
Reviewers' comments:

Reviewer #1 (Remarks to the Author):

By analyzing fixed points of several differential equation based models of mutualisms, Wu et al. 
have proposed a simple rule for coexistence of mutualistic species, based on generalized notions of 
benefit and cost associated with mutualism and the stress experienced by populations in the 
absence of mutualistic interactions. The rule states that coexistence of mutualistic partners 
requires the effective benefit to be larger than the stress. The authors have further devised a 
machine learning based calibration method to estimate the effective benefit based on 
measurements of a set of "context" variables. By applying this method to data obtained from 
simulations, previous experiments as well as a new experiment on synthetic mutualistic toxin-
antitoxin producing strains of E. coli the authors show that the effective benefit B can be used to 
make quantitative predictions of population size in mutualistic systems, without prior knowledge of 
mechanistic details. From a conceptual standpoint, and given the class of models studied by the 
authors, I am not sure if I find the "rule" postulated here (namely B(theta)>delta) to be 
surprising. However, I find the fact that the effective benefit B can be extracted from a set of 
independent observables without any knowledge of the actual benefit and cost associated with 
mutualism to be interesting and useful. Given that mutualisms are indeed observed in a diverse 
array of ecosystems, I think there is sufficient merit in devising predictive schemes such as the 
one developed in this paper. I therefore feel that the paper could be suitable for publication in 
Nature Communications.

Major comments:
1) My primary concern with the paper is how difficult I found it to understand the procedure from 
the main text, despite the fact that I am very much part of the target audience. Might it be 
possible to use a very simple model when describing the initial motivation (stress, benefit, etc) 
and then to later show that the approach can be generalized to the wide class of models?
2) Is it fair to say that the fact that the authors’ approach works means that all of these 
mutualisms are effectively one-dimensional? Does this mean that there is a separation of 
timescales, or is that not necessary? Some more discussion of when the approach will fail would 
perhaps clarify the limits as well as why the procedure works at all.
3) My primary concern with the procedure is that it entirely based on the dichotomy of coexistence 
and collapse, and appears to rely on either of these two states being globally stable fixed points of 
the system for a given set of parameters. As the authors themselves have pointed out, in their 
analysis of the yeast cross-feeding mutualism data, their method fails in the limit of high amino 
acid concentrations, where the global fixed point corresponds to competitive exclusion. A similar 
problem might also occur if multiple stable attractors coexist, because in that case, the outcome of 
the mutualism would depend strongly on the initial conditions.
4) It is not clear to me whether the method works if the attractor is a limit cycle instead of a fixed 
point, as is the case with the bacterial cross-protection mutualism (Yurtsev, Conwill and Gore, 
PNAS, 2016). It may still be the case that the rule makes qualitatively correct predictions as to 
whether the mutualism survives or not, but I would expect the quantitative predictions to be more 
erratic. It would be helpful if the authors could elaborate on this.

Minor comments:
1) It would be nice to include a small discussion on how the calibration method could potentially be 
extended to include spatial structure. Is it possible to incorporate space as an additional variable in 
the set of "context" variables, or would it require the supervised learning algorithm to be run on a 
class of models that explicitly include spatial structure?

Reviewer #2 (Remarks to the Author):



While my primary expertise is in the evolutionary analysis (and modelling) of mutualism, I very 
much enjoyed reading this ambitious paper on ecological dynamics of mutualistic interactions. It 
has a big aim: to find general rules predicting population dynamics across (almost) all mutualistic 
systems, particularly coexistence and collapse conditions, as well as quantitative predictions 
(density, coexistence probability, time to cheating take-over).

In ecology and evolution, we can sometimes be too affected by what Queller called the 'tyranny of 
detail' (Am Nat. 2017 Apr;189(4):345-353), to even attempt finding such general rules. Abstract, 
higher-level (coarse-grained, as the authors call them) rules, can be very useful in guiding 
research, however, and I really like how the authors try to nevertheless find them.

To do so, they analyse a range of 81 different mutualisms models, based on a large set of ODEs, 
and aiming to reflect (most of the) diversity of mutualistic systems out there (more later on this). 
Deriving coexistence criteria these models, they come up with a general rule which predicts 
mutualism coexistence as a function of the effective benefit and stress experienced by the 
mutualistic partners (Eq 1). They then proceed to show how these parameters, or approximations 
of them, could be empirically measured and do so using a new experiment, simulations and a 
number of previously published (microbial) datasets.

The general rule the authors derive seems novel to me but makes a lot intuitive sense, and the 
application to simulations and particularly real-life datasets are both informative and convincing. 
Together they make for a convincing analysis, and a very useful contribution, with many potential 
applications in the study of mutualisms. The paper is also well written and overall a pleasure to 
read, and the code to replicate all theoretical analyses and simulations has all been made 
available.

However, I have one major concern, which I feel the authors need to address because it has the 
potential to substantially affect the claimed generality of these results.

As I understand it, the various models analysed by the authors, all have in common that benefit is 
'positively dependent on partner density' (Third line methods section, Section IIB Supplementary), 
although this benefit is bounded (section D Sup info, near equation II.8). However, while there are 
certainly situations in which this is undoubtedly true (for instance, in many of the lab microbial 
interactions studied empirically in this work), I am not necessarily convinced that such positive 
dependence on partner density hold generally among mutualistic interactions. After all, there is 
lots of evidence from natural systems of saturating benefits from increasing partner densities, and 
indeed also of shifts to negative effects beyond certain densities (e.g. Anderson and Midgley, 
2007; Morris, Vázquez and Chacoff, 2010; Vannette and Hunter, 2011; Geib and Galen, 2012; 
Palmer and Brody, 2013 -> refs at the bottom of this review; the DeAngelis, Holland & Bronstein 
2002 paper cited by the authors also gives a few examples). Such saturation of benefits makes a 
lot of intuitive sense: at some points all the flowers in a plant population are pollinated, or all the 
herbivores chased away by protective ants. Additional ants are then at best neutral, and 
potentially a fitness cost (see Palmer 2013).

The authors do mention previous work on saturating benefits in their supplementary information 
(in the section where they discuss previous models and again when they discuss their own 
modelling approach), for instance discussing some of the Holland & DeAngelis work on this, but as 
I understand it they don't incorporate any potential saturating effects (or even shifts to negative 
effects a high-densities) in their models. Of course, with some exceptions, we don't generally know 
to what extent real-life mutualisms typically experience (bounded) positive benefits from increased 
partner-densities as in the current work versus when saturating or even negative density effects 
start to appear. However, given that we have good evidence (and theoretical reasons) to think 
that they may commonly exist, this could undermine the claim of generality in this paper. 
Consequentially, I would like to see the authors either (i) include such effects in their models and 



analyse their impact, or (ii) convincingly explain and show why this concern is not relevant and 
their conclusions would hold even under saturating benefits, or (iii) scale back the claim of 
generality and clearly indicate that their results may not (all) apply to mutualisms with saturating 
effects, and are only directly applicable to the (much?) smaller subset of mutualisms with strict 
positive density effects.

I also have some more smaller remarks:

- Please include line numbers throughout for a potential resubmission, including for the 
supplementary. Referencing sections of the manuscript is very cumbersome without them.
- I think it would be important to highlight more explicitly in the main text that the models 
analysed here are all ecological models, and do not include potential evolutionary responses. It's 
fine to not include evolutionary dynamics, but it's important for the reader to be aware of this 
limitation, particularly given that eco-evolutionary dynamics could actually be important, 
particularly in many of the microbial mutualistic systems considered here.
- Page 8 - Experimental Application of the metrics: for the first experimental application of the 
metric, I didn't fully understand what, if anything, the model equivalent of aTc is. The stress is 
imposed/modulated by IPTG, if I understand correctly, so is this just some external trigger of 
Quorum-sensing, independent of stress, that for whatever reason is required in this system? 
Would we not want QS to be triggered by the stress/stress-inducer itself? Some clarification for 
the reader would be helpful here.
- Main text table: I don't very much like cancer as an example of mutualism here. I know that the 
authors are using a slightly wider definition of mutualism here of two populations providing 
reciprocal benefits (first sentence of the ms), but most typically the term is used for situations 
where these populations are also of different species. I would suggest instead using an 
interspecific protection mutualism (e.g. ant-plant).
- SI page 3 "In addition, although population collapse [..]the fitness of the benefit-receiver 
decreases with increasing partner density, which is contradictory to the basic logic of mutualism." -
> I appreciate that given the definition of 'mutualism', at the stage where effects are negative the 
interaction is no longer strictly speaking a mutualism, but following my above general remark I 
wouldn't describe this effect as being contradictory to the basic logic of mutualism. The interaction 
at some density having a negative effect and then no longer being a mutualism is no way 
contradictory to it being a mutualist in other conditions, which I think what the models discussed 
here were trying to analyse.

Best wishes,
Dr. Gijsbert Werner
University of Oxford
[\Signed]
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Response to reviewers’ comments 

 
Reviewer #1 (Remarks to the Author): 

By analyzing fixed points of several differential equation based models of mutualisms, Wu et al. have 
proposed a simple rule for coexistence of mutualistic species, based on generalized notions of benefit 
and cost associated with mutualism and the stress experienced by populations in the absence of 
mutualistic interactions. The rule states that coexistence of mutualistic partners requires the effective 
benefit to be larger than the stress. The authors have further devised a machine learning based 
calibration method to estimate the effective benefit based on measurements of a set of "context" 
variables. By applying this method to data obtained from simulations, previous experiments as well as 
a new experiment on synthetic mutualistic toxin-antitoxin producing strains of E. coli the authors 
show that the effective benefit B can be used to make quantitative predictions of population size in 
mutualistic systems, without prior knowledge of mechanistic details. From a conceptual standpoint, 
and given the class of models studied by the authors, I am not sure if I find the "rule" postulated here 
(namely B(theta)>delta) to be surprising. However, I find the fact that the effective benefit B can be 
extracted from a set of independent observables without any knowledge of the actual benefit and cost 
associated with mutualism to be interesting and useful. Given that mutualisms are indeed observed in 
a diverse array of ecosystems, I think there is sufficient merit in devising predictive schemes such as 
the one developed in this paper. I therefore feel that the paper could be suitable for publication in 
Nature Communications.  
 
We thank the reviewer for recognizing the relevance and significance of our work and for constructive 
suggestions and comments.  
 
Major comments: 
1) My primary concern with the paper is how difficult I found it to understand the procedure from 
the main text, despite the fact that I am very much part of the target audience. Might it be possible to 
use a very simple model when describing the initial motivation (stress, benefit, etc) and then to later 
show that the approach can be generalized to the wide class of models?  
 
We thank the reviewer for this constructive comment. We have included in the main text a simple 
mutualism model to demonstrate the derivation process (page 5 line 78-84). In addition, to further 
clarify the calibration procedure, we have included a new Extended Data Figure 5, which provides a 
step-by-step illustration of the calibration procedure using the simulated data of a complex mutualism 
model. This figure is shown here as Fig. R1.  
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Fig. R1: Detailed simulation and calibration procedure using a complex model.  
a. The model equations of a complex mutualistic system, which cannot be easily solved analytically.  
b. Model parameters as functions of system variables  and . For an experimental system,  and  would 

correspond to experimentally controllable parameters, which could affect multiple mechanistic parameters 
simultaneously. 

c. Simulated time courses with different   and  values. The group on the left simulates cocultures (blue:   and red: 
). The group on the right simulates monoculture, where . The growth rates of the monoculture can then be 

used to calculate . We directly used the parameter value of  in our procedure. 
d. Detailed procedure of the calibration process:  

1. Data collection and preprocessing: Collect the measurements of coexistence vs. collapse ( ) and stress ( ) on 
the domain of . Above a certain threshold of total final density, assign  a value of 1 and assign -1 if total final 
density is below this threshold. Standardize the values of  and  values to have mean of  and standard 
deviation of  and name the normalized vectors  and . For simplicity of presentation, the following  and 

 are standardized. In this example, we have 100 observations ( , 10 by 10) and two dimensions of  
( ).  

2. Pick the top SVM models: Using ,  and  as inputs, generate 1600 different SVM models, each containing one 
of the four kernel functions (linear, quadratic, cubic, and sigmoidal, see SI section V.A) and one of 400 kernel 
parameter sets. For each kernel parameter, select values within a predefined range. The exact number of sets of 
kernel parameters used is not critical and can be adjusted depending on available computational resources.  

1) Calculate : For each SVM model, it can then predict coexistence or collapse for each combination 
of   and  values. These predictions are used to calculate the 10-fold cross-validation loss ( ).  

2) Calculate : To calculate the variance for each SVM model, sample the 100 observations 100 times 
with replacement and calculate a single bootstrapped instance of . Repeat this process 500 times 
to obtain a distribution of bootstrapped . Using this distribution, we can calculate the mean 
variance ( ) of each of the 1600 SVM models.  

3) Calculate : We empirically examined the top five SVM models, which were select 
by the lowest  values. The weights of  and  were determined empirically 
using simulated data (see Extended Data Fig. 4c).  

3. Train the top SVM models: Train each of the five SVM models with normalized input data to obtain the function 
that describes the boundary between the two classes. The functions can be expressed as:  

 

 is the weight of observation , and  is the bias term for the SVM model. Both  and  are optimized by 
the SVM algorithm.  is the kernel function;  is a kernel parameter; , , and  are input values for 
observation .  and  are independent variables of the function. A positive value of  for a new set of 

 and  predicts coexistence and a negative value predicts collapse.  
4. Quantify the top  and assess its reliability: Quantify  from each SVM model by imposing  at 

. If  has the correct directionality, get the function of  by calculating 

 

 and  are calculated using the original  measurements. See SI section V.C. for how to adjust for the 
directionality of .  

1) Quantify relative standard deviations (RSD) of top : The sampling process is the same as step 2.2). 
Iterate 10 times to get 10 bootstrapped  to quantify an RSD value on each  pair and 
construct a variability landscape of . The title of each  is the cross-validation accuracy of the 
model.  

2) Quantify pair-wise consistencies of the top 5 models: To get R2 of any two , the two scales of 
 are unified by first using linear fitting to adjust one  to conform to the scale of the other 
. R2 is then calculated using the two  that have adjusted scales.  

3) Pick the best : The first  is picked in this case since all top 5 have similar RSD and are all 
highly consistent.  

5. Use  in downstream predictions: Use the best  to construct the metric .  is indeed 
positively related to final total density in this example.  
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The same procedure is applied to the analysis of other simulated data and experimental data. The different sets of 
data only differ in terms of how they are generated and what  and  correspond to. 

e. The calibrated  along with  is predictive of probability of coexistence. To get the probability of coexistence at 
each ( ), we ran 100 simulations with 100 different ratios of initial densities while keeping the total initial density 
the same.  

f.  is also predictive of how well the system can resist cheater exploitation. The y axis indicates the time the 
system can persist before the cheater populations compete out the cooperators. 

 
2) Is it fair to say that the fact that the authors’ approach works means that all of these mutualisms are 
effectively one-dimnsional? Does this mean that there is a separation of timescales, or is that not 
necessary? Some more discussion of when the approach will fail would perhaps clarify the limits as 
well as why the procedure works at all. 
 
We thank the reviewer for these insightful questions and observations. Our brief response is that yes, 
our claim is that, at a level of abstraction that is extremely general but still meaningful, it is possible to 
interpret and predict mutualism in a simple way with  and .   
 
Response to “one-dimensional”: Although by formulation, the underlying models are at least two 
dimensions (as summarized in SI Table 1 and 2), one can indeed interpret our criterion as a “one-
dimensional” simplification and generalization of mutualistic systems. The emergence of our criterion 
indicates that, along a properly chosen trajectory (dictated by the shape of estimated B), certain coarse-
grain outcomes of a mutualistic system (coexistence versus collapse, total density, probability of 
coexistence and persistence to cheater exploitation) approximately align with each other and with  
in a monotonic manner.  
 
Response to “separation of time scale”: From our derivation, the separation of time scales does not appear 
to be critical. The mechanism-based criteria derived from specific models (SI Table 1 and 2) emerge 
from the steady-state solutions of these models. As such, the potential separation of time scales in 
these models is masked in the corresponding criteria.  
 
Response to “when the approach will fail”:   
As demonstrated in the paper, our criterion and procedure work for the coarse-grained interpretation 
and prediction of the transition between mutualistic coexistence and collapse, total productivity, 
probability of coexistence, and time it takes for cheater exploitation. The criterion emerges from the 
analysis of steady-state solutions of two-population models. However, as indicated in the analysis in 
Figure 4, the criterion and procedure also work for higher-dimensional systems and for systems 
exposed to certain dynamic perturbations. These results further demonstrate that the steady-state 
assumption is not a critical assumption.  
 
As noted below, our approach also works if a mutualistic system exhibits limit-cycle oscillations. 
 
In general, it remains an open question whether and to what extent this approach would be applicable 
beyond the scope of mutualism and if the mutualistic system becomes much more complicated than 
what we have tested. We have included a sentence on page 13 (line 295-297) of the main text to discuss 
this limitation.  
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Response to “why the procedure works at all”:  
The calibration procedure (based on SVM) we have developed works when we know a priori that a 
system is dictated by an inequality: in a general term, X > Y dictates qualitative outcomes and X/Y is 
positively correlated with quantitative outcomes.  
 
The theoretical foundation of our procedure is the class of mutualism models we have constructed 
and analyzed. The class of models share two key properties:  

a) a general criterion  that underlies coexistence of two populations;  
b)  is positively correlated with total density, probability of coexistence and resistance to 

cheater. These positive correlations between  and quantitative outcomes are predicted by 
our class of models.  

 
The reason why this class of models behave similarly, we think, resides in the assumptions of our 
models. Our assumptions (see Method section and SI section II.B) strive to find the minimal 
description of mutualism: two populations help each other to reduce the stress that each receives 
and impose a cost to itself. Stripping away the specificities of criteria derived from each individual 
model, our criterion can be considered as a general quantitative description of the assumptions that 
are shared by all models.  
 
We have included our clarification and discussion of the limitations of our procedure in main text 
(page 6 line 116-118 and page 7 line 141-142).  
 
3) My primary concern with the procedure is that it entirely based on the dichotomy of coexistence 
and collapse, and appears to rely on either of these two states being globally stable fixed points of the 
system for a given set of parameters. As the authors themselves have pointed out, in their analysis of 
the yeast cross-feeding mutualism data, their method fails in the limit of high amino acid 
concentrations, where the global fixed point corresponds to competitive exclusion. A similar problem 
might also occur if multiple stable attractors coexist, because in that case, the outcome of the 
mutualism would depend strongly on the initial conditions.  
 
We thank the reviewer for these thoughtful comments.  
 
Response to “global fixed points”: We regret the lack of clarity on this point in our original manuscript. 
Our procedure does not require the collapse and coexistence states to be global fixed points. For 
example, a simple mutualism model can have both the collapse state (0,0) and the coexistence state 
with the same parameter set. In our SI tables where we calculated the criterion for coexistence, we 
analyzed the conditions where the fixed points corresponding to coexistence are real and positive. 
This means that if the initial density is sufficiently high (above the separatrix), the two populations 
coexist. The populations collapse when the coexistence stable steady state does not exist.  
 
Using the following model (eq. III.22-23 in Extended Data), we can generate vector fields that have 
multiple fixed points (Fig. R2):  
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Fig. R2. Vector fields of different parameter sets using the model presented in SI eq. III.22-23. The two vector fields in 
red circles both have two stable steady states. The criterion for the symmetric case is presented in Extended Data Table 1 
model #48; the criterion incorporating initial density is in Extended Data Table 2 model #83; the asymmetric case 
corresponds to Extended Data Table 2 model #84. The derivations of these criteria can be found in SI section III.  
 
In addition, we have demonstrated that initial densities can be included in the criterion as a part of , 
beyond benefit ( ) and cost ( ). An example criterion that includes initial densities is shown in 
Extended Data Table 2, criterion #83 (derivation of the criterion can be found in SI. Section III.C.2). 
Thus, if initial density is a variable, it can be incorporated into the  term of our criterion . If 
initial density is a random variable, we have also found that the probability of coexistence can be 
predicted by  (Extended Data Figure 2a, e and Extended Data Figure 7c).  
 
Response to “competitive exclusion”:  
We apologize that we have not made it clear in our main text that our criterion does not describe the 
transition between coexistence and competitive exclusion. The winner in competitive exclusion 
increases in fitness when the loser is excluded. In contrast, collapse corresponds to the transition 
where mutualistic partners experience a reduction in fitness when a population is extinct (main text 
page 3, line 34). In simulations, we found that when there is no competition, there is no competitive 
exclusion. Thus, the transition from coexistence to competitive exclusion is a property of competition, 
and not of mutualism.  
 
The various criteria we presented in SI Table 1-2 were not derived in a way to predict the transition 
between coexistence and competitive exclusion. However, by imposing the fixed point  or 

 to be stable, future studies can use a similar approach to derive a general criterion that 
describes the transition between coexistence and competitive conclusion. Suppose the criterion is 
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, where  is a lumped term describing effective competition, we can still use our calibration 
procedure to calibrate for an empirical .  
 
The following model demonstrates the relationships between these two transitions (SI eq. III.30-31), 
which incorporates both asymmetry and competition. If we do not include competition in the model 
( ), competitive exclusion is not present:  
 

 

 

Using ,  and , we generated the following phase diagram of system behaviors 
(Fig. R3). 

 
Fig. R3. Both upper bound (blue) and lower bound (black) exist for  when there is competition. The region below the 
black dots represents competitive exclusion. The region above the blue dots represents collapse. This diagram shows that 
transition into competitive exclusion and mutualistic collapse are two distinct boundaries. When there is no competition, 
the transition between coexistence and competitive exclusion is not present.  
 
Since our criterion does not apply to the transition from coexistence to competitive exclusion, our 
prediction does not apply to the case when  is lowered to an extent that competition starts to 
dominate mutualistic interaction. This applies to the yeast auxotroph example where  becomes low 
when the two amino acids are supplied at high doses, as also noted by the reviewer. 
 
In our initial submission, we included section III.C.7 in SI to discuss the distinctions between these 
two types of transitions. We have updated this section to include Fig. R3 to show the difference 
between the two types of boundaries and how the lower boundary of  only occurs with competition. 
In addition, we have clarified this point in multiple places of our main text, including page 3 line 34, 
page 10 line 217-218 and added a new paragraph on page 6 line 102-109 to clarify this point.  
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Response to “multiple attractors”:  
Indeed, it is unclear if our criterion is directly applicable when a system consists of multiple attractors, 
all corresponding to coexistence. This will likely depend on specific systems. For instance, for such a 
complex mutualistic system, it may still be possible to have a single boundary separating collapse and 
coexistence.  In such an example, however, the quantitative predictive power of the estimated function 
will likely be limited. Further studies are needed to formulate such a model (in a relevant manner) and 
to test the applicability of our criterion and approach.  
 
We included a discussion on page 13 line 295-297 of our manuscript to clarify this raised point.  
 
4) It is not clear to me whether the method works if the attractor is a limit cycle instead of a fixed 
point, as is the case with the bacterial cross-protection mutualism (Yurtsev, Conwill and Gore, PNAS, 
2016). It may still be the case that the rule makes qualitatively correct predictions as to whether the 
mutualism survives or not, but I would expect the quantitative predictions to be more erratic. It would 
be helpful if the authors could elaborate on this.  
 
We thank the reviewer’s constructive comments and pointing us to this highly relevant paper. We 
have recaptured the simulation data presented in (Yurtsev, Conwill and Gore, PNAS, 2016), where a 
limit cycle exists for a pair of mutualistic bacterial strains. We have found that our calibration 
procedure still applies and provides high prediction accuracy.   
 
By examining the paper suggested by reviewer, we found that the density of the two populations 
oscillate with a phase difference, where one increases, the other decreases. This complementary 
growth dynamic creates a rather stable total density overtime. Using the final timepoint of the final 
cycle for each condition, we classified the simulations into coexistence and collapse (Figure R4d). 
Using data in Figure R4, we conducted the calibration procedure and our procedure provides an 
estimation of effective benefit  and an average cross-validation accuracy of 96.8%. In this case, 
the overall densities do not have a wide distribution, so the quantitative predictive power of  
were not tested (Figure R4e).  
 
This example further illustrates the applicability of our criterion and calibration procedure to diverse 
mutualistic systems. We have included Figure R4 as Extended Data Figure 11 in and included a 
description of the system on page 12 (line 263-271) in the main text.  
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Fig. R4: Application of our approach to a mutualistic system displaying oscillatory dynamics.  
a. System schematic and simulation procedure.  is resistant to ampicillin and chloramphenicol imposes stress on it.  
is resistant to chloramphenicol and ampicillin imposes stress. Both strains can degrade antibiotics in the environment that 
they are resistant to. The simulations are done by looping through 12 cycles where the initial density of  and  are set 
to be 1/100 of the final densities of the previous cycle.  
b. Model equations and parameter values for Fig. S7 in the original publication (Yurtsev, Conwill and Gore, PNAS, 2016). 
c. Replication of Fig. S7 in (Yurtsev, Conwill and Gore, PNAS, 2016). The model used in this publication (eq. [3] in SI) 
also incorporates molecular details of the interaction mechanisms. Red traces represent the ampicillin resistant population 
and blue traces represent the chloramphenicol resistant population. The black dash lines represent total cell density.  
d. Input data for our calibration procedure.  is estimated according to Fig. 1D in (Yurtsev, Conwill and Gore, PNAS, 
2016).  
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e. Calibration results show that our calibration procedure still provides high prediction accuracy. The total densities 
corresponding to coexistence do not have a wide distribution, so the quantitative predictive power of  were not 
tested 

 
Minor comments: 
1) It would be nice to include a small discussion on how the calibration method could potentially be 
extended to include spatial structure. Is it possible to incorporate space as an additional variable in the 
set of "context" variables, or would it require the supervised learning algorithm to be run on a class 
of models that explicitly include spatial structure?  
 
We thank the reviewer for this insightful suggestion. We have not attempted to incorporate spatial 
structure into our criterion. Indeed, as the reviewer mentioned, a possible way to do so is to use 
different metrics of spatial structure as one dimension in the context variable. For example, the context 
variable can be the distance between the seedings of two partners or the degree of intermixing of the 
initial seedings. The calibrated  will then also be a function of these spatial contexts. We would 
expect decreasing seeding distance or increasing the extent of intermixing increases the benefit level 
and thus increases .  
 
We also agree with the reviewer that an alternative is to explicitly include spatial structure in the models. 
When doing so, the criterion can be applied to local segments where the homogeneity assumption is 
appropriate.    
 
In light of the reviewer’s suggestion, we have revised our main text on page 7 line 135 and page 13 
line 290-295 to include discussions on the possibility of incorporating spatial component in system 
contexts.   
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Reviewer #2 (Remarks to the Author): 
While my primary expertise is in the evolutionary analysis (and modelling) of mutualism, I very much 
enjoyed reading this ambitious paper on ecological dynamics of mutualistic interactions. It has a big 
aim: to find general rules predicting population dynamics across (almost) all mutualistic systems, 
particularly coexistence and collapse conditions, as well as quantitative predictions (density, 
coexistence probability, time to cheating take-over).  
 
In ecology and evolution, we can sometimes be too affected by what Queller called the 'tyranny of 
detail' (Am Nat. 2017 Apr;189(4):345-353), to even attempt finding such general rules. Abstract, 
higher-level (coarse-grained, as the authors call them) rules, can be very useful in guiding research, 
however, and I really like how the authors try to nevertheless find them.  
 
To do so, they analyse a range of 81 different mutualisms models, based on a large set of ODEs, and 
aiming to reflect (most of the) diversity of mutualistic systems out there (more later on this). Deriving 
coexistence criteria these models, they come up with a general rule which predicts mutualism 
coexistence as a function of the effective benefit and stress experienced by the mutualistic partners 
(Eq 1). They then proceed to show how these parameters, or approximations of them, could be 
empirically measured and do so using a new experiment, simulations and a number of previously 
published (microbial) datasets.  
 
The general rule the authors derive seems novel to me but makes a lot intuitive sense, and the 
application to simulations and particularly real-life datasets are both informative and convincing. 
Together they make for a convincing analysis, and a very useful contribution, with many potential 
applications in the study of mutualisms. The paper is also well written and overall a pleasure to read, 
and the code to replicate all theoretical analyses and simulations has all been made available.  
 
We thank the reviewer for finding this work significant and enjoyable to read, and for making 
insightful and constructive suggestions and comments.  
 
However, I have one major concern, which I feel the authors need to address because it has the 
potential to substantially affect the claimed generality of these results.  
 
As I understand it, the various models analysed by the authors, all have in common that benefit is 
'positively dependent on partner density' (Third line methods section, Section IIB Supplementary), 
although this benefit is bounded (section D Sup info, near equation II.8). However, while there are 
certainly situations in which this is undoubtedly true (for instance, in many of the lab microbial 
interactions studied empirically in this work), I am not necessarily convinced that such positive 
dependence on partner density hold generally among mutualistic interactions. After all, there is lots of 
evidence from natural systems of saturating benefits from increasing partner densities, and indeed also 
of shifts to negative effects beyond certain densities (e.g. Anderson and Midgley, 2007; Morris, 
Vázquez and Chacoff, 2010; Vannette and Hunter, 2011; Geib and Galen, 2012; Palmer and Brody, 
2013 -> refs at the bottom of this review; the DeAngelis, Holland & Bronstein 2002 paper cited by 
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the authors also gives a few examples). Such saturation of benefits makes a lot of intuitive sense: at 
some points all the flowers in a plant population are pollinated, or all the herbivores chased away by 
protective ants. Additional ants are then at best neutral, and potentially a fitness cost (see Palmer 2013).  
 
The authors do mention previous work on saturating benefits in their supplementary information (in 
the section where they discuss previous models and again when they discuss their own modelling 
approach), for instance discussing some of the Holland & DeAngelis work on this, but as I understand 
it they don't incorporate any potential saturating effects (or even shifts to negative effects a high-
densities) in their models. Of course, with some exceptions, we don't generally know to what extent 
real-life mutualisms typically experience (bounded) positive benefits from increased partner-densities 
as in the current work versus when saturating or even negative density effects start to appear. However, 
given that we have good evidence (and theoretical reasons) to think that they may commonly exist, 
this could undermine the claim of generality in this paper. Consequentially, I would like to see the 
authors either (i) include such effects in their models and analyse their impact, or (ii) 
convincingly explain and show why this concern is not relevant and their conclusions would hold even 
under saturating benefits, or (iii) scale back the claim of generality and clearly indicate that their results 
may not (all) apply to mutualisms with saturating effects, and are only directly applicable to the (much?) 
smaller subset of mutualisms with strict positive density effects.  
 
We thank the reviewer for the insightful comments and suggested references. We understand the 
concerns about generality the reviewer raised, and sincerely appreciate having our attention drawn to 
this apparent weakness in our presentation. We clarify here how our work does take into account the 
effects the reviewer has mentioned, and also describe how we have worked to make this clearer in the 
manuscript.   
 
We completely agree that accounting for saturating benefits in our models is important, and they are 
therefore implied in all our models. As asymptotic behaviors, we modeled the effect of benefit 
saturating with increasing partner density. In SI section II.D. we state that our models use Hill 
equations to capture the effect of benefit ( ) on partner fitness: 

( or  

 

 
Fig. R5. For specific  values, the benefit that one population receives from the other can saturate.  
 
In Fig. R5, when  is not present ( ) the fitness of  is 0 and -1 for the left and right panel 
respectively.  When the density of  increases, the fitness of  increases and then asymptotically 
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plateaus. We have included this figure in SI section II. D, and also mention it in SI II.C line 146-148 
to clarify the importance of saturating effects. 
  
Similarly, in Extended Data Table 1, we have included models where cost has a constant effect, or the 
effect increases either linearly or in a saturating fashion with partner density (refer to SI section II.D.). 
For the dependent cases, cost is implemented by either:  

or  

 
Fig. R6. Parameter  has a saturating or linear effect in decreasing partner’s fitness.  
 
We have included this figure in SI section II. D to provide a visualization of how  modulates partner 
fitness.  
 
We can examine the overall effects of  and  by visualizing how our models capture the relationships 
between the density of  and  fitness. For example, model #79:  

 

captures the net effect as first saturating and then decreasing. Assuming , the instant growth 
rate of  becomes:  

 

 
If we choose specific values for this function ( , , , ), we can easily see the 
overall fitness effect of both benefit and cost which can increase at low partner density and decrease 
at high partner density:  

 
Fig. R7. Some of our models consider the case where increasing partner density leads to a biphasic fitness effect on the 
other population.  
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Using model #25, which differs from model #79 only in its constant effect of :  

 

 
Again, assuming , the instant growth rate of  becomes:  
 

 

 
If we use the same set of parameters as in Fig. R7, the fitness of  is:  
 

 
Fig. R8. When the effect of  does not increase with partner density, fitness of  is a monotonically increasing function 
of .  
 
As the third example, a different shape can be generated using model #73:  
 

 

 
The instant growth rate of  is: 

 

 
Using , , , , we get the following relationship:  
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Fig. R9. In this case, the overall effect of the interaction increases and decreases sharply at a low  level.  
 
Thus, with different function structures and parameter values, our model formulations capture several 
types of density vs. net effect curve as previously demonstrated (Morris, Vázquez and Chacoff, 2010).  
We have added a new section II.E to the SI; it includes Fig. R7-R9 to showcase the several types of 
density vs. net effect curves our models encompass. 
 
In summary, we believe that the way we model benefit and cost is consistent with the suggestions 
made by the reviewer. To clarify this in the manuscript, we have edited the description of the model 
formulation and the rationale in the main text (page 4 line 73).  As we described above, we have also 
edited the supplemental material section II.C, expanded SI section II.D to include Fig. R5 and Fig. 
R6, and added a new section II.E to include Fig. R7-R9 to showcase different types of density vs. net 
effect curves our models capture.  
 
I also have some more smaller remarks: 
 
- Please include line numbers throughout for a potential resubmission, including for the supplementary. 
Referencing sections of the manuscript is very cumbersome without them.  
 
We have included line numbers on our main text and supplementary information. 
 
- I think it would be important to highlight more explicitly in the main text that the models analysed 
here are all ecological models, and do not include potential evolutionary responses. It's fine to not 
include evolutionary dynamics, but it's important for the reader to be aware of this limitation, 
particularly given that eco-evolutionary dynamics could actually be important, particularly in many of 
the microbial mutualistic systems considered here.  
 
We thank the reviewer for the suggestion. We now note in the main text (page 4, lines 64-65) that our 
models do not address evolutionary dynamics.  
 
- Page 8 - Experimental Application of the metrics: for the first experimental application of the metric, 
I didn't fully understand what, if anything, the model equivalent of aTc is. The stress is 
imposed/modulated by IPTG, if I understand correctly, so is this just some external trigger of 
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Quorum-sensing, independent of stress, that for whatever reason is required in this system? Would 
we not want QS to be triggered by the stress/stress-inducer itself? Some clarification for the reader 
would be helpful here.  
 
We apologize for the lack of clarity in our presentation. We have now included additional clarification 
for our first experimental system. The reviewer did understand it correctly that QS is triggered by aTc 
and is independent of stress, which is induced by IPTG. We have clarified this point on page 9 line 
188 and 190-191 of the main text.  
 
- Main text table: I don't very much like cancer as an example of mutualism here. I know that the 
authors are using a slightly wider definition of mutualism here of two populations providing reciprocal 
benefits (first sentence of the ms), but most typically the term is used for situations where these 
populations are also of different species. I would suggest instead using an interspecific protection 
mutualism (e.g. ant-plant).  
 
We thank the reviewer for the suggestion. We recognize and agree that mutualism has been 
traditionally used to describe interspecific interactions. As general background examples, we agree that 
the ant-plant mutualism is more fitting than cancer. As such, we have replaced the latter with the 
former in Table 1.  
 
- SI page 3 "In addition, although population collapse [..]the fitness of the benefit-receiver decreases 
with increasing partner density, which is contradictory to the basic logic of mutualism." -> I appreciate 
that given the definition of 'mutualism', at the stage where effects are negative the interaction is no 
longer strictly speaking a mutualism, but following my above general remark I wouldn't describe this 
effect as being contradictory to the basic logic of mutualism. The interaction at some density having 
a negative effect and then no longer being a mutualism is no way contradictory to it being a mutualist 
in other conditions, which I think what the models discussed here were trying to analyse.  
 
We thank the reviewer for this suggestion. We apologize that our original description was not accurate. 
We have deleted this sentence.  
 
Best wishes,  
Dr. Gijsbert Werner 
University of Oxford 
[\Signed] 
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REVIEWERS' COMMENTS:

Reviewer #1 (Remarks to the Author):

The authors have put in a considerable amount of effort in addressing the reviewers' comments 
and I am satisfied by the changes made to the manuscript. In particular, I feel that the paper is 
now easier to follow, thanks to the inclusion of a specific example to introduce the general rule. 
Further, the analysis of the model described in (Yurtsev, Conwill and Gore, PNAS, 2016), wherein 
coexistence is in the form of a limit cycle rather than a fixed point, strengthens the central result 
of the paper and widens its applicability. I therefore recommend publication in Nature 
Communications.

Reviewer #2 (Remarks to the Author):

I have very much enjoyed reading the new manuscript, and the authors' very clear and extensive 
rebuttal. Thanks to the authors for addressing my previous concerns. I think the changes the 
authors made have much approved the manuscript, and made it considerably clearer. I have no 
further or additional comments.

Best wishes,
Dr. Gijsbert DA Werner
University of Oxford
[\Signed]  



Point-by-point response 

 

REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have put in a considerable amount of effort in addressing the reviewers' comments and I am 
satisfied by the changes made to the manuscript. In particular, I feel that the paper is now easier to follow, 
thanks to the inclusion of a specific example to introduce the general rule. Further, the analysis of the model 
described in (Yurtsev, Conwill and Gore, PNAS, 2016), wherein coexistence is in the form of a limit cycle 
rather than a fixed point, strengthens the central result of the paper and widens its applicability. I therefore 
recommend publication in Nature Communications. 
 
 
Reviewer #2 (Remarks to the Author): 
 
I have very much enjoyed reading the new manuscript, and the authors' very clear and extensive rebuttal. 
Thanks to the authors for addressing my previous concerns. I think the changes the authors made have much 
approved the manuscript, and made it considerably clearer. I have no further or additional comments.  
 
Best wishes, 
Dr. Gijsbert DA Werner 
University of Oxford 
[\Signed] 
 
We thank both the reviewers for finding the manuscript much improved and the recommendations for 
publication.  


