Supporting Information

Hetero-metallic Active Sites Coupled with Strong Reductive Polyoxometalate for Selectively Photocatalytic CO₂-to-CH₄ Conversion in Water

Shuai-Lei Xie^a, Jiang Liu^b*, Long-Zhang Dong^b, Shun-Li Li^b, Ya-Qian Lan^{*b}, Zhong-Min Su^{*ac}

^aInstitute of Functional Material Chemistry, Department of Chemistry, National & Local United Engineering Lab for Power Battery, Northeast Normal University, Changchun 130024, P. R. China. E-mail: zmsu@nenu.edu.cn.

^bSchool of Chemistry and Materials Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210023, P. R. China

^cSchool of Chemistry and Environmental Engineering, The Collaborative Innovation Center of Optical Materials and Chemistry, CUST, Changchun University of Science and Technology, Changchun 130028, P. R. China.

Table of content

S1. Experimental section
Materials and Instruments······S4
Single Crystal Structure DeterminationS4
Photocatalytic CO ₂ reduction test ······S5
Electrochemical measurements ······S5
S2. Synthesis of compounds of NENU-605, NENU-606 and NENU-607
Syntheses of NENU-605 ······S6
Syntheses of NENU-606 ······S6
Syntheses of NENU-607 ······S6
Figure S1. The photographs of NENU-605 and NENU-606 under an optical
microscope ······S7
Figure S2. The asymmetric units of (a) NENU-605 and (b) NENU-606 ······S7
Figure S3. The coordination mode of Mn2 of NENU-605 ······S8
Figure S4. Ball and stick representation of {P ₄ Mo ₆ } basic building unitS8
Figure S5. View of the hourglass-shaped {Mn(P ₄ Mo ₆)} of NENU-605 ·······S9
Figure S6. The coordination mode of Mn2 off NENU-606······S9
Figure S7. The shuttle-shaped second shell ({Na ₆ Mn ₄ }) of NENU-606 ······S10
Figure S8. The topological analysis of NENU-605 and NENU-606
Figure S9. The PXRD patterns of (a) NENU-605 and (b) NENU-606 ······S12
Figure S10. The TGA curve of NENU-605 and NENU-606 ······S13
Figure S11. UV-vis diffuse reflectance spectra for NENU-605 and NENU-606 ······S14
Figure S12. Mott -Schottky plot for NENU-605 ······S14
Figure S13. Mott -Schottky plot for NENU-606 ······S15
Figure S14. Schematic energy-level diagram of NENU-605 ······S15
Figure S15. Schematic energy-level diagram of NENU-606 ······S16
Figure S16. GC analysis of the gaseous reaction products by using the TCDS16
Figure S17. Photocurrent responses s and EIS Nyquist plots
Figure S18. The recycle experiments of (a) NENU-605 and (b) NENU-606S17
Figure S19. The IR spectra of NENU-605 and NENU-606 ······S18
Figure S20. XPS analysis of NENU-605 ······S18

Figure S21. XPS analysis of NENU-606 ······S19
Figure S22. The additional filtrate reaction ······S19
Figure S23. The Mass spectra analyses of ¹³ CO recorded under a ¹³ CO ₂ atmosphere
Figure S24. The asymmetric unit and Three-dimensional polyhedron stacking of
NENU-607 ······S20
Figure S25. The standard curves of (a) CO and (b) CH ₄ S21
Figure S26. The GC on-line curves of NENU-605 and NENU-606 ·······S21
Figure S27. The influence of the reaction solvent ······S21
Table S1. The research of reaction conditions S22
Table S2. Crystal data and structure refinement for NENU-605, NENU-606 and
NENU-607
Table S3. The selected bond Lengths in Å for NENU-605
Table S4. The selected bond Lengths in Å for NENU-606 NENU-606
Reference

S1. Experimental section

Materials and Instruments. All the chemicals were obtained from commercial sources and were used without further purification. Sodium Molybdat Dihydrat (Na₂MoO₄·2H₂O) (99+%), Mo powder (99+%), Phosphoric acid (H₃PO₄) (85%), Phosphorous acid (H₃PO₃) (99+%), cobaltous chlorid hexahydrate (CoCl₂ 6H₂O) (99+%), Manganese chloride tetrahydrate (MnCl₂ 4H₂O) (99+%), $H_2C_2O_4$ (Oxalic acid) and ethylenediamine, N,N-Dimethylformamide (DMF), imidazole (99+%), 2-Aminoterephthalic acid (99+%) were analytical grade and supplied by the Shanghai Reagent Factory. The purity of both N₂ and CO₂ are 99.999%. Mo, Co, Mn and P were determined with a Plasma-SPEC(I) ICP atomic emission spectrometer (Jarrell-Ash 1100 + 2000). Infrared spectrum using the KBr pellet was measured on a Bruker Tensor 27 in the range of 4000-400 cm⁻¹. Thermogravimetric (TG) analysis was carried out on a Netzch STA449F3 analyser at a heating rate of 10 °C/min from ambient temperature to 700 °C under oxygen atmosphere. Elemental analysis (EA) were conducted using an Elementar vario EL III analyzer. The UV-Vis absorption spectra were acquired on a Shimadzu UV-2550 spectrophotometer in the wavelength range of 200-800 nm. The room temperature powder X-ray diffraction (PXRD) spectra were recorded in successive fashion in 20 range of 5-50° on a Rigaku D/Max 2500/PC diffractometer at 40 kV, 100 mA at 293k with a Cu-target tube and a graphite monochromator and Bruker D8 Advance diffractometer. X-ray photoelectron spectroscopy (XPS) was used a Escalab 250Xi instrument from Thermo Scientific equipped with an Al K α microfocused X-ray source and the C1s peak at 284.6 eV as internal standard. The irradiation experiments were conducted with a Xe lamp ($\lambda \ge 420$ nm, 300W). Electrochemical measurements were carried out using an electrochemical workstation CHI 660E. The isotope-labeled experiments were performed using ¹³CO₂ instead of ¹²CO₂, and the products were analyzed using gas chromatography-mass spectrometry (7890A and 5975C, Aglient).

Single Crystal Structure Determination. The single-crystal diffraction for **NENU-605 and NENU-606** were collected on D8 Venture PHOTON 100 CMOS diffractometer (Mo K α , λ = 0.71073 Å) at 293K and Data of **NENU-607** was collected on Bruker AXS Apex II CCD diffractometer (Mo K α , λ = 0.71073 Å) at 293 K respectively. All non-hydrogen atoms were refined with anisotropic displacement parameters. All structures were solved by the direct method and refined with the full-matrix least-squares technique on F² by the SHELX-2014^[1] program package and Olex-2^[2] software. All the solvent molecules which are highly disordered and not able to be modeled were treated by the SQUEEZE^[3] routine in PLATON^[4]. The topological analyses were performed with TOPOS^[5]. The detailed structure determination parameters and crystallographic data are given in Table S2. The selected bond lengths of **NENU-605-606** are listed in Table S3-4. CCDC 1855993 (for **NENU-605**), 1855994 (for **NENU-606**) and 1855992 (for **NENU-607**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Photocatalytic CO₂ reduction test. Photocatalytic CO₂ reduction reaction was performed as follows: TEOA/H₂O (14:1 v/v, 30 mL) solution was poured into the 100 mL quartz reaction container, containing each photocatalyst (10 mg), [Ru(bpy)₃] Cl₂·6H₂O (0.01 mmol), and the reaction system was saturated by CO₂ for 30 min with a cap at 1 atm CO₂ partial pressure and then irradiated using Xe lamp ($\lambda \ge 420$ nm, 300W), meanwhile, the reaction system temperature was preserved at 20 °C by circulating cooling water systems. Gaseous product, CO, CH₄ from the reaction mixture, were measured by gas chromatography (GC-7900, CEAULIGHT, China) equipped with a flame ionization detector (FID) and a thermal conductivity (TCD).

Electrochemical measurements. All electrochemical measurements (photocurrent, the Mott–Schottky spots and EIS) were carried out at ambient environment using the electrochemical workstation (CHI 660e) in a standard three-electrode system: The carbon cloth (CC, 1 cm×1 cm) or ITO glass (1 cm×2 cm) modified with catalyst samples, carbon rod and Ag/AgCl were used as the working electrode, counter electrode and the reference electrode, respectively.

The as-synthesized crystals 2mg were grinded to powder and then dispersed in 1 mL of solvent (990 μ L EtOH and 10 μ L 0.5%Nafion) by ultrasonication to form a homogeneous ink. Subsequently, 200 μ L of the ink was covered onto the both side of ITO glass, and dried in room temperature for photocurrent or Mott–Schottky spots measurements. Similarly, 10mg crystals were dispersed in 1mL 0.5% Nafion aqueous solvent by ultrasonication to form a homogeneous ink, and 50 μ L of the ink was covered onto the both side of carbon cloth for EIS test.

A Xenon light with an ultraviolet-cutoff filter (λ >=420 nm) was applied as the light source for Photocurrent, and 0.5 M Na₂SO₄ aqueous solution was used as the electrolyte. The Mott-Schottky plots were also measured over an alternating current (AC) frequency of 1,000 Hz, 1,500 Hz and 2000 Hz. These three electrodes were immersed in the 0.2 M Na₂SO₄ aqueous solution (pH = 6.6). Electrochemical impedance spectra (EIS) measurements were recorded over a frequency range of 100 kHz-0.1Hz with ac amplitude of 20 mV at 0 V, and 0.5 M KHCO₃ aqueous solution was used as the supporting electrolyte.

S2. Synthesis of compound of NENU-605 and NENU-606

Syntheses of NENU-605. NENU-605 tetrameric cluster was hydrothermally synthesized: An aqueous mixture of Na₂MoO₄·2H₂O (0.33g, 1.38mmol), Mo powder (0.1g, 1.04mmol), H₃PO₃ (0.1g, 1.22mmol), MnCl₂·4H₂O (0.2g, 1.00mmol), DMF (0.5mL), H₂C₂O₄ (0.1g, 1.11mmol), and 6mL distilled water was stirred for 30 min, then the critical pH was adjusted to approximately 3 with H₃PO₄ (85%) and KOH (1 M), and transfer it to a Teflon-lined reactor and kept temperature at 180 °C for 72 h. After 3 days, it was cooled down to room temperature at the rate of 10 °C / h, Finally, plenty of dark red octahetal crystals of NENU 605 were collected (76% yield based on Mo), washed by distilled water, and air-dried. Elemental anal. Calcd for Mo 36.02; Mn 8.57; P 8.21. Found: Mo 36.05; Mn 8.60; P 8.24%.

Syntheses of NENU-606. The preparation of **NENU-606** was similar to the method of **NENU-605**, expect that CoCl₂·6H₂O (0.12g, 0.50mmol) and MnCl₂·4H₂O (0.1g, 0.50mmol) were all added in solution at the same time, and increased the amount of Na₂MoO₄·2H₂O (0.62g, 2.57mmol), and the organic templates were replaced with Imidazole (0.1g, 1.47mmol) and 2-Aminoterephthalic acid (0.05g, 0.28mmol), increased the addition of distilled water to 8mL. Finally, red octahedral crystals were obtained (62% yield based on Mo), washed by distilled water, and air-dried. Elemental anal. Calcd for Mo 36.68; Co 2.40; Mn 6.65; P 8.49. Found: Mo 37.00; Co 2.37; Mn 6.62; P 8.46%.

Syntheses of NENU-607. An aqueous mixture of Na₂MoO₄·2H₂O (0.33g, 1.38mmol), Mo powder (0.1g, 1.04mmol), H₃PO₃ (0.1g, 1.22mmol), MnCl₂·4H₂O (0.1g, 0.50mmol), ethylenediamine (0.2 mL), H₂C₂O₄ (0.05g, 0.56mmol), DMF (1mL) and 6mL distilled water was stirred for 30 min, then the critical pH was adjusted to approximately 3.5 with H₃PO₄ (85%), then transfer it to a Teflon-lined reactor and kept temperature at 180 °C for 72 h. After 3 days, it was cooled down to room temperature at the rate of 10 °C / h. Eventually, red sheet crystals were obtained, washed by distilled water, and air-dried. Elemental anal. Calcd for Mo 36.37; Mn 1.74; P 7.83. Found: Mo 39.35; Mn 1.76; P 7.83%.

Figure S1. The photographs of NENU-605 and NENU-606 under an optical microscope.

Figure S2. The asymmetric units of (a) NENU-605 and (b) NENU-606.

Figure S3. The coordination mode of Mn2 (**NENU-605**), which coordinates with five O atoms from four PO_4^{3-} groups and one water molecule.

Figure S4. Ball and stick representation of {P₄Mo₆} basic building unit.

As shown in **Figure. S4**, the most basic cell unit is {P₄Mo₆}, formed by six {MoO₆} octahedra and four {PO₄} tetrahedra via edge- and corner-sharing. All Mo-O and P-O bond lengths were their usual values. The central phosphate group provides three oxygen atoms that bridge the resulting hexanuclear ring, while each of the remaining three peripheral {PO₄} groups owns two oxygen atoms to span the non-bonding Mo---Mo contacts. The four phosphate groups lie on the same side of the plane. The bond lengths of them are all within the observed range in reduced molybdenum(V) phosphates.

Figure S5. View of the hourglass-shaped $\{Mn(P_4Mo_6)\}$ of NENU-605.

Figure S6. The coordination mode of Mn2 (**NENU-606**), which coordinates with five O atoms from four PO_4^{3-} groups.

Figure S7. The shuttle-shaped second shell ($\{Na_6Mn_4\}$) of **NENU-606**, in which the locations of K1 atoms are fully replaced by Na atoms compared with **NENU-605**.

Figure S8. The topological analysis of NENU-605 and NENU-606.

From the topological point of view, if the and Mn2/Mn3 atom are regarded as 8-connected nodes and linkers respectively, then the skeletons of **NENU-605** and **NENU-606** feature a unimodal topology with the Schläfli symbol of $4^{24} \cdot 6^4$. And their structures are classical body centered cubic lattice (bcu, sometimes called the CsCl net). The bcu topology is very common in metal–organic frameworks, but rare in POM-based compounds.

Figure S9. The PXRD patterns of (a) NENU-605 and (b) NENU-606 under the conditions of indicated pH values and photocatalytic reaction solution (H₂O: TEOA = 14:1 v/v, 30 mL); the PXRD patterns of (c) NENU-605 and (d) NENU-606 before and after photocatalytic reaction.

Figure S10. The TGA curve of **NENU-605** and **NENU-606** measured under O₂ atmosphere from room temperature to 700 °C at the hating rate of 10 °C \cdot min⁻¹. A continuous weight loss of 5.95% step from 40 to 230 °C for **NENU-605** and 6.34% step from 40 to 350 °C for **NENU-606** corresponding to the loss of all lattice and coordinated water molecules.

Figure S11. UV–vis diffuse reflectance spectra for **NENU-605** and **NENU-606** (inset: Diffuse reflectance UV-Vis spectrum of K–M function versus *E* (eV))

Figure S12. Mott–Schottky plot for **NENU-605** in 0.2 M Na_2SO_4 aqueous solution. Inset: Energy diagram of the HOMO and LUMO levels of **NENU-605**.

Figure S13. Mott–Schottky plot for **NENU-606** in 0.2 M Na_2SO_4 aqueous solution. Inset: Energy diagram of the HOMO and LUMO levels of **NENU-606**

Figure S14. Schematic energy-level diagram showing electron transfer from [Ru(bpy)₃]Cl₂ to **NENU-605**.

Figure S15. Schematic energy-level diagram showing electron transfer from [Ru(bpy)₃]Cl₂ to **NENU-606**.

Figure S16. GC analysis of the gaseous reaction products by using the TCD.

Figure S17. (a) Photocurrent responses and (b) EIS Nyquist plots.

Figure S18. The recycle experiments of (a) NENU-605 and (b) NENU-606, showing the durability of catalyst.

Fig S19. The IR spectra for NENU-605 and NENU-606 before and after reaction.

The characteristic peaks at 3440 cm⁻¹, 1622 cm⁻¹ and 1456 cm⁻¹ associated with the lattice, coordinated and adsorbed water molecules. The characteristic peaks of {P₄Mo₆} at 1094, 1033, 966 and 733 cm⁻¹ are attributed to v(P-O), v(Mo-O) and v(Mo-O-Mo) vibrations, respectively. The IR spectra of (a) **NENU-605** and (b) **NENU-606** before and after photocatalytic test showing similar characteristics only with a slight shift indicates that they have the strong chemical stability towards photocatalytic CO₂ reduction reaction.

Figure S20. XPS analysis for Mn (a), P (b), Mo (c) in **NENU-605** before and after photocatalytic reduction reaction.

Figure S21. XPS analysis for Co (a), Mn (b), P (c), Mo (d) in **NENU-606** before and after photocatalytic reduction reaction.

As we can see from the **Figure S20 and S21**, nearly unchanged binding energies of the elements Mn 2p, Co 2p, P 2p and Mo 3d in high-resolution XPS spectra further demonstrated the structural stability of catalysts.

Figure S22. The additional filtrate reaction: **NENU-605** and **NENU-606** were removed from the photocatalytic system after 11 hours.

Figure S23. The Mass spectra analyses of ¹³CO recorded under a ¹³CO₂ atmosphere.

Figure S24. (a) The asymmetric unit of **NENU-607**. (b) Three–dimensional polyhedron stacking of **NENU-607**.

Figure S25. The standard curves of (a) CO and (b) CH₄.

Figure S26. The GC on-line curves of NENU-605 and NENU-606.

Figure S27. The influence of the reaction solvent on the photocatalytic CO_2 reduction reaction (MeCN: $H_2O = 1:0, 1:1, 1:3$ and 0:1).

entry	catalyst	conditio	СО	CH ₄	CH ₄ -TON	CH ₄ -TOF	All-TON	All-TOF
		ns	(µmol/g)	(µmol/g	(10 ⁻³)	(10 ⁻³ ℤ h⁻	(10 ⁻³)	(10 ⁻³ ℤ h⁻
)		¹)		¹)
1	а	all	5.2	17.0	104.1	5.5	135.9	7.2
2	b	all	6.8	40.2	241.4	10.5	282.2	12.3
3	a/b	all	n.d.	n.d.			-	-
4	a/b	all	n.d.	n.d.			-	-
5	a/b	without	n.d.	n.d.			-	-
		PS						
6	n.d.	all	n.d.	n.d.			-	-
7	a/b	without	n.d.	n.d.			-	-
		SD						
8	d	all	4.7	7.0	15.2	0.75	25.4	1.3
9	a/b	MeCN	n.d.	n.d.			-	-

Table S1. The research of reaction conditions

Reaction conditions: PS = $[Ru(bpy)_3]Cl_2 GH_2O$ (0.01 mmol,), catalyst (a = **NENU-605**, b = **NENU-606** or d = **NENU-607**) (10mg), H₂O (28 mL), SD = TEOA (2 mL), CO₂ (1 atm), $\lambda \ge 420$ nm, 20°C, TON = Turnover number (mol amount of CO or/and CH₄) / (mol amount of catalyst), n.d.= Not detectable. 3 In the dark. 4 replacing CO₂ with N₂. 5 Without $[Ru(bpy)_3] Cl_2 GH_2O$. 6 Without the catalyst. 7 without sacrificial electron donor. 8 Using d = $\{P_4MO_6\}$ basic unit instead of a or b. 9 Altering H₂O with dry MeCN.

Table S2. Crystal data and structure refinement for NENU-605, NENU-606 and NENU-

607

Compound	NENU-605	NENU-606	NENU-607
Formula	$H_{308}K_{16}Mn_{40}Mo_{96}Na_8O_{616}P_{68}$	$H_{280}Co_{10}Mn_{30}Mo_{96}Na_{24}O_{602}P_{68}$	C ₁₆ H ₁₁₀ MnMo ₁₂ N ₁₆ O ₇₄ P ₈
D _{calc.} / g cm ⁻³	2.570	2.588	2.420
⊘/mm ⁻¹	3.141	3.128	2.088
Formula Weight	25693.78	24715.70	3165.13
T/K	300.27	293.0	296.15
Crystal System	Tetragonal	Tetragonal	monoclinic
Space Group	I41/acd	I41/acd	P21/n
a/Å	27.4698(12)	26.9679(5)	15.8641(14)
b/Å	27.4698(12)	26.9679(5)	15.9370(16)
c/Å	39.881(3)	41.1540(18)	17.1695(17)
2α/°	90	90	90
2 6/ °	90	90	92.645(2)
γ/°	90	90	90
V/ų	30093(4)	29930.0(17)	4336.3(7)
Z	2	2	2
F(000)	21848.0	21888.0	4336.3(7)
Radiation type	ΜοΚ _α (λ = 0.71073)	ΜοΚ _α (λ = 0.71073)	ΜοΚ _α (λ = 0.71073)
<i>⊕_{min} </i> °	2.928	2.768	1.744
⊵ _{max} /°	25.703	27.502	27.721
Reflections collected	91557	83160	57163
Independent Refl.	7150	8600	10042
R _{int}	0.0619	0.0348	0.0426
GooF	1.089	1.041	1.186
wR ₂ (all data)	0.1360	0.0768	0.1144
wR ₂	0.1149	0.0736	0.0985
R ₁ (all data)	0.0747	0.040	0.0625
R ₁	0.0479	0.0316	0.0418
Largest residuals [e Å ⁻³]	1.25/-1.14	1.51/-1.15	1.28/-1.18

Atom	Atom	Length/Å
Mo1	Mo2	2.5945(11)
Mo1	01	2.293(5)
Mo1	05	1.964(5)
Mo1	09	2.090(6)
Mo1	013	1.932(6)
Mo1	014	2.070(6)
Mo1	022	1.675(6)
Mo2	02	2.283(5)
Mo2	05	1.968(6)
Mo2	08	2.101(6)
Mo2	012	2.053(6)
Mo2	013	1.942(6)
Mo2	021	1.670(6)
Mo3	Mo4	2.6075(11)
Mo3	02	2.283(6)
Mo3	07	1.971(6)
Mo3	08	2.079(6)
Mo3	011	2.049(6)
Mo3	019	1.946(6)
Mo3	O20	1.678(6)
Mo4	03	2.249(6)
Mo4	07	1.984(6)
Mo4	010	2.107(6)
Mo4	018	2.032(7)
Mo4	019	1.938(6)
Mo4	025	1.673(6)
Mo5	Mo6	2.5879(10)
Mo5	03	2.274(6)
Mo5	O6	1.975(6)
Mo5	O10	2.126(6)

Table S3.	The selected	bond Lengths in	Å for NENU-605.
Table 33.	The selected	bond Lengths in	A IOI NENO-003.

Atom	Atom	Length/Å
Mo5	016	1.946(6)
Mo5	017	2.057(6)
Mo5	024	1.679(6)
Mo6	01	2.249(6)
Mo6	06	1.966(6)
Mo6	09	2.113(6)
Mo6	015	2.062(6)
Mo6	016	1.944(6)
Mo6	023	1.673(7)
Mn1	05	2.182(6)
Mn1	05 ¹	2.182(6)
Mn1	06	2.260(6)
Mn1	06 ¹	2.260(6)
Mn1	07	2.165(6)
Mn1	071	2.165(6)
Mn2	04	2.107(6)
Mn2	O019	2.280(8)
Mn2	027	2.061(7)
Mn2	O29 ³	2.242(7)
Mn2	O31 ²	2.148(7)
Mn2	O32 ²	2.189(8)
Mn3	O26 ⁴	2.151(7)
Mn3	O26 ²	2.215(7)
Mn3	O28 ⁵	2.047(8)
Mn3	O30	2.065(7)
Mn3	033	2.299(8)
P1	01	1.553(6)
P1	02	1.545(6)
P1	03	1.551(6)
P1	04	1.501(6)

Atom	Atom	Length/Å
P2	014	1.555(6)
P2	015	1.527(6)
P2	O26	1.529(6)
P2	027	1.507(7)
P3	011	1.550(7)
P3	012	1.531(6)
P3	028	1.520(8)
P3	029	1.508(8)
P4	017	1.534(7)
P4	018	1.543(7)
P4	O30	1.524(7)
P4	031	1.532(7)
P5	032	1.515(8)
P5	O32 ²	1.515(8)
P5	O32 ³	1.515(8)
Р5	O32 ⁵	1.515(8)

Atom	Atom	Length/Å
Na1	016 ²	2.611(7)
Na1	016	2.611(7)
Na1	017 ²	2.861(7)
Na1	017	2.861(7)
Na1	031	2.373(8)
Na1	031 ²	2.373(8)
O019	K1 ³	2.400(9)
O26	Mn3 ⁶	2.151(7)
O26	Mn3 ²	2.215(7)
O28	Mn3 ³	2.047(8)
O29	Mn2⁵	2.242(7)
O29	K1 ³	2.162(8)
031	Mn2 ²	2.148(7)
032	Mn2 ²	2.189(8)

¹3/2-x, +y,1-z; ²1-x,3/2-y, +z; ³-1/4+y,5/4-x,3/4-z; ⁴+x,1/2+y,1-z; ⁵5/4-y,1/4+x,3/4-z; ⁶+x, -1/2+y,1-

¹+y,+x,+z; ²+y,+z,+x; ³1-z,1-x,1-y; ⁴+z,+x,+y; ⁵1-y,1-z,1x; ⁶1-x,1-y,1-z; ⁷3/2-x,3/2-y,+z; ⁸+x,3/2-y,3/2-z; ⁹3/2x,+y,3/2-z; ¹⁰+z,+y,+x; ¹¹3/2-y,3/2-z,+x; ¹²+z,3/2x,3/2-y; ¹³-1/2+y,1/2+x,1-z; ¹⁴1-x,1/2+z,-1/2+y; ¹⁵+x,+z,+y

Table S4. The selected	hond Lengths in	Å for NENII-606
Table 54. The selected	Donu Lenguis III	A IOI NEINO-000.

Atom	Atom	Length/Å
Mo1	Mo2	2.5916(5)
Mo1	04	2.332(3)
Mo1	07	2.085(3)
Mo1	08	1.976(3)
Mo1	012	1.938(3)
Mo1	017	2.048(3)
Mo1	022	1.674(3)
Mo2	01	2.274(3)
Mo2	05	2.099(3)
Mo2	08	1.976(3)
Mo2	012	1.937(3)
Mo2	018	2.031(3)
Mo2	023	1.683(3)
Mo3	Mo4	2.5916(5)
Mo3	01	2.272(3)
Mo3	05	2.103(3)
Mo3	09	1.978(3)
Mo3	013	1.943(3)
Mo3	019	2.047(3)
Mo3	024	1.675(3)
Mo4	02	2.252(3)
Mo4	O6	2.115(3)
Mo4	09	1.978(3)
Mo4	013	1.948(3)
Mo4	014	2.045(3)
Mo4	025	1.680(3)
Mo5	Mo6	2.5979(5)
Mo5	02	2.278(3)
Mo5	O6	2.098(3)
Mo5	010	1.971(3)
Mo5	011	1.949(3)
Mo5	015	2.044(3)
Mo5	O20	1.680(3)
Mo6	04	2.271(3)
Mo6	07	2.107(3)
Mo6	010	1.976(3)
Mo6	011	1.941(3)
Mo6	016	2.047(3)
Mo6	021	1.677(3)
Mn1	08	2.151(3)
Mn1	O81	2.151(3)
Mn1	09 ¹	2.175(3)
Mn1	09	2.175(3)
Mn1	010 ¹	2.165(3)
Mn1	010	2.165(3)
Mn2	03	2.146(3)
Mn2	O27 ³	2.153(4)
Mn2	O28 ²	2.092(3)
Mn2	031	2.137(6)
Mn2	O32 ²	2.272(7)

Atom	Atom	Length/Å
Mn2	O33 ³	2.194(4)
Mn3	O26 ³	2.026(4)
Mn3	O29 ²	2.052(4)
Mn3	O30	2.425(7)
Mn3	O30 ⁴	2.052(5)
Mn3	031	2.316(5)
P1	01	1.549(3)
P1	02	1.553(3)
P1	03	1.502(3)
P1	04	1.550(3)
P2	016	1.543(3)
P2	017	1.546(3)
P2	O26	1.511(4)
P2	027	1.504(4)
P3	018	1.556(3)
P3	019	1.548(3)
P3	028	1.511(3)
P3	029	1.516(3)
P4	014	1.526(3)
P4	015	1.529(3)
P4	030	1.489(4)
P4	031	1.518(4)
P5	032	1.520(7)
P5	O32 ³	1.520(7)
P5	O32 ⁵	1.520(7)
P5	O32 ²	1.520(7)
Na1	013 ²	2.591(4)
Na1	013	2.591(4)
Na1	019	2.798(4)
Na1	019 ²	2.798(4)
Na1	028	2.331(4)
Na1	O28 ²	2.331(4)
Na2	012	2.258(4)
Na2	018	2.728(4)
Na2	O27 ⁵	2.252(5)
Na2	028	2.806(5)
Na2	032	2.236(8)
Na2	033	2.454(5)
O26	Mn3⁵	2.026(4)
027	Mn2 ⁵	2.153(4)
027	Na2 ³	2.252(5)
028	Mn2 ²	2.092(3)
029	Mn3 ²	2.052(4)
O30	Mn3 ⁴	2.052(5)
032	Mn2 ²	2.272(7)
033	Mn2 ⁵	2.194(4)

¹+x,1-y,1/2-z; ²1-x,3/2-y, +z; ³-1/4+y,5/4-x,3/4-z; ⁴1/2-x,3/2-y,1/2-z; ⁵5/4-y,1/4+x,3/4

Reference:

- [1] D. Leggas, O. V. Tsodikov, Acta Cryst. A 2015, 71, 319-324.
- [2] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Crystallogr.* 2009, 42, 339-341.
- [3] A. Spek, Acta Cryst. C 2015, 71, 9-18.
- [4] A. Spek, Acta Cryst. D 2009, 65, 148-155.
- [5] E. V. Alexandrov, V. A. Blatov, A. V. Kochetkov, D. M. Proserpio, *CrystEngComm* 2011, 13, 3947-3958.