models do not generate unbounded growth. See 

Supplementary Software that investigates the model assumption d) and unbounded growth behavior. Out 

of the 81 models, 48 satisfy all 4 assumptions and do not generate unbounded growth with positive 

parameter values and positive initial densities.  

 

5. Examples of combined fitness impact of 𝜷 and 𝜺  
Combining the two effects of 𝛽 and 𝜀, we can examine different cases of the overall effect of Χ2 density on 

Χ1 fitness.  

 

Model 25 in Supplementary Table 1 has 𝛽 modulating the growth rate and an effect of 𝜀 independent of Χ2:  

25.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1(1 − 𝛸1) − 𝛿𝜀𝛸1 

Assuming Χ1 ≪ 1, the instant growth rate of Χ1 becomes:  

 
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
− 𝛿𝜀 (2. 13) 

If we choose specific values for this function (β′ = 2, β = 10, δ = 1, 𝜀 = 0.8), the fitness of Χ1 is:  

 
In this case, when the effect of 𝜀 does not increase with partner density, fitness of Χ1 is a monotonically 

increasing function of 𝑋2.  

 

As the next example, model 79 in Supplementary Table 1 only differs from model 25 in its density-

dependent cost: 

79.
𝑑𝛸1
𝑑𝜏

=
𝛽′𝛸2

𝛸2 + 1 𝛽⁄
𝛸1(1 − 𝛸1) − 𝛿(1 + 𝜀𝛸2)𝛸1 

Assuming Χ1 ≪ 1, the instant growth rate of Χ1 becomes:  
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𝛽′𝛸2

𝛸2 + 1 𝛽⁄
− 𝛿(1 + 𝜀𝛸2) (2. 14) 

If we use the same set of parameters as the previous example, we can see the overall fitness effect of both 

benefit and cost can increase at low partner density and decrease at high partner density:  

 
As the third example, another shape can be generated using model 73 in Supplementary Table 1:  

73.
𝑑𝛸1
𝑑𝜏

=
1

(1 + 𝜀𝑋2)

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

𝛸1(1 − 𝛸1) − 𝛿𝛸1 

where the instant growth rate of Χ1 is: 

 
1

(1 + 𝜀𝑋2)

𝛽′𝛸2
𝛸2 + 1 𝛽⁄

− 𝛿 (2. 15) 

Using 𝛽′ = 1, 𝛽 = 100, 𝛿 = 1, 𝜀 = 5, we get the following relationship:  

 
In this case, the overall effect of the interaction increases and decreases sharply at a low Χ2 level (around 

0.1 in this specific case).  

 

With different function structures and parameter values, our model formulations capture several types of 

density vs. net effect curve as previously demonstrated33, which include both monotonically increasing 

functions and biphasic dependencies.  

 

3. Derivation of diverse criteria  
 

This section demonstrates the diversity of criteria with various model formulations. We first use an example 

model to serve as the base model to demonstrate a detailed process to derive coexistence criteria. We then 

show the process of building various mutualism models with more complexity and deriving or 

approximating the corresponding criterion.  
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1. An example 
Consider the following model as our base model for the analytical analyses:   

 
𝑑𝑁1
𝑑𝑡

=
𝜇

𝜀
𝑁1 (1 −

𝑁1
𝑁𝑚

) −
𝑑 𝐾

𝑁2 + 𝐾
𝑁1 (3. 1) 

 
𝑑𝑁2
𝑑𝑡

=
𝜇

𝜀
𝑁2 (1 −

𝑁2
𝑁𝑚

) −
𝑑 𝐾

𝑁1 + 𝐾
𝑁2 (3. 2) 

 

The non-dimensionalized version of the model is (model 21 in Supplementary Table 1):  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1(1 − 𝛸1) −

𝛿 

𝛽𝛸2 + 1
𝛸1 (3. 3) 

 
𝑑𝛸2
𝑑𝜏

=
1

𝜀
𝛸2(1 − 𝛸2) −

𝛿

𝛽𝛸1 + 1
𝛸2 (3. 4) 

 

Where 𝜏 = 𝜇𝑡, 𝛸1 = 𝛸2 =
𝑁

𝑁𝑚
, 𝛿 =

𝑑

𝜇
, 𝛽 =

𝑁𝑚

𝐾
. The ranges of the parameters are: 𝜀 ≥ 1, δ ≥ 0, β ≥ 0 

 

This system has 5 fixed points:  

 (0, 0), (3. 5) 

 (1 − 𝜀𝛿, 0), (3. 6) 

 (0, 1 − 𝜀𝛿), (3. 7) 

 (
𝛽 − 1 + √(𝛽 + 1)2 − 4𝛽𝜀𝛿

4𝛽
,
𝛽 − 1 + √(𝛽 + 1)2 − 4𝛽𝜀𝛿

4𝛽
), (3. 8) 

 (
𝛽 − 1 − √(𝛽 + 1)2 − 4𝛽𝜀𝛿

4𝛽
,
𝛽 − 1 − √(𝛽 + 1)2 − 4𝛽𝜀𝛿

4𝛽
), (3. 9) 

 

By calculating the Jacobian, we found that the 4th fixed point (3.8) represents stable coexistence. The 5th 

fixed point is a saddle point and is unstable. For the 4th fixed point to be in the first quadrant of the Real 

domain, 2 conditions must be satisfied at the same time:  

 (𝛽 + 1)2 − 4𝛽𝜀𝛿 ≥ 0 (3. 10) 

 
𝛽 − 1 + √(𝛽 + 1)2 − 4𝛽𝜀𝛿

4𝛽
> 0 (3. 11) 

 

The first condition (Supplementary Equation 3.10) derives the coexistence criterion 
(𝛽+1)2

4𝛽𝜀 
≥ 𝛿 and when 

this criterion is satisfied, the second condition is automatically satisfied if 𝛽 > 1 . When β ≤ 1  the 

corresponding coexistence criterion is: 
1

𝜀 
≥ 𝛿. Since when 𝛽 ≤ 1,  

(𝛽+1)2

4𝛽 
≥ 1. Thus, 

(β+1)2

4β𝜀 
≥

1

𝜀 
≥ 𝛿 holds. 

Although the bound is not tight when β ≤ 1, the overall criterion can still be described as 
(𝛽+1)2

4𝛽𝜀 
≥ 𝛿 as a 

necessary condition. When β ≤ 1, the model cannot capture obligatory mutualism, so we confine the range 

of 𝛽  to be 𝛽 > 1 to ensure that both obligatory and facultative mutualism can be captured. Note that 

bifurcation analysis of the system shows Allee effect and how final density increases with increasing 𝛽, 

decreasing 𝛿 and decreasing 𝜀.  
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2. Summary of criteria derived from symmetric models  
Symmetric models in general generate interpretable analytical solutions. In Supplementary Table 1, all the 

models are assumed to be symmetric between two populations. We found that these symmetric models 

already generate a diverse set of coexistence criteria.  

 

Most of these criteria are derived using the same logic used for the base model presented above, except for 

the criteria of model 1, 4, 28, 31, 55 and 58 in Supplementary Table 1, which are derived from setting the 

analytical solution of the saddle point lower than the initial density Χ0. This is because the steady states that 

represent coexistence for these models are constants, whereas the saddle points are modulated by model 

parameters. For a detailed example of this derivation, refer to section 3.3.2.  

 

In natural mutualism systems, cost can also scale with its partner’s density33. In general, we observed that 

inclusion of density-dependent cost increases the complexity of the criteria. In addition, mutualists can also 

compete within the same niche34. In this case, the effective benefit term in general decreases from the model 

without competition, indicating the criteria also lumps the effect of competition.  

 

3. Criteria from models with additional complexities 
To relax some additional assumptions, such as complete symmetry, we also included additional levels of 

complexities to the base model by including asymmetry and turnover rate:  

 
𝑑𝑁1
𝑑𝑡

=
𝜇1
𝜀1
𝑁1 (1 −

𝑁1 + 𝛼 𝑁2
𝑁𝑚

) −
𝑑1 𝐾2
𝑁2 + 𝐾2

𝑁1 − 𝑑01𝑁1 (3. 12) 

 
𝑑𝑁2
𝑑𝑡

=
𝜇2
𝜀2
𝑁2 (1 −

𝛼 𝑁1 +𝑁2
𝑁𝑚

) −
𝑑2𝐾1

𝑁1 + 𝐾1
𝑁2 − 𝑑02𝑁2 (3. 13) 

 

After non-dimensionalization, the model becomes:  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀1
  𝛸1(1 − 𝛸1 − 𝛼𝛸2) −

𝛿1 

𝛽2𝛸2 + 1
𝛸1 − 𝛿01𝛸1 (3. 14) 

 
𝑑𝛸2
𝑑𝜏

=
1

𝜀2
𝜌𝛸2(1 − 𝛼𝛸1 − 𝛸2) −

𝛿2
𝛽1𝛸1 + 1

𝛸2 − 𝛿02𝛸2 (3. 15) 

where 𝜏 = 𝜇1𝑡, 𝛸1 =
𝑁1

𝑁𝑚
, 𝜌 =

𝜇2

𝜇1
, 𝛿1 =

𝑑1

𝜇1
, 𝛽1 =

𝑁𝑚

𝐾1
, 𝛸2 =

𝑁2

𝑁𝑚
, 𝛿2 =

𝑑2

𝜇1
, 𝛽2 =

𝑁𝑚

𝐾2
. 

 

1. Criterion with two populations competing for resources  

Our base model assumes the two populations having separate carrying capacities. However, in natural 

settings, mutualists often share resources15. We can impose competition between them by adding −𝛼Χ2 or 

−𝛼Χ1 to location 3 in logistic growth equations of Χ1 and Χ2, respectively (number 82 in Supplementary 

Table 2):  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1(1 − 𝛸1 − 𝛼𝛸2) −

𝛿

𝛽𝛸2 + 1
𝛸1 (3. 16) 

 
𝑑𝛸2
𝑑𝜏

=
1

𝜀
𝛸2(1 − 𝛼𝛸1 − 𝛸2) −

𝛿

𝛽𝛸1 + 1
𝛸2 (3. 17) 

 

Using the same method described in section 3.1, we derived the criterion of this model: 
(𝛽+𝛼+1)2

4𝛽(𝛼+1)𝜀
> 𝛿.  
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2. Criterion considering initial density 

For this analysis, we used a symmetric model (model 83 in Supplementary Table 2):  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1(1 − 𝛸1) −

𝛿 

𝛽𝛸2 + 1
 (3. 18) 

 
𝑑𝛸2
𝑑𝜏

=
1

𝜀
𝛸2(1 − 𝛸2) −

𝛿

𝛽𝛸1 + 1
 (3. 19) 

 

Because most mutualism models generate Allee effect, coexistence can also be affected by initial density 

(𝑥0). However, we can derive a benefit term that depends on the initial density 𝑥0 (for both Χ1 and Χ2) to 

predict deterministically whether the two populations coexist or not. To coexist, 𝑥0 needs to be greater than 

the saddle point:  

 𝑥0 >
𝛽 − 1 −√(𝛽 + 1)2 − 4𝛽𝜀𝛿

4𝛽
 (3. 20) 

If we rearrange this inequality, we get  

 
(1 − 𝑥0)𝑥0𝛽 + (1 − 𝑥0)

𝜀
> 𝛿 (3. 21) 

 

 

3.  Criterion with asymmetric growth rate, cost, stress, and benefit 

Asymmetric parameters of the mutualism are more realistic in capturing real-world mutualism systems, so 

we relaxed the assumptions that cost (𝜀 ), rescue strength (𝛽 ) and stress (𝛿 ) are symmetric for both 

populations. The asymmetry of growth rate is captured by 𝜌 . In the following model (model 84 in 

Supplementary Table 2), we assumed Χ1 and Χ2 share the same carrying capacity. We found that separated 

carrying capacity also yields similar results.  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀1
  𝛸1(1 − 𝛸1 − 𝛸2) −

𝛿1 

𝛽2𝛸2 + 1
𝛸1 (3. 22) 

 
𝑑𝛸2
𝑑𝜏

=
1

𝜀2
𝜌𝛸2(1 − 𝛸1 − 𝛸2) −

𝛿2
𝛽1𝛸1 + 1

𝛸2 (3. 23) 

 

This model has 5 fixed points:  

 (0, 0) (3. 24) 

 (1 − 𝜀1𝛿1, 0) (3. 25) 

 (0, 1 −
𝜀2𝛿2
𝜌

) (3. 26) 

 (
    
𝜀2𝛿2
𝜌 √𝛢 − 𝛽2𝜀2𝛿2 + 𝛽1𝜀2𝛿2 − 2𝛽1𝜀1𝛿1𝜌 + 𝛽1𝛽2𝜀2𝛿2

2𝛽1(𝛽1𝜀1𝛿1𝜌 + 𝛽2𝜀2𝛿2)
,
   𝜀1𝛿1√𝛢 − 𝛽1𝜀1𝛿1𝜌 + 𝛽2𝜀1𝛿1𝜌 − 2𝛽2𝜀2𝛿2 + 𝛽1𝛽2𝜀1𝛿1𝜌

2𝛽2(𝛽1𝜀1𝛿1𝜌 + 𝛽2𝜀2𝛿2)
) (3. 27) 

 (
−
𝜀2𝛿2
𝜌 √𝛢 − 𝛽2𝜀2𝛿2 + 𝛽1𝜀2𝛿2 − 2𝛽1𝜀1𝛿1𝜌 + 𝛽1𝛽2𝜀2𝛿2

2𝛽1(𝛽1𝜀1𝛿1𝜌 + 𝛽2𝜀2𝛿2)
,
−𝜀1𝛿1√𝛢 − 𝛽1𝜀1𝛿1𝜌 + 𝛽2𝜀1𝛿1𝜌 − 2𝛽2𝜀2𝛿2 + 𝛽1𝛽2𝜀1𝛿1𝜌

2𝛽2(𝛽1𝜀1𝛿1𝜌 + 𝛽2𝜀2𝛿2)
) (3. 28) 

 

where 𝛢 = 𝜌2(𝛽1𝛽2 + 𝛽1 + 𝛽2)
2 − 4𝛽1𝛽2𝜌(𝛽1𝜀1𝛿1𝜌 + 𝛽2𝜀2𝛿2). 
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Use the same logic presented in section 3.1, the following criterion is a necessary condition for the 4th fixed 

point to be present in the positive Real domain: 

 
ρ(𝛽1𝛽2 + 𝛽1 + 𝛽2)

2

4𝛽1𝛽2
≥ 𝛽1𝜀1𝛿1ρ + 𝛽2𝜀2𝛿2 (3. 29) 

 

This criterion can also be rewritten as 
𝜌(𝛽1+

1

𝜃1
+1)

2

4𝛽1𝜀1(
𝜌

𝜃1
+𝜃2)

≥ 𝛿1 where the asymmetry is captured by 𝜃1 = 
𝛽2

𝛽1
 and 

𝜃2 = 
𝜀2𝛿2

𝜀1𝛿1
 . Note that we specifically used Χ1 as the reference population.  

 

4. Criterion with turnover rate and asymmetric growth rate 

If we consider both the asymmetry in growth rate (𝜌) and a turnover rate 𝛿0, the model becomes (model 85 

in Supplementary Table 2):  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀
  𝛸1(1 − 𝛸1 − 𝛸2) −

𝛿 

𝛽𝛸2 + 1
𝛸1 − 𝛿0𝛸1 (3. 30) 

 
𝑑𝛸2
𝑑𝜏

=
1

𝜀
𝜌𝛸2(1 − 𝛸1 − 𝛸2) −

𝛿

𝛽𝛸1 + 1
𝛸2 − 𝛿0𝛸2 (3. 31) 

 

The analytical solution of this model is complex and involves solving 4th order polynomials. However, we 

can introduce the concept of correction terms to approximate the criterion. When we only add 𝜌 in the 

model and assume 𝛿0 = 0, we get the following criterion:  

 
(𝛽 + 2)2

4𝛽𝜀
(

𝜌

𝜌 + 1
) ≥ 𝛿 (3. 32) 

 

In addition, when we only add the 𝛿0 term in the model and assume 𝜌 = 1, we get  

 
(β(1 − 𝜀𝛿0) + 2)2

4β𝜀
≥ 𝛿. (3. 33) 

We hypothesized that the criterion with both correction terms (
𝜌

𝜌+1
) and (1 − 𝜀𝛿0) can approximate the 

criterion for model 3.30-31. The criterion for 𝛿0 > 0 is:  

 
(β(1 − 𝜀𝛿0) + 2)2

4β𝜀
(

𝜌

𝜌 + 1
) ≥ 𝛿 (3. 34) 

 

The accuracy of this criterion is evaluated by substitution of variables:  

  

𝑧1 = (1 − 𝛸1
∗ − 𝛸2

∗) − 𝛿0𝜀

𝑧2 = 𝛸2
∗ +

1

𝛽

 (3. 35) 

where Χ1
∗ and Χ2

∗ represent fixed points of the model. 
𝑑𝛸1

𝑑𝜏
= 0 and 

𝑑𝛸2

𝑑𝜏
= 0 can then be written as  

 

{
 

 𝑧2 =
𝛿𝜀

𝛽𝑧1

𝜌𝑧1 + (𝜌 − 1)𝛿0𝜀 + 
𝛿𝜀

𝛽(𝑧1 + 𝑧2) − (𝛽(1 − 𝛿0𝜀) + 2)
= 0

 (3. 36) 
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After substitution of 𝑧2 with 𝑧1 in the second equation, we get 

 
𝛽𝑧1

2 − (𝛽(1 − 𝛿0𝜀) + 2)𝑧1 +
𝜌 + 1

𝜌
𝛿𝜀 =

𝜌 − 1
𝜌

𝛿0𝛿𝜀
2

𝜌𝑧1 + (𝜌 − 1)𝛿0𝜀
 

(3. 37) 

 

The left-hand side is a quadratic equation of has 𝑧1, which has ∆= (𝛽(1 − 𝛿0𝜀) + 2)2 − 4
𝜌+1

𝜌
𝛽𝛿𝜀.  

 ∆≥ 0 ⟺
(𝛽(1 − 𝜀𝛿0) + 2)2

4𝛽𝜀
(

𝜌

𝜌 + 1
) ≥ 𝛿 (3. 38) 

 

Thus, we know that the criterion is more accurate when 

𝜌−1

𝜌
𝛿0𝛿𝜀

2

𝜌𝑧1+(𝜌−1)𝛿0𝜀
⟶ 0. The approximated criterion is 

accurate when 𝜌 = 1.When 𝜌 → +∞ and 𝛿0 → 0, the criterion will also provide good approximations.  

 

5. The criterion for N-mutualist systems 

The following model is used to determine the criterion with N-mutualist model:  

 
𝑑𝑋𝑖
𝑑𝜏

=
1

𝜀
𝑋𝑖 (1 − 𝛸𝑘

𝑛

𝑘=1

) −
𝛿

𝛽  𝛸𝑘
𝑛
𝑘≠𝑖 + 1

𝛸𝑖 (3. 39) 

 

The non-trivial steady state can be solved by solving the following equation for X∗: 

 
𝑛

𝜀
𝑋∗(1 − 𝑛𝑋∗) −

𝑛𝛿

𝛽(𝑛 − 1)𝑋∗ + 1
𝑋∗ = 0 (3. 40) 

 

Using the same strategy in section 3.1, we derive the criterion for coexistence:  

 
(𝛽 +

𝑛
𝑛 − 1)

2

4𝛽𝜀
𝑛

𝑛 − 1

> 𝛿 (3. 41) 

 

where benefit becomes a function of both 𝛽 and n. This result suggests that mutualism system can tolerate 

higher stress levels with increasing number of mutualists.  

 

6. Mutualism model including cheater exploitation 

The mutualism model including cheaters is adapted from Supplementary Equations 3.22-23:  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −

𝛿 

𝛽𝛸2 + 1
𝛸1 − 𝜑𝛸1 (3. 42) 

 
𝑑𝛸2
𝑑𝜏

=
1

𝜀
𝛸2(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −

𝛿

𝛽𝛸1 + 1
𝛸2 − 𝜑𝛸2 (3. 43) 

 
𝑑𝛸1𝑐
𝑑𝜏

= 𝛸1𝑐(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −
𝛿 

𝛽𝛸2 + 1
𝛸1𝑐 + 𝜑𝛸1 (3. 44) 

 
𝑑𝛸2𝑐
𝑑𝜏

= 𝛸2𝑐(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −
𝛿

𝛽𝛸1 + 1
𝛸2𝑐 + 𝜑𝛸2 (3. 45) 

 

We assume 1) cheaters and cooperators share the same carrying capacity, 2) cheaters accept benefit 

produced by cooperators but do not provide benefit, thus do not experience cost, and 3) there is a constant 



33 

 

transfer rate (𝜑) from cooperator to cheater, representing mutation from the cooperator phenotype to cheater 

phenotype. Although this model does not generate stable coexistence of the cooperators, the time it takes 

for cheaters to take over the cooperators can serve as a metric for how stable the mutualistic system is.  

 

7. Model structures that generate lower boundary for stress  

We notice that to coexist, some model formulations not only require an upper boundary of 𝛿, but also 

require a lower boundary as well. If 𝛿 is lower than a threshold, the system can be dominated by the 

population that is more fit. However, this lower boundary occurs due to the system dynamic shifting from 

a mutualism-dominated mode to a competition-dominated mode.  

 

There are two types of system dynamics that can lead to a loss of partner. One is due to high stress where 

the weaker partner will go extinct and the stronger partner will suffer from the loss of its partner. The other 

is due to lack of stress where the system shifts to a competition-dominated interaction where the fitter 

partner survives better by excluding its partner. In our study, we only focus on the first type of partner loss 

since the second type is a dynamic of competitive systems instead of mutualistic systems.  

 

In general, we observed that a model needs to be both asymmetric and potentially competitive to create a 

scenario where the fitter population excludes the weaker population. The lower boundary for 𝛿 decreases 

when the weaker population gives out more benefit to its partner or reduction of competition. This 

observation can potentially explain why some mutualistic systems transition into competitive exclusion 

when external stress is reduced21,35.  

 

To demonstrate the relationships between these two transitions, we use the following model as an example, 

which is expressed in Supplementary Equations 3.30 and 30.31. The model incorporates both asymmetry 

and competition. Here we show two scenarios: the left panel includes competition (𝑎 < 1) and the right 

panel has no competition (𝑎 = 1). Using 𝜀 = 1.2, 𝛽 = 10 and 𝛿0 = 0.1, we generated the following phase 

diagrams of system behaviors. 
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The blue boundaries represent the transition between coexistence and collapse, which is dictated by 𝐵/𝛿. 

The black boundary represents transition from coexistence to competitive exclusion. The time courses show 

the decrease of fitness of both populations after transitioned into collapse from coexistence. On the other 

hand, the persisting population increases in density when transitions into competitive exclusion. The two 

transitions are two distinct behaviors. Both boundaries exist for 𝛿 when there is competition. However, the 

black boundary does not exist if the model does not incorporate competition, which demonstrates that 

transitioning to competitive exclusion is a model behavior generated by competition and cannot be 

generated by mutualism alone. 

4. Theoretical generality of the simple metric 
 

To establish the generality of the theoretical criterion, we verified that it is applicable to both symmetric 

and asymmetric mutualistic systems. We also want to test that the predictive power of the predictor is 

maintained when the partners are obligatory or facultative. Because mutualists can compete for the same 

resources in nature, we also verified that coexistence of partners that compete for resources also can be 

depicted by the criterion. We show some typical results of the predictive power of the criterion in these 

cases with Supplementary Figure 2.  

 

1. Establish the general predictive power of 𝑩/𝜹 
Figure 1f is generated using the model described by Supplementary Equations 3.16 and 3.17, where 𝜀 ∈

[1, 1.2 , 𝛿 ∈ [0, 2 , 𝛽 ∈ [2, 5  and 𝑎 = 1. The positive trend holds when the mutualism is facultative (𝛿 <

1).  

 

Supplementary Figure 2a is also generated using the model presented by Supplementary Equations 3.16 

and 3.17. Both are generated with 𝛽 ∈ [2, 10 , 𝛿 ∈ [1.2, 2 , 𝜀 ∈ [1, 1.2  and 𝑎 = 1. The panel on the left 

assumes Χ1 and Χ2 have the same initial density which is a uniformly distributed between 0 and 0.5. The 

panel on the right assumes changing of individual initial densities in a linear fashion while maintaining the 

sum of initial density of Χ1 and Χ2 at 1.  

 

Supplementary Figure 2b is generated with the model presented above in Supplementary Equations 3.42-

3.45, where 𝜑 = 10−3, 𝛽 ∈ [5, 20  𝛿 ∈ [1.2, 1.3 , and 𝜀 ∈ [1.2, 1.3 . The initial densities are Χ10 = 0.1, 

Χ10 = 0.1, Χ1c = 0 and Χ2c = 0. The time to cheater exploitation is quantified by the first time point where 

the total density of cooperators drops below their initial total density due to overwhelming competitions 

from the cheater populations. Other time to cheater exploitation in this study is quantified using the same 

method.  

 

Supplementary Figure 2c is generated by  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀1
𝛸1(1 − 𝛸1) −

𝛿1 

𝛽2𝛸2 + 1
𝛸1 (4. 1) 

 
𝑑𝛸2
𝑑𝜏

=
1.2

𝜀2
𝛸2(1 − 𝛸2) −

𝛿2
𝛽1𝛸1 + 1

𝛸2 (4. 2) 
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Where the left panel uses parameter values of 𝛽1 = 2, 𝛽2 ∈ [2, 5 , 𝛿1 = 1.2, 𝛿2 ∈ [0.5, 2 , 𝜀1 = 1.1, and 

𝜀2 ∈ [1, 1.2 . The initial densities are 𝛸10 = 1 and 𝛸20 = 1. The right panel uses parameter values of 𝛽1 =

2 , 𝛽2 ∈ [2, 5 , 𝛿1 = 0.8, 𝛿2 ∈ [1, 2 , 𝜀1 = 1.1, and 𝜀2 ∈ [1, 1.2 . The initial densities are 𝛸10 = 1  and 

𝛸20 = 1. This panel specifically tests the cases where the survival of the partners is fully dependent on each 

other.  

 

Supplementary Figure 2d is generated by 3.22-3.23, where the left panel uses parameter values of 𝜌 = 1.2, 

𝛽1 = 2, 𝛽2 ∈ [5, 10 , 𝛿1 = 1.2, 𝛿2 ∈ [0.5, 2 , 𝜀1 = 1.1, and 𝜀2 ∈ [1, 1.2 . The initial densities are 𝛸10 = 1 

and 𝛸20 = 1. The right panel uses parameter values of 𝛽1 = 2, 𝛽2 ∈ [5, 10 , 𝛿1 = 0.8, 𝛿2 ∈ [1, 2 , 𝜀1 =

1.1, and 𝜀2 ∈ [1, 1.2 . The initial densities are 𝛸10 = 1 and 𝛸20 = 1. This panel specifically tests the cases 

where one mutualist’s survival is not fully dependent on the other.   

 

Supplementary Figure 2e is generated using the same model as the above. Where the parameter values are 

𝛽1 = 5, 𝛽2 ∈ [2, 10 , 𝛿1 = 1.2, 𝛿2 ∈ [1.2, 2 , 𝜀1 = 1.1, and 𝜀2 ∈ [1, 1.2 . The sum of initial densities is 

kept at 0.3 and the values of Χ10 and Χ20 are changed in a linear fashion. 1000 different combinations of 

parameters are used and 50 different Χ10: Χ20 simulations are performed with each parameter combination 

to calculate the probability of coexistence.  

 

Supplementary Figure 2f is generated using the following model, which is based on the symmetric model 

presented in Supplementary Equations 3.42-45, while adding asymmetry:  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀1
𝛸1(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −

𝛿1 

𝛽2𝛸2 + 1
𝛸1 − 𝜑𝛸1 (4. 3) 

 
𝑑𝛸2
𝑑𝜏

=
1.3

𝜀2
𝛸2(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −

𝛿2
𝛽1𝛸1 + 1

𝛸2 − 𝜑𝛸2 (4. 4) 

 
𝑑𝛸1𝑐
𝑑𝜏

= 𝛸1𝑐(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −
𝛿1

𝛽2𝛸2 + 1
𝛸1𝑐 + 𝜑𝛸1 (4. 5) 

 
𝑑𝛸2𝑐
𝑑𝜏

= 1.3𝛸2𝑐(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −
𝛿2

𝛽1𝛸1 + 1
𝛸2𝑐 + 𝜑𝛸2 (4. 6) 

 

Where 𝜑 = 10−3 ,  𝛽1 = 4 , 𝛽2 ∈ [40, 60 , 𝛿1 = 1.8 , 𝛿2 ∈ [1.4, 1.5 , 𝜀1 = 1.4 , 𝜀2 ∈ [1, 1.2 . The initial 

densities are Χ10 = 0.05, Χ10 = 0.05, Χ1c = 0 and Χ2c = 0.  

 

2. The predictive accuracy is maintained in the presence of noise 
In addition to investigating the probability of coexistence when initial density is randomly distributed 

(Supplementary Figure 2a, 2e), we also explicitly modeled noise to test the effect of noise on the prediction 

accuracy of the criterion. We added Gaussian noise to our base model (𝜂):  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1(1 − 𝛸1) −

𝛿 

𝛽𝛸2 + 1
𝛸1 + 𝜂 (4. 7) 

 
𝑑𝛸2
𝑑𝜏

=
1

𝜀
𝛸2(1 − 𝛸2) −

𝛿

𝛽𝛸1 + 1
𝛸2 + 𝜂 (4. 8) 

 

In Supplementary Figure 2g, we used the model above and the criterion tested is Supplementary Equation 

3.20. Multiple sets of initial densities are tested. Although we observed a decreasing accuracy with 

increasing noise, the prediction accuracy is robustly maintained (above 90%) even when the standard 
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deviation of noise reaches 50% of signal strength. The high maintenance of prediction accuracy is due to 

the stability of the mutualistic model. Because the two stable steady states exist on opposite sides of the 

separatrix, only when noise pushes densities across the separatrix (against the vector field), the outcome of 

the system will be altered. Otherwise, noise will not influence the final steady state.  

 

 

5. Calibration using SVM 
 

We chose SVM because it is a well-established algorithm and it only requires information of the support 

vectors which are usually data points along the boundary to obtain a classification boundary. Note that other 

algorithms can also be implemented for the same purpose. For example, when predicting probability of 

coexistence, logistic regression can be more suitable to directly predict probability of coexistence. See the 

Supplementary Material for our MATLAB program which performs the calibration procedure using SVM.  

 

1. Kernels 
We used four types of kernels to cover different general shapes of the 𝐵 landscape:  

  Linear kernel:  𝐾𝑣 𝒗𝟏, 𝒗𝟐 = 𝒗𝟏 ∙ 𝒗𝟐 + 𝑘𝛿(𝛿1 ∙ 𝛿2)  (5. 1) 

  Quadratic kernel:  𝐾𝑣 𝒗𝟏, 𝒗𝟐 = (𝒗𝟏 ∙ 𝒗𝟐 + 𝑘0)
2 + 𝑘𝛿(𝛿1 ∙ 𝛿2)  (5. 2) 

  Cubic kernel:  𝐾𝑣 𝒗𝟏, 𝒗𝟐 = (𝒗𝟏 ∙ 𝒗𝟐 + 𝑘0)
3 + 𝑘𝛿(𝛿1 ∙ 𝛿2)  (5. 3) 

  
Sigmoidal kernel:  𝐾𝑣 𝒗𝟏, 𝒗𝟐 =

(𝒗𝟏∙𝒗𝟐)
2

‖𝒗𝟏−𝒗𝟐‖
2+𝑘0

+ 𝑘𝛿(𝛿1 ∙ 𝛿2)  (5. 4) 

Where in 5.4, ‖𝒗𝟏 − 𝒗𝟐‖
2 =  (𝑣1𝑖 − 𝑣2𝑖)

2
𝑖 .  

 

These four kernels follow the same structure:  

𝐾 [𝒗𝟏, 𝛿1 , [𝒗𝟐, 𝛿2  = 𝐾𝑣 𝒗𝟏, 𝒗𝟐 + 𝑘𝛿(𝛿1 ∙ 𝛿2), 

Our procedure allows any kernel structure that is supplied by the user, so other customized kernels can also 

be used for the calibration. 𝑘𝛿 and 𝑘0 are kernel parameters.  

 

2. Standardizing input data 
Standardizing input data is essential for robust estimation of 𝐵(𝒗). Before training the model with SVM, 

we first standardize the system variables 𝑣 and stress 𝛿 to mean 0 and variance 1.  

 𝒗𝑠 =
𝒗 −𝑚𝑒𝑎𝑛(𝒗)

𝑣𝑎𝑟(𝒗)
 (5. 5) 

 𝜹𝑠 =
𝜹 −𝑚𝑒𝑎𝑛(𝜹)

𝑣𝑎𝑟(𝜹)
 (5. 6) 

For simplicity of presentation, 𝒗 and 𝜹 in section 5.3 represent the standardized inputs.  

 

3. From SVM output to calibrated 𝑩(𝒗)  
SVM will output a predictor that separates coexistence and collapse indicated in the 𝒀  vector. Our 

procedure requires that the two classes are represented by 1 and -1 in the 𝒀 vector. Using kernels 5.1-5.4, 

we can write the predictor in the general form:  

 𝑓([𝒗, 𝛿 ) = 𝛼𝑖𝑦𝑖𝐾𝑣 𝒗𝑖, 𝒗 

𝑖

+ 𝑘𝛿𝛿 𝛼𝑖𝑦𝑖𝛿𝑖
𝑖

+ 𝜆0 (5. 7) 
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The predictor 𝑓([𝒗, 𝛿 )  is a function of test variables 𝒗  and 𝛿 . Where values of 𝒗  and 𝛿  for a new 

observation can be plugged in and a positive value of 𝑓([𝒗, 𝛿 ) predicts coexistence and a negative value 

predicts collapse. In the predictor function, 𝑘𝛿 is a kernel parameter; 𝛼𝑖 represents the coefficient associated 

with the 𝑖𝑡ℎ observation that are solved by the SVM algorithm; 𝜆0 represents the bias that is optimized by 

the algorithm. 𝒗𝑖  and 𝛿𝑖  are the normalized input data for observation 𝑖  and 𝑦𝑖  is the label indicating 

coexistence or collapse (1 or -1) for observation 𝑖.  

 

If we impose 𝐵 = 𝛿 at 𝑓([𝒗, 𝛿 ) = 0, we can obtain a transformed function of 𝐵 in terms of input data:  

 𝐵0(𝒗) =
− 𝛼𝑖𝑦𝑖𝐾𝑥 𝒗𝑖, 𝒗 𝑖 − 𝜆0

𝑘𝛿  𝛼𝑖𝑦𝑖𝛿𝑖𝑖
 

(5. 8) 

 

𝐵0(𝒗) can sometimes have the wrong directionality, meaning that 𝐵/𝛿 > 1 is associated with collapse and 

𝐵/𝛿 < 1 is associated with coexistence. We identify these cases by calculating  

  𝑦𝑖 ∙ 𝑠𝑖𝑔𝑛(𝐵𝑖 − 𝛿𝑖)

𝑛

1

   , 𝐵𝑖 = 𝐵0(𝒗𝒊) (5. 9) 

 

If the above expression is negative (when the trained boundary has a learning accuracy greater than 50%), 

the calibrated 𝐵0 has a wrong directionality. Flipping the 𝐵 landscape is then required, and it is done by 

assuming:  

 −(
𝐵0(𝒗)

𝛿
− 1) =

𝐵𝑓𝑙𝑖𝑝𝑝𝑒𝑑(𝒗)

𝛿
− 1 (5. 10) 

 
Thus, 

𝐵𝑓𝑙𝑖𝑝𝑝𝑒𝑑 = 2𝛿 − 𝐵0(𝒗) (5. 11) 

 

We name the output  𝐵  landscape with properly adjusted directionality 𝐵′(𝑣) . This landscape 𝐵′(𝑣) 

describes the shape of the final calibrated 𝐵(𝒗) but still needs to be scaled back according to the mean and 

variance of the original 𝜹 measurements. Thus,  

 𝐵(𝒗) = 𝐵′(𝒗) ∙ 𝑣𝑎𝑟(𝜹) + 𝑚𝑒𝑎𝑛(𝜹) (5. 12) 

 

4. Cross validation and bootstrapping  
All the cross validations in this work are 10-fold cross validations. The cross-validation accuracy is 

represented by the average values. Bootstrapping is used to evaluate the degree of variation of quantified 

𝐵 . The same number of data points as the input data is randomly sampled from the input data with 

replacement.  We performed bootstrapping for 500 times. The variance and relative standard deviation 

(RSD) are then calculated based on the 500 bootstrapped 𝐵(𝒗) quantified with 500 sets of sampled training 

data. The mean cross validation accuracy, the bootstrapped variance and relative standard deviation are 

then used to evaluate the accuracy of the 𝐵(𝒗) outputs.  

 

5. Twenty sets of simulations to establish and test the calibration procedure 
To establish the calibration process, we first developed the method with simulated data where the true 𝐵(𝒗) 

are known. This allows us to evaluate calibration results against the ground truth. We used the model 
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presented in Supplementary Equations 3.22-23 to conduct the data for this analysis. Using 𝑋1  as the 

reference population, the 𝐵(𝒗) can be expressed as:  

 𝐵(𝜽) =
𝜌 (𝛽1 +

1
𝜃1
+ 1)

2

4𝛽1𝜀1 (
𝜌
𝜃1
+ 𝜃2)

, 𝜃1 = 
𝛽2
𝛽1
, 𝜃2 = 

𝜀2𝛿2
𝜀1𝛿1

 (5. 13) 

 

However, depending on how system variables change the model parameters (𝜽(𝒗)) in the system variable 

space, the true 𝐵(𝜽(𝒗)) can exhibit diverse shapes. With 𝑣1, 𝑣2 ∈ [0,1 , we constructed 20 arbitrary sets of 

equations with different underlying functions. We also made sure the generated data have around 50:50 

split of coexistence and collapse in the simulated results to reduce bias in the input data. This 50:50 split 

constraint also applies to all the other simulated data. Note that these functions are arbitrary and only serve 

the purpose of generating true 𝐵(𝒗) that has various underlying functions. The data generated using these 

20 models are included in the Supplementary Software.  

 

The 20 sets of 𝜽(𝒗) are grouped into 5 types with each type containing 4 different examples. The 5 types 

of functions that describe 𝜽(𝒗) include linear, quadratic, cubic, and Hill equation and another type of 

functions that are a mixture of the previous four types. As examples, the following are four sets of 𝜽(𝒗) 

used to generate simulation results shown in Supplementary Figure 4b.  

 

 Linear Quadratic 

β1 = 10𝑣1 − 2𝑣2 + 7 −3.5(𝑣1 + 0.2)2 − 5(𝑣2 − 0.2)2 + 9 

β2 = −5𝑣1 + 18𝑣2 + 6 4(𝑣1 − 0.2)2 + 5(𝑣2 − 0.2)2 + 6.25 

δ1 = 0.2𝑣1 + 0.4𝑣2 + 1.0 0.07(𝑣1 − 0.2)2 + 0.05(𝑣2 + 0.2)2 + 1.09 

δ2 = −0.5𝑣1 + 2𝑣2 + 1.7 0.05(𝑣1 + 0.1)2 + 0.1(𝑣2 + 0.2)2 + 1.3 

𝜀1 = 0.2𝑣1 + 0.1𝑣2 + 1 0.05(𝑣1 + 0.5)2 + 0.2(𝑣2)
2 + 1.1 

𝜀2 = 0.05𝑣1 + 0.1𝑣2 + 1 0.18(𝑣1 + 0.2)2 + 0.6(𝑣2 + 0.1)2 + 0.9 

 

 Cubic 

β1 = 0.2𝑣1
3 − 5(𝑣1 − 1)2 + 5 + 0.2𝑣2

3 − 5(𝑣2 + 0.2)2 + 10 

β2 = 0.16𝑣1
3 + 4(𝑣1 + 0.5)2 − 0.1𝑣2

3 − 0.25(𝑣2)
2 + 3.5 

δ1 = 0.28𝑣1
3 + 0.14(𝑣1)

2 − 0.12𝑣2
3 − 0.06(𝑣1 − 0.2)2 + 1.2 

δ2 = 0.04𝑣1
3 + 0.12(𝑣1 + 0.1)2 + 0.01𝑣2

3 − 0.25(𝑣2 + 0.2)2 + 4.95 

𝜀1 = 0.16𝑣1
3 + 0.02(𝑣1 − 0.3)2 + 0.003𝑣2

3 + 0.06(𝑣2 + 0.2)2 + 1.22 

𝜀2 = −0.28𝑣1
3 + 0.14(𝑣1)

2 + 0.28 + 0.12𝑣2
3 − 0.06(𝑣2 − 0.2)2 + 0.9 

 

 Hill equation 

β1 = 10
𝑣1

2

𝑣1
2 + 0.52

− 6
𝑣2

𝑣2 + 1
+ 12 

β2 = 2
𝑣1

𝑣1 + 1
− 5

𝑣2
𝑣2 + 1

+ 9 

δ1 = 0.4
𝑣1

3

𝑣1
3 + 0.53

+ 0.2
𝑣2

𝑣2 + 1
+ 1.01 
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δ2 = 0.1
𝑣1

2

𝑣1
2 + 12

+ 0.05
𝑣2

2

𝑣2
2 + 0.32

+ 1.2 

𝜀1 = 0.1
𝑣1

5

𝑣1
5 + 0.85

+ 0.2
𝑣2

4

𝑣2
4 + 14

+ 1 

𝜀2 = 0.2
𝑣1

5

𝑣1
5 + 0.55

+ 0.1
𝑣2

2

𝑣2
2 + 0.22

+ 1 

 

The training data are 10 × 10 on the 𝑣1, 𝑣2 space. 𝑅2 between calibrated 𝐵 landscape (𝐵𝑐) and the true 

landscape (𝐵𝑡) is calculated by first performing a least square linear fit of 𝐵𝑡 with 𝐵𝑐. This fitting process 

aims to get a linear transformation of 𝐵𝑐 that conforms with the scale of 𝐵𝑡 while maintaining the shape of 

𝐵𝑐. The absolute scale of the calibrated 𝐵(𝒗) is less crucial than its shape, and an absolute scale is also 

challenging to obtain.  

 𝐵𝑐
′ = 𝑎𝐵𝑐 + 𝑏 (5. 14) 

 

Then 𝑅2 is then calculated by:  

 1 −
 (𝐵𝑐

′ −𝐵𝑡)
2

 (𝐵𝑡 − 𝐵𝑡̅̅ ̅)
2
 (5. 15) 

 

 

6. Calibration with simulated data with unknown 𝐵(𝜽): an example 
We want to test whether we can apply the calibration procedure to data that are generated by an arbitrary 

mutualism model. The specific model structure we used to generate data in Figure 2C is:  

 

𝑑𝛸1
𝑑𝜏

=
1

𝜀1 (1 +
𝛸2

𝛸2 + 0.2
)
𝛸1(1 − 𝛸1 − 𝛸2) −

𝛿1

𝛽2
3𝛸2

3 + 1
𝛸1 

(5. 16) 

 
𝑑𝛸2
𝑑𝜏

=
1.5

𝜀2
𝛸2(1 − 0.8𝛸1 − 𝛸2) −

𝛿2

𝛽1
2𝛸1

2 + 1
𝛸2 (5. 17) 

 

The analytical solution of this model cannot be expressed in a simple and explicit form. However, using 

simulated data, we can obtain an empirical function of 𝐵 on the system variable space that allow further 

prediction in the system variable space. The simulations are done using initial densities of [0.01, 0.01] for 

10 unit-time.  

 

To get the probability of coexistence, we ran the model 100 times with varying ratios of initial density while 

keeping the total initial density constant as 0.02. The density for a population is varied in a linear fashion 

from 0 to 0.02 and we terminated the simulation after 10 unit-time.  

 

To calculate how well the systems can resist cheater exploitation, we modified the Supplementary 

Equations 5.16-5.17 to account for the emergence of cheaters:  

 𝑑𝛸1
𝑑𝜏

=
1

𝜀1 (1 +
𝛸2

𝛸2 + 0.2)
𝛸1(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −

𝛿1

𝛽2
3𝛸2

3 + 1
𝛸1 − 𝜑𝛸1 

(5. 18) 
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𝑑𝛸2
𝑑𝜏

=
1.5

𝜀2
𝛸2(1 − 0.8𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −

𝛿2

𝛽1
2𝛸1

2 + 1
𝛸2 − 𝜑𝛸2 (5. 19) 

 𝑑𝛸1𝑐
𝑑𝜏

= 𝛸1(1 − 𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −
𝛿1

𝛽2
3𝛸2

3 + 1
𝛸1 + 𝜑𝛸1 

(5. 20) 

 𝑑𝛸2𝑐
𝑑𝜏

= 1.5 𝛸2(1 − 0.8𝛸1 − 𝛸2 − 𝛸1𝑐 − 𝛸2𝑐) −
𝛿2

𝛽1
2𝛸1

2 + 1
𝛸2 + 𝜑𝛸2 

(5. 21) 

   

The simulations were done with 𝜑 = 10−3, which is the transition rate from cooperators to cheaters. The 

initial densities are [0.01, 0.01, 0, 0] for Χ1, Χ2, Χ1c, and Χ2c, respectively. The simulations were terminated 

after 1300 unit-time.  

 

7. Detailed graphical representation of the calibration procedure 
Using the data generated using Supplementary Equations 5.16-5.17 as an example, the following figure 

shows a step-by-step graphical representation of the calibration procedure.  The same procedure is applied 

to other simulated and experimental data. The different sets of data only differ in terms of how they are 

generated and what 𝑣1 and 𝑣2 correspond to.  
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1. Data collection and preprocessing: Collect the measurements of coexistence vs. collapse (𝒀) and stress 

(𝛿) on the domain of 𝒗. Above a certain threshold of total final density, assign 𝒀 a value of 1 and assign 

-1 if total final density is below this threshold. Standardize the values of 𝛿 and 𝑣 values to have mean 

of 0  and standard deviation of 1  and name the normalized vectors 𝜹𝒔  and 𝒗𝒔 . For simplicity of 

presentation, the following 𝒗 and 𝜹 are standardized. In this example, we have 100 observations (𝑛 =

100, 10 by 10) and two dimensions of 𝒗 (𝒗𝒊 = (𝑣𝑖1, 𝑣𝑖2)).  

2. Pick the top SVM models: Using 𝒀, 𝜹 and 𝒗 as inputs, generate 1600 different SVM models, each 

containing one of the four kernel functions (linear, quadratic, cubic, and sigmoidal, see Supplementary 

Note 5.7) and one of 400 kernel parameter sets. For each kernel parameter, select values within a 

predefined range. The exact number of sets of kernel parameters used is not critical and can be adjusted 

depending on available computational resources.  

1) Calculate 𝐶𝑉𝑙𝑜𝑠𝑠 : Each SVM model can then predict the coexistence or collapse for each 

combination of  𝛿 and 𝒗 values. These predictions are used to calculate the average 10-fold cross-

validation loss (𝐶𝑉𝑙𝑜𝑠𝑠).  

2) Calculate 𝑉𝑎𝑟: To calculate the variance for each SVM model, sample the 100 observations 100 

times with replacement and calculate a single instance of 𝐵(𝑣). Repeat this process 500 times to 

obtain a distribution of 500 bootstrapped 𝐵(𝑣). Using this distribution, we can calculate the mean 

variance (𝑉𝑎𝑟) for each of the 1600 SVM models.  

3) Calculate 0.2𝑉𝑎𝑟 + 0.8𝐶𝑉𝑙𝑜𝑠𝑠: We can empirically examine the top five SVM models, which were 

select by the lowest 0.2𝑉𝑎𝑟 + 0.8𝐶𝑉𝑙𝑜𝑠𝑠 values. The weights of 𝑉𝑎𝑟 and 𝐶𝑉𝑙𝑜𝑠𝑠 were determined 

empirically using simulated data (see Supplementary Figure 4c).  

3. Train the top SVM models: Train each of the five SVM models with normalized input data to obtain 

the function that describes the boundary between the two classes. The functions can be expressed as:  

𝑓([𝒗, 𝛿 ) = 𝛼𝑖𝑦𝑖𝐾𝑣 𝒗𝑖, 𝒗 

𝑖

+ 𝑘𝛿𝛿 𝛼𝑖𝑦𝑖𝛿𝑖
𝑖

+ 𝜆0 

𝛼𝑖  is the weight of observation 𝑖, and 𝜆0  is the bias term for the SVM model. Both 𝛼𝑖  and 𝜆0  are 

optimized by the SVM algorithm. 𝐾𝑣 is the kernel function; 𝑘𝛿 is a kernel parameter; 𝑦𝑖, 𝒗𝑖, and 𝛿𝑖 are 

input values for observation 𝑖. 𝒗 and 𝛿 are independent variables of the function. A positive value of 

𝑓([𝒗, 𝛿 ) for a new set of 𝛿 and 𝒗 predicts coexistence and a negative value predicts collapse.  

4. Quantify the top 𝐵(𝑣) and assess its reliability: Quantify 𝐵(𝒗) from each SVM model by imposing 

𝐵(𝒗) = 𝛿  at 𝑓([𝒗, 𝛿 ) = 0 . If 𝐵(𝒗)  has the correct directionality, get the function of 𝐵(𝒗)  by 

calculating 

𝐵(𝒗) = (
− 𝛼𝑖𝑦𝑖𝐾𝑣 𝒗𝑖, 𝒗 𝑖 − 𝜆0

𝑘𝛿  𝛼𝑖𝑦𝑖𝛿𝑖𝑖
) ∙ 𝑣𝑎𝑟 + 𝑚𝑒𝑎𝑛 

𝑣𝑎𝑟 and 𝑚𝑒𝑎𝑛 are calculated using the original 𝜹 measurements. See Supplementary Note 5.3. for how 

to adjust for the directionality of 𝐵(𝒗).  

1) Quantify relative standard deviations (RSD) of top 𝐵(𝒗): The sampling process is the same as step 

2.2). Iterate 10 times to get 10 bootstrapped 𝐵(𝒗) to quantify an RSD value on each (𝑣1, 𝑣2) pair 

and construct a variability landscape of 𝐵(𝒗) . The title of each 𝐵(𝒗)  is the cross-validation 

accuracy of the model (1.00 corresponds to 100%).  
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2) Quantify pairwise consistencies of the top 5 models: To get R2 of any two 𝐵(𝒗), the two scales of 

𝐵(𝒗) are unified by first using linear fitting to adjust one 𝐵(𝒗) to conform to the scale of the other 

𝐵(𝒗). R2 is then calculated using the two 𝐵(𝒗) that have adjusted scales.  

3) Pick the best 𝐵(𝒗): The first 𝐵(𝒗) is picked in this case since all top 5 have similar RSD and are 

all highly consistent.  

5. Use 𝐵(𝑣) in downstream predictions: Use the best 𝐵(𝑣) to construct the metric 𝐵(𝑣)/𝜹. We can then 

test whether 𝐵(𝑣)/𝜹 is indeed positively related to the final total density in this example.  

 

6. Framework generality verified by complex mutualistic systems 
 

1. A 5-mutualist system 
The data presented in Figure 4a and Supplementary Figure 9a are generated with the following mutualism 

model based on the general model structure presented in Supplementary Equation 3.39:  

 
𝑑𝑋1
𝑑𝜏

=
1

𝜀1
𝑋1 (1 − 𝛸𝑘

5

𝑘=1

) −
𝛿1

 𝛽𝑘𝛸𝑘
𝑛
𝑘≠1 + 1

𝛸1 (6. 1) 

 
𝑑𝑋2
𝑑𝜏

=
1.1

𝜀2
𝑋2 (1 − 𝛸𝑘

5

𝑘=1

) −
𝛿2

 𝛽𝑘𝛸𝑘
𝑛
𝑘≠2 + 1

𝛸2 (6. 2) 

 
𝑑𝑋3
𝑑𝜏

=
1.2

𝜀3
𝑋3 (1 − 𝛸𝑘

5

𝑘=1

) −
𝛿3

 𝛽𝑘𝛸𝑘
𝑛
𝑘≠3 + 1

𝛸3 (6. 3) 

 
𝑑𝑋4
𝑑𝜏

=
1.3

𝜀4
𝑋4 (1 − 𝛸𝑘

5

𝑘=1

) −
𝛿4

 𝛽𝑘𝛸𝑘
𝑛
𝑘≠4 + 1

𝛸4 (6. 4) 

 
𝑑𝑋5
𝑑𝜏

=
1.4

𝜀5
𝑋5 (1 − 𝛸𝑘

5

𝑘=1

) −
𝛿5

 𝛽𝑘𝛸𝑘
𝑛
𝑘≠5 + 1

𝛸5 (6. 5) 

 

All the parameters are linear combinations of 𝑣1, 𝑣2 ∈ [0,1  and the coefficients are randomly generated. 

The initial densities are [0.001, 0.001, 0.001, 0.001, 0.001] for X1 to X5 respectively. The simulations were 

terminated after 5 unit-time.  

 

2. The experimental 3-member mutualistic systems 
The calibration shown in Figure 4b is done on all 384 systems with triplicates that alternatively use each 

strain in a system as the reference strain. The 𝛿 measurements used in this calibration are assumed to be the 

same as the measurements presented in Figure 3j and Supplementary 8b with the pairwise systems.  

 

3. A mutualistic system in an oscillatory environment 
The oscillatory signal is implemented as square pulses, where 

 𝑆 = {
𝐼,          ⌈𝜏/𝐿⌉ is odd

0,        ⌈𝜏/𝐿⌉ is even
 (6. 6) 
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𝜏 is time; 𝐿 is the duration of the pulses and the duration between the end of one pulse and the start of the 

next pulse; 𝐼 is the intensity of the signal. Throughout the simulation, δ1, δ2, β1, and β2 are affected by this 

oscillating signal, where 

 𝛿1 = 𝛿2 = 0.8 + 𝑆 (6. 7) 

 𝛽1 = 𝛽2 = 2(1 + 𝑆) (6. 8) 

   

To simulate the data, we used a logarithm scale that vary 𝐿 from 10−2 to 102 and vary 𝐼 from 10−1 to 101. 

The model used to generate the set of data in Figure 4c and the left column of Supplementary Figure 10 is 

presented in Supplementary Equations 3.22-3.23, where 𝜌 = 1.5. The initial densities used are [0.2, 0.2] 

for X1 and X2 respectively. The simulations are performed for 500 unit-time. The theoretical 𝐵(𝜃(𝒗)) is 

calculated using the criterion 3.32 with 𝛿1 = 𝛿2 = 0.8 + 𝐼 and 𝛽1 = 𝛽2 = 2(1 + 𝐼).  

 

4. A mutualistic system cohabiting with other populations 
To generate simulated data presented in Figure 4d and the right column of Supplementary Figure 10, we 

used the following arbitrary 7-population model, where Χ1 and Χ2 are mutualistic and their population 

dynamics are modulated by the other 5 populations.  

 
𝑑𝛸1
𝑑𝜏

=
1

𝜀
𝛸1 (1 − 𝑋𝑖) −

𝛿 

𝛽𝛸2 + 𝛽51𝛸5 + 1
𝛸1 − 𝛸6𝛸1 (6. 9) 

 
𝑑𝛸2
𝑑𝜏

= 𝜌
1

𝜀
𝛸2 (1 − 𝑋𝑖) −

𝛿

𝛽𝛸1 + 𝛽62𝛸6 + 1
𝛸2 − 𝛸5𝛸2 (6. 10) 

 
𝑑𝛸3
𝑑𝜏

= 𝛸3 (1 − 𝑋𝑖) −
𝛿3

𝛽13𝛸1 + 𝛽23𝛸2 + 1
 𝛸3 (6. 11) 

 
𝑑𝛸4
𝑑𝜏

= 𝛸4 (1 − 𝑋𝑖) −
𝛿4

𝛽34𝛸3 + 𝛽23𝛸2 + 1
 𝛸4 (6. 12) 

 
𝑑𝛸5
𝑑𝜏

= 𝛸5 (1 − 2 𝑋𝑖) (6. 13) 

 
𝑑𝛸6
𝑑𝜏

= 𝛸6 (1 − 2 𝑋𝑖) (6. 14) 

 
𝑑𝛸7
𝑑𝜏

= 𝛸7 (1 − 3.3 𝑋𝑖) +
𝛸1

𝛸1 + 0.5
𝛸7 − 𝛸2𝛸7 (6. 15) 

 

In the simulation, only 𝛿 and 𝛽 are modulated by system variables 𝑣1, 𝑣2 ∈ [0,1 , while other parameters 

were kept constants.  

 𝛿 = 0.5𝑣1 + 1.2𝑣2 + 0.8 (6. 16) 

 𝛽 = −15𝑣1 − 10𝑣2 + 30 (6. 17) 

 

The initial densities are [1, 1, 1, 1, 1, 1, 1] for X1 to X7 respectively. The simulations were performed for 

5000 unit-time. The theoretical 𝐵(𝜃(𝒗))/𝛿  in the right panel of Supplementary Figure 10a is directly 

calculated using criterion expressed in Supplementary Equation 3.32.  
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