# ELECTRONIC SUPPLEMENTARY INFORMATION

# Triggering the expression of a silent gene cluster from genetically intractable bacteria results in

# scleric acid discovery

Fabrizio Alberti,\*<sup>a,b</sup> Daniel J. Leng,<sup>b</sup> Ina Wilkening,<sup>b</sup> Lijiang Song,<sup>b</sup> Manuela Tosin<sup>b</sup> and Christophe Corre\*<sup>a,b</sup>

<sup>a</sup> Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.

<sup>b</sup> Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.

\* Corresponding authors: F.Alberti@warwick.ac.uk, C.Corre@warwick.ac.uk

## **Table of Contents**

| Table S1. List of strains used in this study.       3         Table S2. List of plasmids used in this study.       3         Table S3. List of oligonucleotides used in this study.       4         Table S4. Orthologous genes/proteins to those found in the methylenomycin regulatory system       6         Firm S. coelicolor A3(2) identified using clusterTools. <sup>8</sup> 6         Figure S1. Confirmed identity of the captured scl cluster.       6         Figure S2. CRISPR/Cas9-guided deletion generated on sclM4.       7         Figure S3. CRISPR-Cas9-guided deletions generated on key putative biosynthetic genes of the gene cluster.       7         Figure S4. Determination of IC <sub>50</sub> for scleric acid against Nicotinamide N-methyltransferase (NNMT).       8         Chemistry supplementary results       9         21. Characterisation of scleric acid and L-proline-oxyacetic acid intermediate.       9         9       1. Characterisation of scleric acid (lower panel).       10         Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid.       10         Figure S1. Lick spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S1. Lick spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S1. Lick spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup> 12                                                                                                                                                 | 1. Biology supplementary methods and results                                                                                           | 3      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------|
| Table S2. List of plasmids used in this study.       3         Table S3. List of oligonucleotides used in this study.       4         Table S4. Orthologous genes/proteins to those found in the methylenomycin regulatory system       5         Table S5. Summary of the number of biosynthetic gene cassettes orthologous to those found in the scl cluster, identified using clusterTools. <sup>8</sup> 5         Table S5. CRISPR/Cas9-guided deletion generated on sclM4.       6         Figure S1. CRISPR-Cas9-guided deletions generated on key putative biosynthetic genes of the gene cluster.       7         Figure S4. Determination of IC <sub>50</sub> for scleric acid against Nicotinamide N-methyltransferase (NNMT).       8         Table S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid intermediate.       9         Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from S. albus/scl AsclM4 (top panel) and synthetic scleric acid (lower panel).       10         Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S9. LCAS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup> 12         Figure S1. Leconds analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup> 12         Figure S1. <sup>1</sup> H-NMR spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup> <         | Table S1. List of strains used in this study.                                                                                          | 3      |
| Table S3. List of oligonucleotides used in this study.       4         Table S4. Orthologous genes/proteins to those found in the methylenomycin regulatory system       5         Table S5. Summary of the number of biosynthetic gene cassettes orthologous to those found in the scl cluster, identified using clusterTools. <sup>8</sup> 5         Table S5. Summary of the number of biosynthetic gene cassettes orthologous to those found in the scl cluster, identified using clusterTools. <sup>8</sup> 6         Figure S1. Confirmed identity of the captured scl cluster.       6         Figure S2. CRISPR/Cas9-guided deletion generated on sclM4.       7         Figure S4. Determination of IC <sub>50</sub> for scleric acid against Nicotinamide N-methyltransferase       7         Figure S4. Determination of IC <sub>50</sub> for scleric acid against ESKAPE pathogenic bacterial strains.       8         Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains.       8         2. Chemistry supplementary results       9         2. I. Characterisation of scleric acid and <i>L</i> -proline-oxyacetic acid intermediate       9         Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from <i>S. albus/scl AsclM</i> 4       10         Figure S7. COSY spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       10         Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S1. <sup>1</sup> H-NMR spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure                                                             | Table S2. List of plasmids used in this study.                                                                                         | 3      |
| Table S4. Orthologous genes/proteins to those found in the methylenomycin regulatory systemfrom S. coelicolor A3(2) identified using clusterTools.5Table S5. Summary of the number of biosynthetic gene cassettes orthologous to those found in thescl cluster, identified using clusterTools.6Figure S1. Confirmed identity of the captured scl cluster.6Figure S2. CRISPR/Cas9-guided deletion generated on sclM4.7Figure S3. CRISPR-Cas9-guided deletions generated on key putative biosynthetic genes of thegene cluster.7Figure S4. Determination of IC <sub>50</sub> for scleric acid against Nicotinamide N-methyltransferase(NNMT).8Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains.82. Chemistry supplementary results9910. Characterisation of scleric acid and L-proline-oxyacetic acid intermediate.99Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from S. albus/scl \alphactlM4(top panel) and synthetic scleric acid (lower panel).10Figure S7. COSY spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolutestereochemistry determination.912Figure S12. <sup>1</sup> 14. NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-((benzoyl-L-prolyl)oxy)acetic acid.11Figure S12. <sup>1</sup> 15. NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-((benzoyl-L-                                                                                                                                                                              | Table S3. List of oligonucleotides used in this study.                                                                                 | 4      |
| from <i>S. coelicolor</i> A3(2) identified using clusterTools. <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table S4. Orthologous genes/proteins to those found in the methylenomycin regulatory system                                            |        |
| Table S5. Summary of the number of biosynthetic gene cassettes orthologous to those found in thescl cluster, identified using clusterTools.*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | from S. coelicolor A3(2) identified using cluster Tools. <sup>8</sup>                                                                  | 5      |
| scl cluster, identified using clusterTools. <sup>8</sup> 6         Figure S1. Confirmed identity of the captured scl cluster.       6         Figure S2. CRISPR/Cas9-guided deletion generated on sclM4.       7         Figure S3. CRISPR-Cas9-guided deletions generated on key putative biosynthetic genes of the gene cluster.       7         Figure S4. Determination of IC <sub>50</sub> for scleric acid against Nicotinamide N-methyltransferase (NNMT).       8         Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains.       8 <b>2.</b> Chemistry supplementary results       9 <b>2.1</b> Characterisation of scleric acid and <i>L</i> -proline-oxyacetic acid intermediate.       9 <b>P</b> igure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from <i>S. albus/scl \Deltascl M4</i> (top panel) and synthetic scleric acid (lower panel).       10         Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup> .       12         Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2- ((benzoyl-L-prolyl)oxy)acetic acid.       13         Figure S12. CNSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2- ((benzoyl-L-prolyl)oxy)acetic acid.       13         Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of                | Table S5. Summary of the number of biosynthetic gene cassettes orthologous to those found in the                                       |        |
| Figure S1. Confirmed identity of the captured <i>scl</i> cluster.       6         Figure S2. CRISPR/Cas9-guided deletion generated on <i>sclM4</i> .       7         Figure S3. CRISPR-Cas9-guided deletions generated on key putative biosynthetic genes of the gene cluster.       7         Figure S4. Determination of IC <sub>50</sub> for scleric acid against Nicotinamide <i>N</i> -methyltransferase (NNMT).       8         Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains.       8 <b>2.1. Characterisation of scleric acid and <i>L</i>-proline-oxyacetic acid intermediate.       9         <b>9 21. Characterisation of scleric acid and <i>L</i>-proline-oxyacetic acid isolated from <i>S. albus/scl AsclM4</i> (top panel) and synthetic scleric acid (lower panel).       10         Figure S7. COSY spectrum (700 MHz, CD<sub>3</sub>OD) of scleric acid.       10         Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute sterochemistry determination.<sup>9</sup>       12         Figure S11. <sup>1</sup>H-NMR spectrum (500 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-       13         Figure S12. COSY spectrum (500 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-       13         Figure S12. COSY spectrum (500 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-       13         Figure S13. HSQC spectrum (500 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-       13         Figure S13. HSQC spectrum (500 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-       14     </b></b> | scl cluster, identified using clusterTools. <sup>8</sup>                                                                               | 5      |
| Figure S2. CRISPR/Cas9-guided deletion generated on sclM4.       7         Figure S3. CRISPR-Cas9-guided deletions generated on key putative biosynthetic genes of the gene cluster.       7         Figure S4. Determination of IC <sub>50</sub> for scleric acid against Nicotinamide N-methyltransferase (NNMT).       8         Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains.       8 <b>2. Chemistry supplementary results</b> 9 <b>2.1. Characterisation of scleric acid and L-proline-oxyacetic acid intermediate</b> 9 <b>7</b> Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from <i>S. albus/scl AsclM4</i> (top panel) and synthetic scleric acid (lower panel).       10         Figure S7. COSY spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S1. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup> 12         Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       12         Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       13         Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       13         Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       13         Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       14         Figure S13. HSQC spectrum (500 M                                  | Figure S1. Confirmed identity of the captured <i>scl</i> cluster                                                                       | 5      |
| Figure S3. CRISPR-Cas9-guided deletions generated on key putative biosynthetic genes of the gene cluster.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Figure S2. CRISPR/Cas9-guided deletion generated on <i>sclM4</i> .                                                                     | 7      |
| gene cluster.7Figure S4. Determination of IC50 for scleric acid against Nicotinamide N-methyltransferase8Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains.8 <b>2. Chemistry supplementary results</b> 9 <b>2.1. Characterisation of scleric acid and L-proline-oxyacetic acid intermediate</b> 9Figure S5. NMR assignment (700 MHz, CD3OD) of scleric acid (m/z 278.1020, $C_{14}H_{15}NO_5$ ).9Figure S6. <sup>1</sup> H-NMR spectrum (700 MHz, CD3OD) of scleric acid isolated from <i>S. albus/scl AsclM4</i> 10(top panel) and synthetic scleric acid (lower panel).10Figure S7. COSY spectrum (700 MHz, CD3OD) of scleric acid.10Figure S9. HMBC spectrum (700 MHz, CD3OD) of scleric acid.11Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute12Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD3OD) of the synthetic scleric acid analogue 2-13Figure S12. COSY spectrum (500 MHz, CD3OD) of the synthetic scleric acid analogue 2-13Figure S13. HSQC spectrum (500 MHz, CD3OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD3OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD3OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD3OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD3OD) of the synthetic scleric acid analogue 2-14                                                                                                                                                                                                                       | Figure S3. CRISPR-Cas9-guided deletions generated on key putative biosynthetic genes of the                                            |        |
| Figure S4. Determination of IC <sub>50</sub> for scleric acid against Nicotinamide <i>N</i> -methyltransferase       8         Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains.       8 <b>2. Chemistry supplementary results</b> 9 <b>2.1. Characterisation of scleric acid and</b> <i>L</i> -proline-oxyacetic acid intermediate       9         Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid (m/z 278.1020, C <sub>14</sub> H <sub>15</sub> NO <sub>5</sub> ).       9         Figure S6. <sup>1</sup> H-NMR spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from <i>S. albus/scl</i> Δ <i>sclM4</i> (top panel) and synthetic scleric acid (lower panel).       10         Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       10         Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup> 12         Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       13         Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       13         Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       14         Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       14                                                                                                             | gene cluster.                                                                                                                          | 7      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Figure S4. Determination of IC <sub>50</sub> for scleric acid against Nicotinamide <i>N</i> -methyltransferase                         |        |
| Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains8         2. Chemistry supplementary results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (NNMT)                                                                                                                                 | 8      |
| 2. Chemistry supplementary results92.1. Characterisation of scleric acid and L-proline-oxyacetic acid intermediate9Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid (m/z 278.1020, $C_{14}H_{15}NO_5$ ).9Figure S6. <sup>1</sup> H-NMR spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from S. albus/scl $\Delta$ sclM410(top panel) and synthetic scleric acid (lower panel).10Figure S7. COSY spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.10Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute12Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13(benzoyl-L-prolyl)oxy)acetic acid.13Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-14                                                                                                                                                                                                                                                                                       | Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains                                           | 8      |
| <b>2.1.</b> Characterisation of scleric acid and <i>L</i> -proline-oxyacetic acid intermediate9Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid (m/z 278.1020, $C_{14}H_{15}NO_5$ ).9Figure S6. <sup>1</sup> H-NMR spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from <i>S. albus/scl</i> $\Delta$ sclM410(top panel) and synthetic scleric acid (lower panel).10Figure S7. COSY spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.10Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute12Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-14                                                                                                                                                                                                                                                                                                                                        | 2. Chemistry supplementary results                                                                                                     | 9      |
| Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid (m/z 278.1020, $C_{14}H_{15}NO_5$ ).Figure S6. <sup>1</sup> H-NMR spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from <i>S. albus/scl AsclM4</i> (top panel) and synthetic scleric acid (lower panel).10Figure S7. COSY spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.10Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolutestereochemistry determination. <sup>9</sup> 12Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-((benzoyl- <i>L</i> -prolyl)oxy)acetic acid.13Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-((benzoyl- <i>L</i> -prolyl)oxy)acetic acid.13Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue14Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue                                                                                                                                                                                                                                                                                                                           | 2.1. Characterisation of scleric acid and L-proline-oxyacetic acid intermediate                                                        | 9      |
| Figure S6. <sup>1</sup> H-NMR spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid isolated from <i>S. albus/scl</i> $\Delta sclM4$ (top panel) and synthetic scleric acid (lower panel).10Figure S7. COSY spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.10Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute12Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figure S5. NMR assignment (700 MHz, CD <sub>3</sub> OD) of scleric acid (m/z 278.1020, $C_{14}H_{15}NO_5$ )                            | 9      |
| (top panel) and synthetic scleric acid (lower panel).       10         Figure S7. COSY spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       10         Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup> 12         Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2- ((benzoyl- <i>L</i> -prolyl)oxy)acetic acid.       13         Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2- ((benzoyl- <i>L</i> -prolyl)oxy)acetic acid.       13         Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2- ((benzoyl- <i>L</i> -prolyl)oxy)acetic acid.       13         Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue.       14         Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Figure S6 <sup>1</sup> H-NMR spectrum (700 MHz CD <sub>2</sub> OD) of scleric acid isolated from <i>S</i> albus/scl AsclM <sub>4</sub> | 1      |
| Figure S7. COSY spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.10Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute12Stereochemistry determination. <sup>9</sup> 12Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (top panel) and synthetic scleric acid (lower panel)                                                                                   | )<br>D |
| Figure S8. HSQC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.11Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute12Stereochemistry determination. <sup>9</sup> 12Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-13Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue13Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Figure S7, COSY spectrum (700 MHz, CD <sub>2</sub> OD) of scleric acid.                                                                | Ő      |
| Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.       11         Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup> 12         Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2- ((benzoyl- <i>L</i> -prolyl)oxy)acetic acid.       13         Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2- ((benzoyl- <i>L</i> -prolyl)oxy)acetic acid.       13         Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue.       14         Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-       14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Figure S8, HSOC spectrum (700 MHz, CD <sub>2</sub> OD) of scleric acid.                                                                | 1      |
| Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination. <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Figure S9. HMBC spectrum (700 MHz, CD <sub>3</sub> OD) of scleric acid.                                                                | 1      |
| stereochemistry determination. <sup>9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure S10. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute                                          |        |
| Figure S11. <sup>1</sup> H-NMR spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-<br>((benzoyl-L-prolyl)oxy)acetic acid.13Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-<br>((benzoyl-L-prolyl)oxy)acetic acid.13Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue.14Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stereochemistry determination. <sup>9</sup>                                                                                            | 2      |
| ((benzoyl- <i>L</i> -prolyl)oxy)acetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure S11 <sup>1</sup> H-NMR spectrum (500 MHz, CD,OD) of the synthetic scleric acid analogue 2-                                      |        |
| Figure S12. COSY spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-<br>((benzoyl- <i>L</i> -prolyl)oxy)acetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ((benzoyl- <i>I</i> -prolyl)oxy)acetic acid                                                                                            | z      |
| ((benzoyl- <i>L</i> -prolyl)oxy)acetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Figure S12 COSV spectrum (500 MHz CD <sub>2</sub> OD) of the synthetic scleric acid analogue 2-                                        | ,      |
| Figure S13. HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ((benzoyl- <i>L</i> -prolyl)oxy)acetic acid                                                                                            | 2      |
| Figure S14. HMBC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figure S13 HSOC spectrum (500 MHz CD-OD) of the synthetic scleric acid analogue                                                        | ,<br>1 |
| rigue si i. mine spectrum (500 mine, CD30D) of the synthetic science dela dialogue 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Figure S15: HSQC spectrum (500 MHz, CD <sub>3</sub> OD) of the synthetic scleric acid analogue 2-                                      | '      |
| ((benzoyl- <i>I</i> -prolyl)oxy)acetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ((henzoyl- <i>I</i> -prolyl)oxy)acetic acid                                                                                            | 4      |
| Figure S15 $^{13}$ C spectrum (125 MHz, CD <sub>2</sub> OD) of the synthetic scleric acid analogue 2-((benzov)-L-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Figure S15 <sup>13</sup> C spectrum (125 MHz, CD <sub>2</sub> OD) of the synthetic scleric acid analogue 2-((benzovl- $I$ -            | Ċ      |
| prolyl)oxy)acetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prolyl)oxy)acetic acid.                                                                                                                | 5      |

| Figure S16. Restored production of scleric acid in S. albus/scl $\Delta$ sclM4 $\Delta$ Q1-4 strain upon feeding |    |
|------------------------------------------------------------------------------------------------------------------|----|
| with glycolic acid                                                                                               | 15 |
| Figure S17. Scleric acid increment in precursor enriched medium detected with UHPLC-HRMS                         | 16 |
| Figure S18. Detection of the L-proline-oxyacetic acid intermediate with UHPLC-HRMS                               | 16 |
| Figure S19. Detection of scleric acid by UHPLC-HRMS in S. albus/scl AsclM4 AsclN fed with L-                     |    |
| proline-oxyacetic acid.                                                                                          | 17 |
| 2.2. Synthetic Chemistry                                                                                         | 17 |
| 2.2.1.Synthesis of scleric acid                                                                                  | 17 |
| Figure S20. Schematic representation of synthetic route to scleric acid.                                         | 17 |
| 2.2.2.Synthesis of the scleric acid structural isomer                                                            | 20 |
| Figure S21. Schematic representation of synthetic route to the scleric acid structural isomer 2-                 |    |
| ((benzoyl-prolyl)oxy)acetic acid.                                                                                | 20 |
| 2.2.3.Synthesis of the <i>L</i> -proline-oxyacetic acid intermediate                                             | 21 |
| Figure S22. Schematic representation of synthetic route to L-proline-oxyacetic acid.                             | 21 |
| References                                                                                                       | 23 |

## 1. Biology supplementary methods and results

| Name                                                      | Description                                                                                                                         | Reference        |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Streptomyces sclerotialus NRRL ISP-5269                   | Strain from which the <i>scl</i> cluster was cloned                                                                                 | 1                |
| Streptomyces albus J1074                                  | Used as heterologous host                                                                                                           | 2                |
| Streptomyces coelicolor M1152                             | Used as heterologous host                                                                                                           | 3                |
| Streptomyces albus/scl                                    | Strain engineered to contain the <i>scl</i> cluster                                                                                 | This study       |
| Streptomyces coelicolor M1152/scl                         | Strain engineered to contain the <i>scl</i> cluster                                                                                 | This study       |
| Streptomyces albus/pCAP03                                 | Control strain engineered to contain the empty plasmid pCAP03                                                                       | This study       |
| Streptomyces coelicolor M1152/pCAP03                      | Control strain engineered to contain the empty plasmid pCAP03                                                                       | This study       |
| Escherichia coli ET12567                                  | Methylation deficient strain used for intergeneric conjugation                                                                      | 4                |
| Escherichia coli ET12567/pUB307                           | Strain with self-transmissible plasmid that<br>mobilises other plasmids in trans for DNA<br>transfer into <i>Streptomyces</i> hosts | 5                |
| Streptomyces albus/scl \(\Delta\)sclM4                    | Strain with inactivated transcriptional repressor, producer of scleric acid                                                         | This study       |
| Streptomyces albus/scl \(\Delta sclM4 \(\Delta sclN)\)    | Strain with inactivated transcriptional repressor<br>and NRPS                                                                       | This study       |
| Streptomyces albus/scl \(\Delta\)sclM4 \(\Delta\)sclA     | Strain with inactivated transcriptional repressor<br>and Anthranilate synthase                                                      | This study       |
| Streptomyces albus/scl \(\Delta sclM4 \(\Delta sclQ1-4)\) | Strain with inactivated transcriptional repressor<br>and glycolic acid biosynthesis genes                                           | This study       |
| Staphylococcus aureus                                     |                                                                                                                                     | ATCC<br>BAA-1717 |
| Enterobacter cloacae                                      |                                                                                                                                     | NCTC 13405       |
| Acinetobacter baumanii                                    | wend for antimicrobiol activity agant                                                                                               | ATCC 19606       |
| Pseudomonas aeruginosa                                    |                                                                                                                                     | ATCC 27853       |
| Enterococcus faecium                                      |                                                                                                                                     | ATCC 12202       |
| Klebsiella pneumoniae                                     |                                                                                                                                     | ATCC 700603      |
| Escherichia coli TOP10                                    | Host strain used for cloning                                                                                                        | Invitrogen       |
| S. cerevisiae VL6-48N                                     | Used for in vivo capturing of the scl cluster                                                                                       | ATCC MYA-        |
|                                                           | through homologous recombination                                                                                                    | 3666             |

### Table S1. List of strains used in this study.

## Table S2. List of plasmids used in this study.

| Name                    | Use                                                    | Selectable marker | Reference  |
|-------------------------|--------------------------------------------------------|-------------------|------------|
|                         | Self-transmissible plasmid that mobilises other        | Kan <sup>R</sup>  | 5          |
|                         | plasmids in trans for DNA transfer into                |                   |            |
| pUB307                  | Streptomyces hosts                                     |                   |            |
|                         | Capture of gene clusters upon insertion of hooks       | Kan <sup>R</sup>  | 6          |
| pCAP03                  | for homologous recombination                           |                   |            |
|                         | Backbone plasmid for CRISPR-Cas9-mediated              | Apra <sup>R</sup> | 7          |
|                         | genome editing of actinomycetes upon insertion         |                   |            |
|                         | of synthetic guide RNAs (sgRNAs) and                   |                   |            |
| pCRISPomyces2           | homologous recombination arms (HR arms)                |                   |            |
|                         | Capture of the <i>scl</i> gene cluster from <i>S</i> . | Kan <sup>R</sup>  | This study |
| pCAP03-scl <sup>a</sup> | sclerotialus                                           |                   |            |
| pCm2-sclM4 <sup>b</sup> | Deletion of <i>sclM4</i>                               | Apra <sup>R</sup> | This study |
| pCm2-sclN <sup>c</sup>  | Deletion of <i>sclN</i>                                | Apra <sup>R</sup> | This study |
| pCm2-sclA <sup>d</sup>  | Deletion of <i>sclA</i>                                | Apra <sup>R</sup> | This study |
| pCm2-sclQ1-4e           | Deletion of <i>sclQ1-4</i>                             | Apra <sup>R</sup> | This study |

<sup>a</sup>Left hook for homologous recombination:

Right hook for homologous recombination:

CĞTCGCGATCATGĞTGGGCAACACCGAGTGGCCCAAGTGGGAGAAGGTCATGGCGGCCGA <sup>b</sup>sgRNA: GGTGCTGGCGAACCCGAGGG
 <sup>c</sup>sgRNA1: TCCGGATGGTGCGAGCGCAG, sgRNA2: CCGAGACGGTCGCGGCGGGA
 <sup>d</sup>sgRNA1: CCTCGACCGACCAGTGCTCC, sgRNA2: CCGTGATGACCGCTTCATCG
 <sup>e</sup>sgRNA1: ACGCCGCTCGGTACCGTCGC, sgRNA2: GGGCATCACGCACGGGTCCC

| Name                     | Sequence                                      | Use                                    |
|--------------------------|-----------------------------------------------|----------------------------------------|
| pCm2-sclM4_protosp FF    | acgcGGTGCTGGCGAACCCGAGGG                      | Insertion of protospacer in            |
| pCm2- sclM4_protosp RR   | aaacCCCTCGGGTTCGCCAGCACC                      | pCm2-sclM4                             |
| pCm2-sclM4 LA FF         | tgccgccgggcgttttttatGCCGCTCTCGAAGTCGAGGACGGCG | Amplification of homologous            |
|                          |                                               | recombination left arm for             |
| pCm2-sclM4 LA RR         | CTGCCGCGGAGTTGCACCAATCTCCAGGTGGTGGCG          | pCm2-sclM4                             |
|                          | CACCACCTGGAGATTGGTGCAACTCCGCGGCAGCCGC         | Amplification of homologous            |
| pCm2-scIM4 RA FF         |                                               | recombination right arm for            |
| pCm2-sciNi4 KA KR        |                                               | pCm2-sciW4                             |
| Sequencing sciM4 HK FF   | COOCATCIOATCOCCCIOUIO                         | to assess deletion from                |
| Sequencing scIM/ HR RR   | TECGGTGGCAAGTACCTCCAGC                        | nCm2-sclM4                             |
| nCm2-solN I A FE         | tegattaccaccagacattttttatCGTGCCACGCACGCACGT   | Amplification of homologous            |
| peni2-senv LA IT         |                                               | recombination left arm for             |
| pCm2-sclN LA RR          | GGATGTGGTGGTGCTCATCCGGAGCGCAGGCTCGTG          | pCm2-sclN                              |
| pCm2-sclN RA FF          | CACGAGCCTGCGCTCCGGATGAGCACCACCACATCC          | Amplification of homologous            |
|                          |                                               | recombination right arm for            |
| pCm2-sclN RA RR          | gcggcctttttacggttcctggcctCTGGTCGGTCGAGGACCC   | pCm2-sclN                              |
| Sequencing sclN HR FF    | GTTCATGCGGACTGGATAC                           | Amplification of <i>sclN</i> to        |
|                          |                                               | assess deletion from pCm2-             |
| Sequencing sclN HR RR    | GGTGGATCAGGGCGAAAG                            | sclN                                   |
| pCm2-sclA LA FF          | tcggttgccgccgggcgttttttatGGTCGCGGCGGGACGGGA   | Amplification of homologous            |
|                          |                                               | recombination left arm for             |
| pCm2-sclA LA RR          | CATGGCCGTATTGATCACGGAGCCCGTCTGTGTGTG          | pCm2-sclA                              |
| pCm2-sclA RA FF          | CACACACAGACGGGCTCCGTGATCAATACGGCCATG          | Amplification of homologous            |
| mCm2 cald DA DD          |                                               | recombination right arm for            |
| pcm2-sciA KA KK          |                                               | Amplification of cold to               |
| Sequencing sciA HK FF    |                                               | assess deletion from pCm <sup>2</sup>  |
| Sequencing sclA HR RR    | GTTGGGGTCGAGGCGTTC                            | scl                                    |
| nCm2-sclQ1-4 LA FF       | tcggttgccgccgggcgttttttatCGTACGGTCCACCCCGCC   | Amplification of homologous            |
| penii seigi i Erri       |                                               | recombination left arm for             |
| pCm2-sclQ1-4 LA RR       | CTCTGGAGTGTCTGACGCGGCCGGTGCTCCGCCGTG          | pCm2-sclQ1-4                           |
| pCm2-sclQ1-4 RA FF       | CACGGCGGAGCACCGGCCGCGTCAGACACTCCAGAG          | Amplification of homologous            |
|                          |                                               | recombination right arm for            |
| pCm2-sclQ1-4 RA RR       | gcggcctttttacggttcctggcctACGGGCCGGTGGCGCACT   | pCm2-sclQ1-4                           |
| Sequencing sclQ1-4 HR FF | TTCCAGGAGGTCACCGAC                            | Amplification of <i>sclQ1-4</i> to     |
|                          |                                               | assess deletion from pCm2-             |
| Sequencing sclQ1-4 HR RR | GTCGACATCAGTTGGGACG                           | sclQ1-4                                |
| Screening sclM4 FF       | TTGGTACACACTGTCGCTGTCAC                       | Amplification of <i>sclM4</i> to       |
| Screening sclM4 RR       | TAAGGAACCACGGATATGGTCAAAC                     | assess capturing of <i>scl</i> cluster |

 Table S3. List of oligonucleotides used in this study.

| #  | Bacterial strain                                                            | Accession ID          | Start   | End     | Size<br>(nt) | BLAST<br>Similarity<br>Score | MmfR                                                 | MmyR                                                 | MmfL                              | MmfP                              | MmfH                              |
|----|-----------------------------------------------------------------------------|-----------------------|---------|---------|--------------|------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| 1  | Streptomyces sp. S10(2016)                                                  | NZ_CP015098.1         | 4782325 | 4786837 | 4513         | 2.0723                       | WP_062928109.1;<br>WP_062928113.1                    | WP_062928113.1;<br>WP_062928109.1                    | WP_062928110.1                    | WP_062928112.1                    | WP_062928111.1                    |
| 2  | Streptacidiphilus melanogenes strain NBRC 103184                            | NZ_BBPP01000016.      | 12874   | 17454   | 4581         | 1.9478                       | WP_052434417.1;<br>WP_052434418.1                    | WP_052434418.1;<br>WP_052434417.1                    | WP_042383066.1                    | WP_042383065.1                    | WP_042383067.1                    |
| 3  | Streptomyces roseoverticillatus strain NRRL B-3500 contig22.1               | NZ_JOFL01000022.1     | 45931   | 50919   | 4989         | 1.9367                       | WP_030368767.1;<br>WP_052393004.1                    | WP_052393004.1;<br>WP_030368767.1                    | WP_030368766.1                    | WP_052393003.1                    | WP_052393018.1                    |
| 4  | Streptomyces kanamyceticus strain<br>NRRL B-2535 B-2535_contig_135          | NZ_LIQU01000135.      | 29180   | 42345   | 13166        | 1.881                        | WP_055547507.1;<br>WP_055547490.1                    | WP_055547490.1;<br>WP_055547507.1                    | WP_055547484.1                    | WP_063806085.1;<br>WP_055547466.1 | WP_055547486.1                    |
| 5  | Kitasatospora mediocidica KCTC 9733<br>BS80DRAFT_unitig_3_quiver.1_C        | NZ_JQLN01000001.<br>1 | 344626  | 354245  | 9620         | 1.7353                       | WP_035791765.1;<br>WP_051965634.1                    | WP_051965634.1;<br>WP_035791765.1                    | WP_051965635.1                    | WP_035791755.1                    | WP_063771887.1                    |
| 6  | Streptomyces griseoplanus strain NRRL<br>B-3064 B3064_contig_350            | NZ_LIQR01000350.1     | 1458    | 5768    | 4311         | 1.7252                       | WP_055589482.1;<br>WP_055589478.1                    | WP_055589478.1;<br>WP_055589482.1                    | WP_055589481.1                    | WP_063796061.1                    | WP_055589480.1                    |
| 7  | Streptomyces pluripotens strain MUSC 135                                    | NZ_JTDH01000125.      | 97777   | 102368  | 4592         | 1.6047                       | WP_039654680.1;<br>WP_039654807.1                    | WP_039654807.1;<br>WP_039654680.1                    | WP_063837895.1                    | WP_043433946.1                    | WP_039654677.1                    |
| 8  | Streptomyces roseochromogenus subsp. oscitans DS 12.976 chromosome          | NZ_CM002285.1         | 5661730 | 5668353 | 6624         | 1.5553                       | WP_051430295.1;<br>WP_023549830.1                    | WP_023549830.1;<br>WP_051430295.1                    | WP_023549823.1                    | WP_031225671.1                    | M878_RS74185                      |
| 9  | Streptacidiphilus rugosus AM-16<br>BS83DRAFT_scf718000000012_quiver<br>.4_C | NZ_JQMJ01000004.<br>1 | 70841   | 117141  | 46301        | 1.5077                       | WP_063774329.1;<br>WP_051945291.1;<br>WP_051942861.1 | WP_051942861.1;<br>WP_063774329.1;<br>WP_051945291.1 | WP_051942867.1;<br>WP_037603352.1 | WP_037603372.1                    | WP_051942859.1;<br>WP_051942858.1 |
| 10 | Streptomyces venezuelae ATCC 10712 complete genome                          | NC_018750.1           | 4526411 | 4547575 | 21165        | 1.4938                       | WP_015035379.1;<br>WP_015035398.1;<br>WP_051025910.1 | WP_051025910.1;<br>WP_015035379.1                    | WP_051025909.1                    | WP_015035382.1                    | WP_015035385.1                    |
| 11 | Streptomyces vietnamensis strain GIM4.0001                                  | NZ_CP010407.1         | 4824251 | 4850159 | 25909        | 1.4671                       | WP_041130598.1;<br>WP_052499245.1                    | WP_052499240.1;<br>WP_041130598.1                    | WP_052499239.1                    | WP_041130599.1                    | WP_052499241.1                    |
| 12 | Streptacidiphilus albus JL83<br>BS75DRAFT_unitig_0_quiver.1_C               | NZ_JQML01000001.<br>1 | 5289664 | 5324448 | 34785        | 1.377                        | WP_034089620.1;<br>WP_052069629.1;<br>WP_034089636.1 | WP_052069629.1;<br>WP_034089620.1                    | WP_052069631.1                    | WP_052069630.1                    | WP_042437474.1                    |
| 13 | Kitasatospora cheerisanensis KCTC 2395 scaffold00001                        | NZ_KK853997.1         | 1382622 | 1389383 | 6762         | 1.2906                       | WP_035870914.1;<br>WP_051652813.1                    | WP_051652813.1;<br>WP_035870914.1                    | WP_051652810.1                    | WP_051652809.1                    | KCH_RS38560                       |
| 14 | Streptomyces avermitilis MA-4680 = NBRC 14893 DNA                           | NC_003155.5           | 2764349 | 2768853 | 4505         | 1.2867                       | WP_010983710.1;<br>WP_010983708.1                    | WP_010983708.1                                       | WP_010983709.1                    | WP_010983706.1                    | WP_010983707.1                    |

Table S4. Orthologous genes/proteins to those found in the methylenomycin regulatory system from S. coelicolor A3(2) identified using clusterTools.<sup>8</sup>

**Table S5.** Summary of the number of biosynthetic gene cassettes orthologous to those found in the *scl* cluster, identified using clusterTools.<sup>8</sup>

| Proteins query       | Number of<br>orthologues found |
|----------------------|--------------------------------|
| SclQ1-4              | 8                              |
| SclN and SclT        | 19                             |
| SclN, SclT and SclQ1 | 0                              |
| SclA, SclI and SclD  | 46                             |
| SclG and SclA        | 1                              |
| SclG, SclI           | 0                              |
| SclG, SclD           | 0                              |

а





Figure S1. Confirmed identity of the captured scl cluster.

(a) PCR amplification of the *sclM4* gene from yeast colony after TAR cloning (Y), genomic DNA of *S. sclerotialus* (C+) and negative control (C-). Expected amplicon size: 549 bp. (b) Plasmid map of pCAP03-scl. (c) *KpnI* Restriction digestion of plasmids purified from *E. coli*: pCAP03-scl (1) and pCAP03 (2). Expected restriction fragments for pCAP03-scl: 10,251 bp; 7,338 bp; 7,172 bp; 5,740 bp; 4,938 bp; 4,098 bp; 1,338 bp; 1,131 bp; 979 bp, 323 bp; 216 bp; 149 bp. Expected restriction fragment for pCAP03: 11,187 bp.



Figure S2. CRISPR/Cas9-guided deletion generated on *sclM4*.

Alignment of sequencing chromatograms showing the 20-bp short deletion at the 5' of the *sclM4* gene: (a) native sequence in *S. albus/scl*, (b) mutated sequence after 20-bp deletion with CRISPR/Cas9 in *S. albus/scl*  $\Delta sclM4$ .





Figure S3. CRISPR-Cas9-guided deletions generated on key putative biosynthetic genes of the gene cluster.

(a) Deletion of *sclN* gene; expected amplicon from *S. albus/scl*  $\Delta M4$  (M): 4,995 bp; expected amplicon from *S. albus/scl*  $\Delta sclM4 \Delta sclN$  (N1, N2): 1,747bp. (b) Deletion of *sclQ1-4* operon; expected amplicon from *S. albus/scl*  $\Delta sclM4$  (M): 5,722 bp; expected amplicon from *S. albus/scl*  $\Delta M4 \Delta sclQ1-4$  (Q1, Q2, Q3): 1,699 bp. (c) Deletion of *sclA* gene; expected amplicon from *S. albus/scl*  $\Delta sclM4$  (M): 4,643 bp; expected amplicon from *S. albus/scl*  $\Delta sclM4$  (M): 4,643 bp;



**Figure S4.** Determination of  $IC_{50}$  for scleric acid against Nicotinamide *N*-methyltransferase (NNMT). (a) *S*-adenosyl-*L*-homocysteine (SAH) concentration response curve assay; (b) 1-methylnicotinamide (MNAN) concentration response curve assay.

Table S6. MIC values determined for scleric acid against ESKAPE pathogenic bacterial strains.

| Bacterial strain                  | MIC (µg/ml) |
|-----------------------------------|-------------|
| Staphylococcus aureus USA300      | >1024       |
| Enterobacter cloacae NCTC 13405   | >1024       |
| Acinetobacter baumanii ATCC 19606 | >1024       |
| Pseudomonas aeruginosa ATCC 27853 | >1024       |
| Enterococcus faecium ATCC 12202   | >1024       |
| Klebsiella pneumoniae ATCC 700603 | >1024       |

## 2. Chemistry supplementary results

2.1. Characterisation of scleric acid and L-proline-oxyacetic acid intermediate



| NMR assignment in MeOD, 700MHz, for the major scleric acid rotamer |                            |                       |              |  |  |  |
|--------------------------------------------------------------------|----------------------------|-----------------------|--------------|--|--|--|
| Position, C                                                        | <sup>1</sup> H (ppm, J Hz) | <sup>13</sup> C (ppm) | Key HMBC     |  |  |  |
| 1                                                                  |                            | 175.2                 |              |  |  |  |
| 2                                                                  | 4.49, (dd, 3.3, 8.8)       | 60.2                  | C1, C4, C6   |  |  |  |
| 3                                                                  | 2.05, 2.29 (m)             | 29.7                  | C1, C5       |  |  |  |
| 4                                                                  | 2.09, (m)                  | 25.5                  | C2, C3, C5   |  |  |  |
| 5                                                                  | 3.65, 3.71 (m, m)          | 46.9                  | C2, C3, C6   |  |  |  |
| 6                                                                  |                            | 167.6                 |              |  |  |  |
| 7                                                                  | 4.96, 5.10, (d, d, 15, 15) | 62.9                  | C6, C8       |  |  |  |
| 8                                                                  |                            | 167.1                 |              |  |  |  |
| 9                                                                  |                            | 130.6                 |              |  |  |  |
| 10                                                                 | 8.08 (d, 8.0)              | 130.4                 | C8, C11, C13 |  |  |  |
| 11                                                                 | 7.50 (t, 8.0)              | 129.3                 | C8, C12, C14 |  |  |  |
| 12                                                                 | 7.63 (t, 8.0)              | 134.2                 | C10, C14     |  |  |  |
| 13                                                                 | 7.50 (t, 8.0)              | 129.3                 | C8, C12, C14 |  |  |  |
| 14                                                                 | 8.08 (t, 8.0)              | 130.4                 | C8, C11, C13 |  |  |  |
|                                                                    |                            |                       |              |  |  |  |
| NMR assignment in MeOD, 700MHz, for the minor scleric acid rotamer |                            |                       |              |  |  |  |
| Position, C                                                        | <sup>1</sup> H (ppm, J Hz) | <sup>13</sup> C (ppm) | Key HMBC     |  |  |  |
| 1                                                                  |                            | 174.6                 |              |  |  |  |

С

а

b

| osition, C | <sup>1</sup> H (ppm, J Hz) | <sup>15</sup> C (ppm) | Key HMBC     |
|------------|----------------------------|-----------------------|--------------|
| 1          |                            | 174.6                 |              |
| 2          | 4.69, (d, 8.0)             | 60.1                  | C1, C4, C6   |
| 3          | 2.30, 2.37 (m, m)          | 32.1                  | C1, C5       |
| 4          | 1.89, 1.95, (m, m)         | 22.7                  | C2, C3, C5   |
| 5          | 3.57, 3.62 (m, m)          | 47.7                  | C2, C3, C6   |
| 6          |                            | 167.8                 |              |
| 7          | 4.78, 5.03, (d, d, 15, 15) | 62.7                  | C6, C8       |
| 8          |                            | 167.1                 |              |
| 9          |                            | 130.6                 |              |
| 10         | 8.08 (d, 8.0)              | 130.4                 | C8, C11, C13 |
| 11         | 7.50 (t, 8.0)              | 129.3                 | C8, C12, C14 |
| 12         | 7.63 (t, 8.0)              | 134.2                 | C10, C14     |
| 13         | 7.50 (t, 8.0)              | 129.3                 | C8, C12, C14 |
| 14         | 8.08 (t, 8.0)              | 130.4                 | C8, C11, C13 |
|            | · · ·                      |                       |              |

Figure S5. NMR assignment (700 MHz, CD<sub>3</sub>OD) of scleric acid (m/z 278.1020,  $C_{14}H_{15}NO_5$ ). (a) Chemical structure of scleric acid. (b) NMR assignment of the major rotamer. (c) NMR assignment of the minor rotamer of scleric acid (chemical shifts shown in light grey are those that differ from the major rotamer).



**Figure S6.** <sup>1</sup>H-NMR spectrum (700 MHz, CD<sub>3</sub>OD) of scleric acid isolated from *S. albus/scl*  $\Delta$ *sclM4* (top panel) and synthetic scleric acid (lower panel).



Figure S7. COSY spectrum (700 MHz, CD<sub>3</sub>OD) of scleric acid.



Figure S8. HSQC spectrum (700 MHz, CD<sub>3</sub>OD) of scleric acid.



Figure S9. HMBC spectrum (700 MHz, CD<sub>3</sub>OD) of scleric acid.



**Figure S10**. LC-MS analyses of proline residues derivatised with Marfey's reagent for absolute stereochemistry determination.<sup>9</sup>

Extracted ion chromatogram for derivatised proline originating from: (a) scleric acid (b) scleric acid and co-injected with a derivatised *L*-proline authentic standard (c) scleric acid and co-injected with a derivatised *D*-proline authentic standard (d) *L*-proline authentic standard (e) *D*-proline authentic standard.



**Figure S11.** <sup>1</sup>H-NMR spectrum (500 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-((benzoyl-*L*-prolyl)oxy)acetic acid.



**Figure S12.** COSY spectrum (500 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-((benzoyl-*L*-prolyl)oxy)acetic acid.



**Figure S13.** HSQC spectrum (500 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-((benzoyl-*L*-prolyl)oxy)acetic acid.



**Figure S14.** HMBC spectrum (500 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-((benzoyl-*L*-prolyl)oxy)acetic acid.



**Figure S15.** <sup>13</sup>C spectrum (125 MHz, CD<sub>3</sub>OD) of the synthetic scleric acid analogue 2-((benzoyl-*L*-prolyl)oxy)acetic acid.



**Figure S16.** Restored production of scleric acid in *S. albus/scl*  $\Delta$ *sclM4*  $\Delta$ *Q1-4* strain upon feeding with glycolic acid.

(a) UHPLC-HRMS extracted ion chromatograms in positive mode for m/z=278.1020 of glycolic acid standard (trace in purple), extract of *S. albus/scl*  $\Delta sclM4$   $\Delta Q1-4$  grown on SM medium with no supplements (trace in blue), with 5 mM glycolic acid (trace in green) and extract of *S. albus/scl*  $\Delta sclM4$  (trace in orange). (b) UV chromatogram of scleric acid. (c) High-resolution mass spectrometry in positive mode of scleric acid.



**Figure S17.** Scleric acid increment in precursor enriched medium detected with UHPLC-HRMS. (a) Extracted ion chromatograms in positive mode for m/z=278.1020 of crude extracts of *S. albus/scl*  $\Delta sclM4$  grown on SM medium with no supplements (trace in orange), with 5 mM benzoic acid (trace in red), with 5 mM glycolic acid (trace in blue), with 5 mM *L*-proline (trace in green). (b) UV chromatogram of scleric acid. (c) High-resolution mass spectrometry in positive mode of scleric acid.



**Figure S18.** Detection of the *L*-proline-oxyacetic acid intermediate with UHPLC-HRMS. (a) Extracted ion chromatograms in positive mode for m/z=174.0761 of crude extracts of *S. albus/scl*  $\Delta sclM4$  (trace in orange), *S. albus/scl*  $\Delta sclM4$   $\Delta sclQ1-4$  (blue), *S. albus/scl*  $\Delta sclM4$   $\Delta sclN$  (green), *S. albus/scl*  $\Delta sclM4$   $\Delta sclA$  (red) and *L*-proline-oxyacetic acid synthetic standard (purple). (c) UV chromatogram of *L*-proline-oxyacetic acid. (d) High-resolution mass spectrometry in positive mode of *L*-proline-oxyacetic acid.



**Figure S19.** Detection of scleric acid by UHPLC-HRMS in *S. albus/scl*  $\Delta$ *sclM4*  $\Delta$ *sclN* fed with *L*-proline-oxyacetic acid.

(a) Extracted ion chromatograms in positive mode for m/z=278.1020 of crude extracts of *S. albus/scl*  $\Delta sclM4 \Delta sclN$  fed with 5 mM *L*-proline-oxyacetic acid (trace in orange) and control strain *S. albus/scl*  $\Delta sclM4 \Delta sclN$  (trace in green). (b) UV chromatogram of scleric acid. (c) High-resolution mass spectrometry in positive mode of scleric acid.

#### 2.2. Synthetic Chemistry

All chemicals were purchased from Sigma-Aldrich, VWR, Alfa Aesar, Fluorochem or Carbosynth and used without further purification. Dry solvents were purchased from Fisher Scientific or dried using solvent towers. Reagent grade solvents were purchased from Fisher Scientific.

Analytical TLC was performed on aluminium sheets precoated with silica gel 60 ( $F_{254}$ , Merck) and visualised under UV light (short wave) and using potassium permanganate or ninhydrin stains. Silica gel was purchased from Sigma-Aldrich (Tech grade, pore size 60 Å, 230-400 mesh).

<sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra were recorded in  $d_4$ -MeOD or CDCl<sub>3</sub> on the following Bruker Avance instruments: DPX-300, DPX-400, DRX-500 or AV-600.

High-resolution mass spectra (HRMS) were obtained using electrospray ionisation (ESI) on a MaXis UHR-TOF (Bruker Daltonics) or on a Bruker MaXis (ESI-HR-MS).

Optical rotations were obtained using an AA-1000 Polarimeter from Optical Activity Ltd.





Figure S20. Schematic representation of synthetic route to scleric acid.



Benzyl 2-hydroxyacetate

Glycolic acid (1.000 g, 13.15 mmol) under Argon was dissolved in acetonitrile, and benzyl bromide (1.25 mL, 10.51 mmol) was added and cooled to 0 °C. 1,8-Diazabicyclo(5.4.0)undec-7-ene (DBU, 1.57 mL, 10.51 mmol) was then added dropwise and allowed to return to room temperature over 2 hours. The solvent was removed *in vacuo* and the residue redissolved in EtOAc (40 mL) and H<sub>2</sub>O (10 mL). The layers were separated, and the organic layer was washed with 1M HCl (40 mL) and brine (2 x 40 mL), dried on MgSO<sub>4(s)</sub>, and finally concentrated to afford benzyl 2-hydroxyacetate as a colourless oil (1.711 g, 98 %). The characterisation data were in accordance with those previously reported in the literature.<sup>10</sup>

<sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 – 7.32 (5H, s, Ar*H*), 5.24 (2H, s, C*H*<sub>2</sub>), 4.20 (2H, d, 5.4 Hz, C*H*<sub>2</sub>OH), 2.34 (1H, t, 5.4 Hz, CH<sub>2</sub>OH); LRMS (ESI): calculated for C<sub>9</sub>H<sub>10</sub>O<sub>3</sub>Na: 189.1, found: 188.7.



2-(benzyloxy)-2-oxoethyl benzoate

Benzyl 2-hydroxyacetate (1.711 g, 10.30 mmol) was dissolved in anhydrous dichloromethane (DCM, 30 mL) under an Argon atmosphere and cooled to 0 °C. Triethylamine (Et<sub>3</sub>N, 1.66 mL, 11.90 mmol) was added, and benzoyl chloride (1.32 mL, 11.30 mmol) was added dropwise. The mixture was allowed to return to room temperature and stirred for 5 hours. 1M HCl (30 mL) was added to the reaction mixture, and the layers were separated. The organic phase was washed with brine (30 mL), dried on  $MgSO_{4(s)}$ , filtered and concentrated to afford 2-(benzyloxy)-2-oxoethyl benzoate as a white solid (2.452 g, 84 %).

The characterisation data were in accordance with those previously reported in the literature.<sup>11</sup>

<sup>1</sup>**H** NMR (300 MHz, CDCl<sub>3</sub>): δ 8.09 (2H, m, Ar*H*), 7.59 (1H, m, Ar*H*), 7.46 (2H, m, Ar*H*), 7.36 (5H, m, Ar*H*), 5.24 (2H, s, C*H*<sub>2</sub>OCO), 4.90 (2H, s, COC*H*<sub>2</sub>O); **LRMS (ESI)**: calculated for C<sub>16</sub>H<sub>14</sub>O<sub>4</sub>Na [M+Na]<sup>+</sup>: 293.1, found: 292.8.

#### 2-(benzoyloxy)acetic acid

2-(benzyloxy)-2-oxoethyl benzoate (992 mg, 3.67 mmol) and 10 % Pd/C (312 mg, 2.94 mmol) under an Argon atmosphere were dissolved in anhydrous MeOH, and Argon gas bubbled through the solution for 10 minutes. The argon atmosphere was then replaced with a hydrogen atmosphere and the reaction stirred at room temperature overnight. The mixture was then filtered through Celite, the Celite pad washed with MeOH and the filtrate concentrated to afforded 2-(benzoyloxy)acetic acid as a white solid (612 mg, 93 %).

The characterisation data were in accordance with those previously reported in the literature.<sup>12</sup>

<sup>1</sup>**H NMR** (300 MHz, MeOD): δ 8.06 (2H, m, Ar*H*), 7.57 (1H, m, Ar*H*), 7.43 (2H, m, Ar*H*), 4.87 (2H, s, COC*H*<sub>2</sub>O); **LRMS (ESI):** calculated for C<sub>9</sub>H<sub>7</sub>O<sub>4</sub> [M-H]<sup>-</sup>: 179.0, found: 179.0.

## 2-chloro-2-oxoethyl benzoate

2-(benzoyloxy)acetic acid (251 mg, 1.39 mmol) was dissolved in anhydrous toluene (10 mL) under an Argon atmosphere, and thionyl chloride (1 ml, 5.15 mmol) was added. The mixture was heated to reflux for 3 hours and then concentrated to dryness to afford crude 2-chloro-2-oxoethyl benzoate as a brown oil. The material was used directly in the next step without further purification.

The characterisation data were in accordance with those previously reported in the literature.<sup>12</sup>

<sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>): δ 8.07 (2H, m, Ar*H*), 7.63 (1H, m, Ar*H*), 7.48 (2H, m, Ar*H*), 5.15 (OC*H*<sub>2</sub>COCl).



## Scleric acid ((2-(benzoyloxy)acetyl)-L-proline)

*L*-proline (151 mg, 1.32 mmol) was suspended in anhydrous DCM (10 ml) under Argon. Et<sub>3</sub>N was added dropwise, and the mixture cooled to 0 °C. 2-chloro-2-oxoethyl benzoate (276 mg, 1.39 mmol) was dissolved in anhydrous DCM (6 ml) and added dropwise to the proline suspension and stirred for 3 hours. This organic layer was washed with 1M HCl (15 ml) and brine (15 ml), dried on MgSO<sub>4(s)</sub>, filtered and concentrated. The residue was purified by silica gel chromatography eluting with EtOAc to afford scleric acid as a white solid (269 mg, 73 %). Rf: 0.23 in 1:9 MeOH:DCM;  $[\alpha]_D^{20} = -65$  (c 0.195, MeOH);

Major rotamer: <sup>1</sup>H NMR (700 MHz, MeOD): δ 8.09 (2H, m, COCCH), 7.63 (1H, m, COCCHCHCH), 7.50 (2H, m, COCCHCH), 5.10 (1H, dd, 15.0 Hz, COCH<sub>2</sub>O), 4.95 (1H, dd, 15.0 Hz, COCH<sub>2</sub>O), 4.48 (1H, dd, 9 Hz, 3.4 Hz, NCH), 3.70 - 3.63 (2H, m, NCH<sub>2</sub>), 2.31 - 2.24 (1H, m, NCHCH<sub>2</sub>), 2.10 - 2.01 (3H, m, NCHCH<sub>2</sub>, NCHCH<sub>2</sub>CH<sub>2</sub>); <sup>13</sup>C NMR (125 MHz, MeOD): 175.4 (CO<sub>2</sub>H), 168.1 (NCO), 167.5 (OCOC(CH)<sub>2</sub>), 134.5 (COCCHCHCH), 130.8 (COCCH), 130.8 (OCOCCH), 129.6 (COCCHCH), 63.1  $(COCH_2O),$ 60.5 (NCH), 47.1  $(NCH_2)$ , 30.0  $(NCHCH_2),$ 25.7  $(NCH_2CH_2);$ <u>Minor rotamer</u>: <sup>1</sup>H NMR (700 MHz, MeOD): δ 8.09 (2H, m, COCCH), 7.63 (1H, m, COCCHCHCH), 7.50 (2H, m, COCCHCH), 5.04 (1H, dd, 14.7 Hz, COCH<sub>2</sub>O), 4.80 (1H, dd, 14.7 Hz, COCH<sub>2</sub>O), 4.69 (1H, dd, 2.3 Hz, 8.5 Hz, NCH), 3.60 (2H, m, NCH<sub>2</sub>), 2.37 (1H, m, NCHCH<sub>2</sub>), 1.93 (3H, m, NCHCH<sub>2</sub>, NCH<sub>2</sub>CH<sub>2</sub>); <sup>13</sup>C NMR (125 MHz, MeOD): 174.8 (CO<sub>2</sub>H), 168.6 (NCO), 167.5 (OCOC(CH)<sub>2</sub>), 134.5 (COCCHCHCH), 130.8 (COCCH), 130.8 (OCOCCH), 129.6 (COCCHCH), 63.3 (COCH<sub>2</sub>O), 60.1

(N*C*H), 48.0 (N*C*H<sub>2</sub>), 32.3 (N*C*H*C*H<sub>2</sub>), 23.1 (N*C*H<sub>2</sub>*C*H<sub>2</sub>); **HRMS (ESI)**: calculated for C<sub>14</sub>H<sub>15</sub>O<sub>5</sub>NNa [M+Na]<sup>+</sup>: 300.0842, found: 300.0842.

#### 2.2.2.Synthesis of the scleric acid structural isomer



**Figure S21.** Schematic representation of synthetic route to the scleric acid structural isomer 2-((benzoyl-prolyl)oxy)acetic acid.



2-(benzyloxy)-2-oxoethyl benzoylprolinate

Benzyl 2-hydroxyacetate (18 mg, 0.109 mmol), 1-benzoyl-pyrroldine-2-carboxylic acid (20 mg, 0.091 mmol) and 4-dimethylaminopyridine (DMAP, 2.2 mg, 0.018 mmol) under an Argon atmosphere were dissolved in anhydrous DCM (1 mL). 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) (21  $\mu$ L, 0.119 mmol) was added, and the mixture stirred at room temperature overnight. The mixture was then diluted with DCM and washed with sat. NaHCO<sub>3</sub> (5 mL), 0.1 M HCl (5 mL) and brine (5 mL). The organic layer was dried on MgSO<sub>4(s)</sub>, filtered and concentrated. The residue was purified using silica gel chromatography (eluting from 3:1 Petroleum ether:EtOAc to 3:2 Petroleum ether:EtOAc) to afford 2-(benzyloxy)-2-oxoethyl benzoylprolinate as a white solid (16 mg, 49 %).

<sup>1</sup>**H** NMR (500 MHz, ):  $\delta$  7.57-7.38 (5H, m, Ar*H*), 4.74 (1H, dd, 15.8 Hz, COC*H*<sub>2</sub>O), 4.69 (1H, 8.5 Hz, 5.2 Hz, NC*H*CO), 4.58 (1H, dd, 15.8 Hz, COC*H*<sub>2</sub>O), 3.65-3.53 (2H, m, NC*H*<sub>2</sub>), 2.43-2.10 (2H, m, NCH*CH*<sub>2</sub>), 2.09-1.79 (2H, m, NCH<sub>2</sub>C*H*<sub>2</sub>); <sup>13</sup>**C** NMR (125 MHz, ):  $\delta$  173.2 (COOH), 173.2 (CH*C*OO), 137.2 (CH<sub>2</sub>CCHCH), 131.6 (Ar), 129.6 (Ar), 128.1 (Ar), 62.9 (CH<sub>2</sub>COOH), 60.6 (NCH), 51.3 (NCH<sub>2</sub>), 30.2 (NCH*C*H<sub>2</sub>), 26.1 (NCH<sub>2</sub>*C*H<sub>2</sub>); **HRMS(ESI):** calculated for C<sub>21</sub>H<sub>21</sub>NO<sub>5</sub>Na [M+Na]<sup>+</sup>: 390.1312, found: 390.1312.

2-((benzoylprolyl)oxy)acetic acid

2-(benzyloxy)-2-oxoethyl benzoylprolinate (16 mg, 0.058 mmol), 10% Pd/C (5 mg, 0.046 mmol) under an Argon atmosphere were dissolved in dry MeOH (2 mL), and the atmosphere replaced with hydrogen. The mixture was stirred at room temperature overnight, then filtered through Celite and concentrated to afford 2-((benzoylprolyl)oxy)acetic acid as a colourless oil (12 mg, 98 %).

<sup>1</sup>**H** NMR (500 MHz, MeOD):  $\delta$  7.57 -7.38 (5H, m, Ar*H*), 4.74 (1H, dd, 15.8 Hz, C*H*<sub>2</sub>COOH), 4.58 (1H, dd, 15.8 Hz, C*H*<sub>2</sub>COOH), 4.69 (1H, dd, 5.2 Hz, 8.5 Hz, NCHCOO), 3.65 – 3.53 (2H, m, C*H*<sub>2</sub>N), 3.43 – 2.19 (2H, m, C*H*<sub>2</sub>CHN), 2.09 – 1.79 (2H, m, C*H*<sub>2</sub>CH<sub>2</sub>N); <sup>13</sup>C NMR (125 MHz, MeOD)  $\delta$  173.2 (CH<sub>2</sub>COOH), 173.2 (NCHCOO), 173.1 (ArCON), 137.2 (CHCHCCO), 131.6 (CHCCO), 129.6 (CHCHCHCCO), 128.1 (CHCHCCO), 62.9 (CH<sub>2</sub>COOH), 60.6 (NCHCOO), 46.9 (CH<sub>2</sub>N), 29.7 (CH<sub>2</sub>CHN), 25.5 (CH<sub>2</sub>CH<sub>2</sub>N); **HRMS(ESI)**: calculated for C<sub>14</sub>H<sub>15</sub>NO<sub>5</sub>Na [M+Na]<sup>+</sup>: 300.0842, found: 300.0843.



Figure S22. Schematic representation of synthetic route to *L*-proline-oxyacetic acid.



## Benzyl prolinate hydrochloride

Benzyl alcohol (13.5 mL, 130.4 mmol) was cooled to 0 °C and SOCl<sub>2</sub> (1.27 mL, 17.4 mmol) was added dropwise. *L*-proline (1.00 g, 8.69 mmol) was added in one portion and the mixture stirred at 0 °C for 2 hours, then for further 24 hours at room temperature. The mixture was cooled to -20 °C and the product was triturated in Et<sub>2</sub>O (150 mL) to afford benzyl prolinate hydrochloride as a white solid (1.653 g, 79%).

The characterisation data were in accordance with those previously reported in the literature.<sup>13</sup>

<sup>1</sup>H NMR (300 MHz, MeOD):  $\delta$  7.40 (5H, m, Ar*H*), 5.29 (2H, dd, 12.1 Hz, 4.0 Hz, ArC*H*<sub>2</sub>O), 4.49 (1H, t, 7.7 Hz, OOCC*H*NH), 3.39 (2H, m, NC*H*<sub>2</sub>), 2.44 (1H, m, NHCHC*H*<sub>2</sub>), 2.09 (3H, m, NHCHC*H*<sub>2</sub>, NHC*H*<sub>2</sub>); **LRMS (ESI):** calculated for C<sub>12</sub>H<sub>16</sub>O<sub>2</sub>N [M+H]<sup>+</sup>: 206.1, found: 205.6.



benzyl (2-(benzyloxy)acetyl)-L-prolinate

Benzyl prolinate hydrochloride (500 mg, 2.07 mmol) was suspended in DCM under an inert atmosphere, and Et<sub>3</sub>N (606  $\mu$ L, 4.35 mmol) was added. The mixture was cooled to 0 °C, and benzyloxyacetyl chloride (402  $\mu$ L, 2.18 mmol) was added dropwise. The reaction mixture was allowed

to warm to room temperature and then stirred overnight. The reaction mixture was concentrated and the crude residue redissolved in EtOAc (25 mL). The organic phase was washed with 1M HCl (20 mL), brine (20 mL) and sat. NaHCO<sub>3</sub> (20 mL), and then dried on MgSO<sub>4(s)</sub>, filtered and concentrated. The resulting residue was purified by silica gel chromatography (1:4 EtOAc:Petroleum ether to 1:1 EtOAc:Petroleum ether) to afford benzyl (2-(benzyloxy)acetyl)-*L*-prolinate as a colourless oil (681 mg, 93%) with a 3:1 mixture of rotamers. **R**<sub>f</sub>: 0.30 in 1:1 EtOAc: Petroleum ether.

<u>Major rotamer</u>: <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.37 – 7.27 (10H, m, Ar*H*), 5.18 (2H, dd, 12.3 Hz, 8.9 Hz, CC*H*<sub>2</sub>OCO), 4.62 (2H, m, CH<sub>2</sub>OC*H*<sub>2</sub>Ar), 4.60 (1H, m, NHC*H*COO), 4.16 (2H, dd, 14.3 Hz, 3.2 Hz, COC*H*<sub>2</sub>O), 3.62 (1H, m, NC*H*<sub>2</sub>), 3.52 (1H, m, NC*H*<sub>2</sub>), 2.17 (1H, m, NCHC*H*<sub>2</sub>), 1.96 (1H, m, NCHC*H*<sub>2</sub>), 2.03 (1H, m, NCH<sub>2</sub>C*H*<sub>2</sub>), 1.95 (1H, m, NCH<sub>2</sub>C*H*<sub>2</sub>); <sup>13</sup>C **NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.1 (CHCOO), 168.5 (NCOCH<sub>2</sub>), 137.5 (CH<sub>2</sub>OCH<sub>2</sub>C(CH)<sub>2</sub>), 135.8 (COOCH<sub>2</sub>C(CH)<sub>2</sub>), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 73.2 (CH<sub>2</sub>OCH<sub>2</sub>C(CH)<sub>2</sub>), 67.0 (COOCH<sub>2</sub>C(CH)<sub>2</sub>), 59.2 (NCH), 46.5 (NCH<sub>2</sub>), 28.9 (NCHCH<sub>2</sub>), 25.1 (NCH<sub>2</sub>CH<sub>2</sub>);

<u>Minor rotamer</u>: <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.37 – 7.27 (10H, m, Ar*H*), 5.04 (1H, dd, 12.1 Hz, CC*H*<sub>2</sub>OCO), 4.92 (1H, dd, 12.2 Hz, CC*H*<sub>2</sub>OCO), 4.60 (1H, m, NHC*H*COO), 4.42 (2H, m, CH<sub>2</sub>OC*H*<sub>2</sub>Ar), 4.04 (2H, s, COC*H*<sub>2</sub>O), 3.68, 3.62 (2H, m, NC*H*<sub>2</sub>), 2.19, 2.11 (2H, m, NCHC*H*<sub>2</sub>), 1.86 (2H, m, NCH<sub>2</sub>C*H*<sub>2</sub>); <sup>13</sup>**C NMR** (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.1 (CHCOO), 168.6 (NCOCH<sub>2</sub>), 137.2 (CH<sub>2</sub>OCH<sub>2</sub>C(CH)<sub>2</sub>), 135.5 (COOCH<sub>2</sub>C(CH)<sub>2</sub>), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.6 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 128.0 (CH), 73.4 (CH<sub>2</sub>OCH<sub>2</sub>C(CH)<sub>2</sub>), 70.7 (NCOCH<sub>2</sub>), 67.1 (COOCH<sub>2</sub>C(CH)<sub>2</sub>), 59.2 (NCH), 47.1 (NCH<sub>2</sub>), 31.7 (NCHCH<sub>2</sub>), 22.0 (NCH<sub>2</sub>CH<sub>2</sub>); **HRMS (ESI**): calculated for C<sub>21</sub>H<sub>23</sub>O<sub>4</sub>NNa [M+Na]<sup>+</sup>: 376.1519, found: 376.1522.

L-proline-oxyacetic acid intermediate ((2-hydroxyacetyl)-L-proline)

Benzyl (2-(benzyloxy)acetyl)-*L*-prolinate (51 mg, 0.141 mmol), 10 % Pd/C (12 mg, 0.113 mmol) and ammonium formate (46 mg, 0.707 mmol) under an Argon atmosphere were dissolved in anhydrous MeOH (5 ml), and heated to reflux for 4 hours. The mixture was cooled to room temperature and filtered trhough Celite to afford (2-hydroxyacetyl)-*L*-proline as a hygroscopic white solid (24 mg, 97 %) and a 1:1 mixture of rotamers which were not distinguishable by NMR.

<sup>1</sup>**H NMR** (400 MHz, MeOD): δ 4.36 (1H, dd, 3.2 Hz, 8.7 Hz, NC*H*), 4.19 (2H, dd, 15.6 Hz, 6.5 Hz, COC*H*<sub>2</sub>OH), 4.16 (1H, dd, 3.4 Hz, 7.7 Hz, NC*H*), 4.09 (2H, dd, 15.4 Hz, 16.2 Hz, COC*H*<sub>2</sub>OH), 3.63, 3.53 (2H, m, NC*H*<sub>2</sub>), 3.53, 3.42 (2H, m, NC*H*<sub>2</sub>), 2.25, 2.15 (2H, m, NCH*CH*<sub>2</sub>), 2.15, 2.00 (2H, m, NCH*CH*<sub>2</sub>), 2.01, 1.94 (2H, m, NCH<sub>2</sub>C*H*<sub>2</sub>), 1.90, 1.86 (2H, m, NCH<sub>2</sub>C*H*<sub>2</sub>); <sup>13</sup>C **NMR** (100 MHz, MeOD): δ 179.3 (COOH), 178.8 (COOH), 172.9 (NCOCH<sub>2</sub>), 172.1 (NCOCH<sub>2</sub>), 62.8 (NCH), 62.2 (NCH), 61.8 (COCH<sub>2</sub>OH), 61.5 (COCH<sub>2</sub>OH), 47.9 (NCH<sub>2</sub>), 46.6 (NCH<sub>2</sub>), 33.0 (NCH*C*H<sub>2</sub>), 30.7 (NCH*C*H<sub>2</sub>), 25.6 (NCH<sub>2</sub>CH<sub>2</sub>), 23.4 (NCH<sub>2</sub>CH<sub>2</sub>); **HRMS (ESI)**: calculated for C<sub>7</sub>H<sub>11</sub>O<sub>4</sub>NNa: 196.0580, found: 196.0583.

### References

- 1. M.J. Thirumalachar, Nature, 1955, 176, 934.
- N. Zaburannyi, M. Rabyk, B. Ostash, V. Fedorenko and A. Luzhetskyy, *BMC Genomics* 2014, 15, 97.
- 3. J.P. Gomez-Escribano, M.J. Bibb, Microbial. Biotechnol., 2011, 4, 207.
- D.J. MacNeil, J.L. Occi, K.M. Gewain, T. MacNeil, P.H. Gibbons, C.L. Ruby, S.J. Danis, *Gene* 1992, 115, 119.
- 5. F. Flett, V. Mersinias, C.P., FEMS Microbiol. Lett., 1997, 155, 223.
- X. Tang, J. Li, N. Millán-Aguiñaga, J.J. Zhang, E.C. O'Neill, J.A. Ugalde, P.R. Jensen, S.M. Mantovani, and B. S. Moore, *ACS Chem. Biol.*, 2015, 10, 2841.
- 7. R.E. Cobb, Y. Wang and H. Zhao, ACS Synth. Biol., 2015, 4, 723.
- 8. E.L.C. de los Santos and G.L. Challis, *bioRxiv*, 2017, doi: 10.1101/119214.
- 9. P. Marfey, Carlsberg Res. Commun., 1984, 49, 591.
- M. Gynther, J. Ropponen, K. Laine, J. Leppänen, P. Haapakoski, L. Peura, T. Järvinen and J. Rautio, *J. Med. Chem.*, 2009, **52**, 3348.
- 11. B. J. W. Barratt, C. J. Easton, D. J. Henry, I. H. W. Li, L. Radom and J. S. Simpson, *J. Am. Chem. Soc.*, 2004, **126**, 13306.
- 12. S. J. Danishefsky, W. H. Pearson and B. E. Segmullert, J. Am. Chem. Soc., 1985, 5, 1280.
- Z. Li, I. O. Lebedyeva, V. M. Golubovskaya, W. G. Cance, K. A. Alamry, H. M. Faidallah, C. Dennis Hall and A. R. Katritzky, *Bioorganic Med. Chem.*, 2015, 23, 5056.