Chr	Pos	10	۸1	rs ID	Gana	٨E	Locus discovered in	Effect estimate	log OP ^k	Туро	Psa
	F 03	AU	AI	1310	Gene	Ai		from	log OK _l	туре	КЗЧ
1	207692049	А	G	rs6656401	CR1	0.803	Lambert <i>et al.</i> (2009)	Lambert et al. (2013)	-0.17	Genotyped	-
2	127892810	С	Т	rs6733839	BIN1	0.409	Seshadri et al. (2010)	Lambert et al. (2013)	0.20	Genotyped	-
2	234068476	С	Т	rs35349669	INPP5D	0.512	Lambert et al. (2013)	Lambert et al. (2013)	0.08	Genotyped	-
4	11711232	Т	G	rs13113697	HS3ST1	0.282	Desikan et al. (2015)	Desikan <i>et al</i> . (2015)	-0.07	Imputed	0.96
5	88223420	G	А	rs190982	MEF2C	0.408	Lambert et al. (2013)	Lambert et al. (2013)	0.08	Genotyped	-
6	32578530	С	А	rs9271192	HLA-DRB1	0.724	Lambert et al. (2013)	Lambert et al. (2013)	-0.11	Genotyped	-
6	41129207	С	Т	rs143332484	TREM2 R62H	0.007	Sims <i>et al.</i> (2017)	Sims et al. (2017)	0.50	Genotyped	-
6	41129252	С	Т	rs75932628	TREM2 R47H	0.001	Guerreiro et al. (2013), Jonsson et al. (2013)	Sims et al. (2017)	0.89	Imputed	0.68
6	47487762	А	G	rs10948363	CD2AP	0.266	Hollingworth et al. (2011), Naj et al. (2011)	Lambert et al. (2013)	0.10	Genotyped	-
7	37841534	А	G	rs2718058	NME8	0.373	Lambert et al. (2013)	Lambert et al. (2013)	-0.08	Genotyped	-
7	100004446	С	Т	rs1476679	ZCWPW1	0.713	Lambert et al. (2013)	Lambert et al. (2013)	0.09	Genotyped	-
7	143110762	G	А	rs11771145	EPHA1	0.338	Hollingworth et al. (2011), Naj et al. (2011)	Lambert et al. (2013)	-0.10	Genotyped	-
8	27195121	Т	С	rs28834970	PTK2B	0.366	Lambert et al. (2013)	Lambert et al. (2013)	0.10	Genotyped	-
8	27467686	С	Т	rs9331896	CLU	0.379	Harold et al. (2009), Lambert et al. (2009)	Lambert et al. (2013)	0.15	Genotyped	-
10	11720308	А	G	rs7920721	ECHDC3	0.387	Desikan et al. (2015)	Desikan <i>et al.</i> (2015)	0.07	Imputed	0.98
11	47557871	Т	С	rs10838725	CELF1	0.316	Lambert et al. (2013)	Lambert et al. (2013)	0.08	Genotyped	-
11	59923508	А	G	rs983392	MS4A6A	0.403	Hollingworth et al. (2011), Naj et al. (2011)	Lambert et al. (2013)	-0.10	Genotyped	-
11	85867875	А	G	rs10792832	PICALM	0.642	Harold et al. (2009)	Lambert et al. (2013)	0.14	Genotyped	-
11	121435587	Т	С	rs11218343	SORL1	0.039	Lambert et al. (2013)	Lambert et al. (2013)	-0.26	Genotyped	-
14	53400629	Т	С	rs17125944	FERMT2	0.092	Lambert et al. (2013)	Lambert et al. (2013)	0.13	Genotyped	-
14	92926952	G	Т	rs10498633	SLC24A4-RIN3	0.217	Lambert et al. (2013)	Lambert et al. (2013)	-0.09	Genotyped	-
16	81942028	С	G	rs72824905	PLCG2	0.015	Sims <i>et al.</i> (2017)	Sims et al. (2017)	-0.39	Imputed	0.88
17	44353222	Т	G	rs2732703	KANSL1	0.127	Jun <i>et al.</i> (2016)	Lambert et al. (2013)	-0.14	Imputed	0.81
17	47297297	Т	С	rs616338	ABI3	0.006	Sims <i>et al.</i> (2017)	Sims et al. (2017)	-0.36	Imputed	0.71
19	1061892	G	С	rs200538373	ABCA7 G>C	0.001	Steinberg et al. (2015)	Steinberg et al. (2015)	-0.65	Imputed	0.76
19	1063443	А	G	rs4147929	ABCA7 A>G	0.810	Hollingworth et al. (2011), Naj et al. (2011)	Lambert et al. (2013)	-0.14	Imputed	0.99
19	45411941	Т	С	rs429358	ApoE E4	0.148	Saunders et al. (1993), Strittmatter et al. (1993)	Sims et al. (2017)	1.05	Imputed	0.99
19	45412079	С	Т	rs7412	ApoE E2	0.072	Corder et al. (1994)	Sims et al. (2017)	-0.79	Genotyped	-
20	55018260	Т	С	rs7274581	CASS4	0.083	Lambert et al. (2013)	Lambert et al. (2013)	-0.13	Genotyped	-

 Table S1: Characteristics of the 29 genome-wide significant genetic variants associated with Alzheimer's disease.

- 2 Abbreviations: Chr, chromosome; Pos, chromosomal position (GRCh37, hg19); A0, reference allele in HRC reference panel; A1, tested allele (alternative allele in HRC
- 3 reference panel); rs ID, variant ID; Gene, gene associated with the variant; AF, frequency of A1 in HRC reference panel; log OR^k_l, published log(odds ratio) and relative
- 4 standard errors, *i.e* the first or largest case-control study that reported the variant association with AD; *Type*, whether the variant was genotyped or imputed in our datasets;
- 5 *Rsq*, imputation quality for imputed variants. References to the papers reported in this table are: ^{4–17}.

6 Table S2: Human Genome Variation Society (HGVS) codes for the tested

7 variants

8

Genomic position	Rs ID	Ref HRC	Alt HRC	HGVS nomenclature
1:207692049	rs6656401	А	G	NC 000001.10:g.207692049A>G
2:127892810	rs6733839	С	Т	NC_000002.11:g.127892810C>T
2:234068476	rs35349669	С	Т	NC_000002.11:g.234068476C>T
4:11711232	rs13113697	Т	G	<u>NC_000004.11:g.11711232T>G</u>
5:88223420	rs190982	G	А	NC 000005.9:g.88223420G>A
6:32578530	rs9271192	С	А	NT_113891.2:g.4029235A>C
6:41129207	rs143332484	С	Т	<u>NC_000006.11:g.41129207C>T</u>
6:41129252	rs75932628	С	Т	<u>NC_000006.11:g.41129252C>T</u>
6:47487762	rs10948363	А	G	NC 000006.11:g.47487762A>G
7:37841534	rs2718058	А	G	NC 000007.13:g.37841534A>G
7:100004446	rs1476679	С	Т	NC_000007.13:g.100004446C>T
7:143110762	rs11771145	G	А	NC_000007.13:g.143110762G>A
8:27195121	rs28834970	Т	С	<u>NC_000008.10:g.27195121T>C</u>
8:27467686	rs9331896	С	Т	<u>NC_000008.10:g.27467686C>T</u>
10:11720308	rs7920721	А	G	NC_000010.10:g.11720308A>G
11:47557871	rs10838725	Т	С	<u>NC_000011.9:g.47557871T>C</u>
11:59923508	rs983392	А	G	NC 000011.9:g.59923508A>G
11:85867875	rs10792832	А	G	NC_000011.9:g.85867875A>G
11:121435587	rs11218343	Т	С	<u>NC_000011.9:g.121435587T>C</u>
14:53400629	rs17125944	Т	С	NC_000014.8:g.53400629T>C
14:92926952	rs10498633	G	Т	NC_000014.8:g.92926952G>T
16:81942028	rs72824905	С	G	NC 000016.9:g.81942028C>G
17:44353222	rs2732703	Т	G	NC_000017.10:g.44353222T>G
17:47297297	rs616338	Т	С	<u>NC_000017.10:g.47297297T>C</u>
19:1061892	rs200538373	G	С	NC_000019.9:g.1061892G>C
19:1063443	rs4147929	А	G	NC_000019.9:g.1063443A>G
19:45411941	rs429358	Т	С	<u>NC_000019.9:g.45411941T>C</u>
19:45412079	rs7412	С	Т	NC 000019.9:g.45412079C>T
20:55018260	rs7274581	Т	С	NC 000020.10:g.55018260T>C

9

Abbreviations: Genomic position, chromosome and position an GRCh37 (hq19); Rs ID, variant identifier; Ref
 HRC, reference allele in Human Reference Consortium (HRC) panel; Alt HRC, alternative allele in HRC

12 panel; HGVS nomenclature, official nomenclature according to Human Genome Variation Society (HGVS)

13 and link to dbSNP database.

			Extreme	AD cases v (EA vs	vs. Normal Controls s. NC)	Normal AD cases <i>vs.</i> Extreme Controls (NA vs. EC)			
Rs ID	Gene	$\log OR_l^k$ (SE)	$\frac{\log OR_{EA-NC}^k}{(SE)}$	P-value _{EA-} NC	Е ^k _{EA-NC} (95% СІ, р)	$\log OR_{NA-EC}^k$ (SE)	P-valuenc-ec#	Е ^k _{NA-EC} (95% СІ, р)	
rs75932628	TREM2 (R47H)	0.89 (0.09)	1.56 (0.66)	1.86x10 ⁻² *	1.76 (0.28 - 3.34, 3.2x10 ⁻¹)	3.04 (2.75)	5.11x10 ⁻¹	3.42 (-3.85 - 10.92, 5.0x10 ⁻ ¹)	
rs7920721	ECHDC3	0.07 (0.01)	0.17 (0.05)	2.61x10 ⁻³ *	2.54 (0.84 - 4.96, 7.8x10 ⁻²)	0.21 (0.08)	1.51x10 ⁻¹	3.14 (0.26 - 6.60, 1.5x10 ⁻¹)	
rs10498633	SLC24A4-RIN3	-0.09 (0.01)	-0.18 (0.07)	8.95x10 ⁻³ *	1.85 (0.46 - 3.79, 2.4x10 ⁻¹)	-0.38 (0.46)	8.59x10 ^{-3 *}	3.93 (1.67 - 6.81, 9.2x10 ⁻³)	
rs2718058	NME8	-0.08 (0.01)	-0.03 (0.06)	6.45x10 ⁻¹	0.35 (-1.16 - 1.91, 3.8x10 ⁻¹)	-0.34 (0.08)	5.99x10 ⁻³ *	4.46 (1.87 - 7.90, 7.6x10 ⁻³)	
rs72824905	PLCG2	-0.39 (0.06)	-0.47 (0.30)	1.23x10 ⁻¹	1.21 (-0.33 - 3.00, 7.7x10 ⁻¹)	-1.13 (0.29)	3.47x10 ⁻² *	2.89 (1.14 - 5.07, 3.4x10 ⁻²)	
rs9271192	HLA-DRB1	-0.11 (0.01)	-0.13 (0.09)	1.40x10 ⁻¹	1.19 (-0.42 - 3.01, 8.0x10 ⁻¹)	-0.34 (0.13)	1.33x10 ⁻¹	3.18 (0.38 - 6.49, 1.4x10 ⁻¹)	
rs1476679	ZCWPW1	0.09 (0.01)	0.14 (0.06)	1.94x10 ⁻² *	1.59 (0.23 - 3.25, 3.9x10 ⁻¹)	0.20 (0.08)	2.45x10 ⁻¹	2.30 (0.10 - 4.86, 2.4x10 ⁻¹)	
rs4147929	ABCA7 (A>G)	-0.14 (0.02)	-0.17 (0.07)	2.13x10 ⁻² *	1.18 (0.18 - 2.35, 7.4x10 ⁻¹)	-0.31 (0.11)	2.20x10 ⁻¹	2.16 (0.27 - 4.13, 2.2x10 ⁻¹)	
rs7412	APOE (ε2)	-0.79 (0.03)	-1.09 (0.14)	2.36x10 ⁻¹⁵ *	1.38 (1.02 - 1.76, 3.7x10 ⁻²)	-1.37 (0.12)	3.46x10 ⁻⁵ *	1.75 (1.39 - 2.11, 1.5x10 ⁻⁴)	
rs13113697	HS3ST1	-0.07 (0.01)	0.00 (0.06)	9.70x10 ⁻¹	0.04 (-1.97 - 2.04, 3.1x10 ⁻¹)	-0.18 (0.09)	3.12x10 ⁻¹	2.70 (-0.60 - 6.53, 3.0x10 ⁻¹)	
rs616338	ABI3	-0.36 (0.05)	-0.70 (0.28)	1.23x10 ⁻² *	1.92 (0.41 - 3.79, 2.4x10 ⁻¹)	-0.37 (0.47)	9.87x10 ⁻¹	1.03 (-2.10 - 4.19, 9.7x10 ⁻¹)	
rs10948363	CD2AP	0.10 (0.01)	0.07 (0.06)	2.79x10 ⁻¹	0.70 (-0.54 - 2.11, 6.5x10 ⁻¹)	0.22 (0.09)	2.78x10 ⁻¹	2.28 (-0.01 - 4.83, 2.7x10 ⁻¹)	
rs429358	APOE (ε4)	1.05 (0.03)	1.36 (0.07)	1.19x10 ⁻⁸⁴ *	1.30 (1.16 - 1.45, 1.4x10 ⁻⁵)	1.84 (0.14)	4.22x10 ^{-6 *}	1.75 (1.43 - 2.07, 1.8x10 ⁻⁵)	
rs11771145	EPHA1	-0.10 (0.01)	-0.09 (0.06)	1.12x10 ⁻¹	0.93 (-0.21 - 2.18, 8.9x10 ⁻¹)	-0.23 (0.08)	2.06x10 ⁻¹	2.24 (0.26 - 4.32, 2.1x10 ⁻¹)	
rs10838725	CELF1	0.08 (0.01)	0.07 (0.06)	2.49x10 ⁻¹	0.87 (-0.61 - 2.58, 8.5x10 ⁻¹)	0.13 (0.09)	5.92x10 ⁻¹	1.71 (-1.01 - 4.60, 5.9x10 ⁻¹)	
rs28834970	PTK2B	0.10 (0.01)	0.08 (0.06)	1.44x10 ⁻¹	0.84 (-0.27 - 2.08, 7.9x10 ⁻¹)	0.20 (0.08)	3.04x10 ⁻¹	2.03 (0.08 - 4.12, 3.0x10 ⁻¹)	
rs983392	MS4A6A	-0.11 (0.01)	-0.02 (0.06)	7.08x10 ⁻¹	0.20 (-0.89 - 1.27, 1.4x10 ⁻¹)	-0.26 (0.08)	1.16x10 ⁻¹	2.40 (0.66 - 4.33, 1.1x10 ⁻¹)	
rs11218343	SORL1	-0.26 (0.03)	-0.21 (0.15)	1.55x10 ⁻¹	0.82 (-0.30 - 2.03, 7.3x10 ⁻¹)	-0.42 (0.19)	4.71x10 ⁻¹	1.63 (-0.09 - 3.42, 4.6x10 ⁻¹)	
rs6733839	BIN1	0.20 (0.01)	0.17 (0.06)	3.04x10 ^{-3 *}	0.84 (0.27 - 1.42, 5.8x10 ⁻¹)	0.29 (0.08)	3.22x10 ⁻¹	1.49 (0.55 - 2.48, 3.1x10 ⁻¹)	
rs10792832	PICALM	0.14 (0.01)	0.17 (0.06)	3.25x10 ⁻³ *	1.20 (0.40 - 2.07, 6.3x10 ⁻¹)	0.15 (0.08)	8.81x10 ⁻¹	1.10 (-0.28 - 2.49, 8.8x10 ⁻¹)	
rs7274581	CASS4	-0.13 (0.02)	-0.16 (0.10)	1.08x10 ⁻¹	1.24 (-0.24 - 3.10, 7.5x10 ⁻¹)	-0.09 (0.14)	8.18x10 ⁻¹	0.70 (-1.96 - 3.33, 8.2x10 ⁻¹)	
rs143332484	TREM2 (R62H)	0.50 (0.07)	0.09 (0.22)	6.76x10 ⁻¹	0.19 (-0.71 - 1.10, 7.8x10 ⁻²)	0.95 (0.39)	3.40x10 ⁻¹	1.92 (0.05 - 3.95, 3.4x10 ⁻¹)	
rs118172952	KANSL1	-0.14 (0.03)	-0.08 (0.08)	3.32x10 ⁻¹	0.56 (-0.65 - 2.11, 5.0x10 ⁻¹)	-0.20 (0.11)	6.52x10 ⁻¹	1.44 (-0.65 - 3.74, 6.8x10 ⁻¹)	
rs6656401	CR1	-0.17 (0.01)	-0.12 (0.07)	7.04x10 ⁻²	0.73 (-0.05 - 1.58, 5.1x10 ⁻¹)	-0.18 (0.10)	8.97x10 ⁻¹	1.09 (-0.32 - 2.52, 9.0x10 ⁻¹)	
rs200538373	ABCA7 (G>C)	-0.65 (0.14)	0.13 (0.51)	7.94x10 ⁻¹	-0.21 (-1.93 - 1.49, 1.4x10 ⁻¹)	-0.99 (0.64)	6.43x10 ⁻¹	1.54 (-0.85 - 4.15, 6.3x10 ⁻¹)	
rs9331896	CLU	0.15 (0.01)	0.17 (0.06)	3.73x10 ⁻³ *	1.14 (0.36 - 2.00, 7.1x10 ⁻¹)	0.06 (0.08)	3.96x10 ⁻¹	0.43 (-0.92 - 1.73, 3.9x10 ⁻¹)	
rs35349669	INPP5D	0.08 (0.01)	0.09 (0.05)	1.23x10 ⁻¹	1.15 (-0.06 - 2.53)	0.04 (0.08)	6.98x10 ⁻¹	0.51 (-2.23 - 3.08, 7.1x10 ⁻¹)	

15 **Table S3:** Comparison between using extreme AD cases compared to using extreme controls in association analyses

	AVERAGE			0.94 ± 0.12, p	9 = 6.8x10 ⁻¹		1.88 ± 0.24, <i>p</i> =	1.0x10 ⁻⁴
rs190982	MEF2C	0.08 (0.01)	0.00 (0.05)	9.94x10 ⁻¹	0.01 (-1.25 - 1.27)	. ,	1.48x10⁻¹	1)
						-0.06 (0.08)		-0.84 (-3.81 - 1.61, 1.4x10 ⁻
rs17125944	FERMT2	0.13 (0.02)	-0.01 (0.09)	8.75x10 ⁻¹	-0.11 (-1.30 - 1-07)	0.03 (0.13)	5.20x10 ⁻¹	0.26 (-2.21 - 2.60, 7.1x10 ⁻¹)

Abbreviations: *Rs ID*, variant identifier; *Gene*, gene associated with the variant; $\log OR_l^k$ (*SE*), published log(odds ratio) and relative standard error; $\log OR_{EA-NC}^k$ (*SE*), log(odds ratio) and relative standard error; $\log OR_{EA-NC}^k$ (*SE*), log(odds ratio) and relative standard error for comparison of extreme cases with normal controls; E_{EA-NC}^k (*95% Cl*, *p*), increased effect-size relative to published effect-size, 95% confidence interval and p-value of difference relative to published effect sizes; $\log OR_{NA-EC}^k$ (*SE*), log(odds ratio) and relative standard error for comparison of normal AD cases with centenarian controls; E_{NA-EC}^k (*95% Cl*, *p*), increased effect-size; Bold type: variants with significant E_{1-2}^k ; Stars*: p-value significant at nominal threshold (*p*<0.05); Asterisk[#]: p-value of association of Normal Controls (*NC*) and Extreme Controls (*EC*).

Table S4: Comparison between using younger early-onset cases (AAO <60 years) early-onset cases (AAO <65 years) and using late-onset AD cases (AAO >65 years) relative to normal controls

			Younger e	Younger early-onset AD cases (AAO < 60 y.o) vs. Normal Controls (yEA vs. NC)			Early-onset cases (AAO < 65 y.o) vs. Normal Controls (eEA vs. NC)			Late-onset cases (AAO > 65 y.o) vs. Normal Controls (IEA vs. NC)		
Rs ID	Gene	$\log OR_l^k$ (SE)	$\log OR_{yEA-NC}^k$ (SE)	P-value _{yEA-} NC	E ^k _{yEA-NC} (95% Cl, ρ)	log OR ^k _{eEA-NC} (SE)	P-value _{eEA-}	Е ^k _{eEA-NC} (95% Cl, <i>р</i>)	$\frac{\log OR_{lEA-NC}^{k}}{(SE)}$	P-value _{IEA-}	Е _{lEA-NC} (95% Сl, р)	
rs75932628	TREM2 (R47H)	0.89 (0.09)	0.48 (1.24)	6.97x10 ⁻¹	0.54 (-2.25 - 3.29, 7.4x10 ⁻¹)	1.41 (0.83)	9.02x10 ⁻²	1.58 (-0.25 - 3.58, 5.5x10 ⁻¹)	1.57 (0.68)	2.16x10 ⁻² *	1.78 (0.28 - 3.41, 3.2x10 ⁻¹)	
rs7920721	ECHDC3	0.07 (0.01)	0.16 (0.09)	9.11x10 ⁻²	2.44 (-0.41 - 5.31, 3.2x10 ⁻¹)	0.16 (0.07)	3.64x10 ⁻² *	2.38 (0.12 - 5.32, 2.3x10 ⁻¹)	0.18 (0.07)	7.66x10 ⁻³ *	2.70 (0.69 - 5.44, 9.9x10 ⁻²)	
rs10498633	SLC24A4- RIN3	-0.09 (0.02)	-0.27 (0.12)	2.26x10 ⁻²	2.88 (0.39 - 5.38, 1.4x10 ⁻¹)	-0.16 (0.09)	8.34x10 ⁻²	1.66 (-0.19 - 3.94, 5.1x10 ⁻¹)	-0.19 (0.08)	1.96x10 ⁻² *	2.01 (0.35 - 4.18, 2.5x10 ⁻¹)	
rs2718058	NME8	-0.08 (0.01)	0.11 (0.10)	2.68x10 ⁻¹	-1.40 (-3.90 - 1.08, 5.9x10 ⁻²)	-0.01 (0.08)	9.40x10 ⁻¹	0.08 (-1.95 - 2.16, 3.7x10 ⁻¹)	-0.05 (0.07)	4.98x10 ⁻¹	0.61 (-1.23 - 2.53, 6.7x10 ⁻¹)	
rs72824905	PLCG2	-0.39 (0.06)	-0.56 (0.57)	3.28x10 ⁻¹	1.45 (-1.42 - 4.31, 7.5x10 ⁻¹)	-0.38 (0.41)	3.63x10 ⁻¹	0.97 (-1.19 - 3.24, 9.7x10 ⁻¹)	-0.54 (0.39)	1.63x10 ⁻¹	1.40 (-0.61 - 3.69, 7.0x10 ⁻¹)	
rs9271192	HLA-DRB1	-0.11 (0.01)	-0.07 (0.10)	5.22x10 ⁻¹	0.61 (-1.28 - 2.54, 6.8x10 ⁻¹)	-0.21 (0.12)	6.50x10 ⁻²	1.98 (-0.11 - 4.43, 3.6x10 ⁻¹)	-0.07 (0.11)	5.11x10 ⁻¹	0.65 (-1.34 - 2.72, 7.1x10 ⁻¹)	
rs1476679	ZCWPW1	0.09 (0.01)	-0.01 (0.10)	8.79x10 ⁻¹	-0.20 (-2.43 - 1.99, 2.8x10 ⁻¹)	0.01 (0.08)	9.13x10 ⁻¹	0.10 (-1.73 - 1.98, 3.1x10 ⁻¹)	0.24 (0.07)	1.15x10 ⁻³ *	2.73 (1.04 - 4.96, 4.3x10 ⁻²)	
rs4147929	ABCA7 (A>G)	-0.14 (0.02)	-0.27 (0.12)	2.50x10 ⁻²	1.88 (0.23 - 3.51, 2.9x10 ⁻¹)	-0.19 (0.10)	5.35x10 ⁻²	1.30 (-0.01 - 2.81, 6.4x10 ⁻¹)	-0.16 (0.09)	7.30x10 ⁻²	1.10 (-0.12 - 2.43, 8.8x10 ⁻¹)	
rs7412	ΑΡΟΕ (ε2)	-0.79 (0.03)	-1.61 (0.32)	7.26x10 ⁻⁷	2.05 (1.22 - 2.87, 1.3x10 ⁻²)	-1.41 (0.22)	3.77x10 ⁻¹⁰ *	1.80 (1.21 - 2.40, 8.6x10 ⁻³)	-0.89 (0.16)	2.52x10 ⁻⁸ *	1.13 (0.72 - 1.56, 5.1x10 ⁻¹)	
rs13113697	HS3ST1	-0.07 (0.01)	0.13 (0.11)	2.41x10 ⁻¹	-1.93 (-5.15 - 1.28, 7.5x10 ⁻²)	0.03 (0.08)	7.16x10 ⁻¹	-0.46 (-3.29 - 2.12, 2.5x10 ⁻¹)	-0.03 (0.08)	7.37x10 ⁻¹	0.38 (-1.94 - 2.86, 5.9x10 ⁻¹)	
rs616338	ABI3	-0.36 (0.05)	-0.75 (0.42)	7.37x10 ⁻²	2.06 (-0.19 - 4.39, 3.6x10 ⁻¹)	-0.49 (0.37)	1.90x10 ⁻¹	1.35 (-0.68 - 3.60, 7.4x10 ⁻¹)	-0.82 (0.31)	8.01x10 ⁻³ *	2.27 (0.61 - 4.43, 1.3x10 ⁻¹)	
rs10948363	CD2AP	0.10 (0.01)	-0.00 (0.11)	9.79x10 ⁻¹	-0.01 (-2.20 - 2.18, 3.7x10 ⁻¹)	0.06 (0.08)	4.89x10 ⁻¹	0.60 (-1.11 - 2.47, 6.4x10 ⁻¹)	0.07 (0.07)	3.23x10 ⁻¹	0.77 (-0.77 - 2.45, 7.7x10 ⁻¹)	
rs429358	APOE (ɛ4)	1.05 (0.03)	1.27 (0.11)	8.69x10 ⁻³¹	1.21 (1.01 - 1.42, 3.6x10 ⁻²)	1.32 (0.09)	3.76x10 ⁻⁵⁰ *	1.26 (1.08 - 1.44, 3.4x10 ⁻³)	1.42 (0.08)	1.86x10 ⁻⁶⁶ *	1.36 (1.19 - 1.53, 4.5x10 ⁻⁴)	
rs11771145	EPHA1	-0.10 (0.01)	-0.04 (0.10)	7.06x10 ⁻¹	0.37 (-1.61 - 2.29, 5.1x10 ⁻¹)	0.00 (0.08)	9.76x10 ⁻¹	-0.02 (-1.55 - 1.57, 2.1x10 ⁻¹)	-0.17 (0.07)	1.63x10 ⁻² *	1.70 (0.32 - 3.36, 3.2x10 ⁻¹)	
rs10838725	CELF1	0.08 (0.01)	0.25 (0.10)	1.17x10 ⁻²	3.15 (0.70 - 5.60, 8.5x10 ⁻²)	0.13 (0.08)	9.61x10 ⁻²	1.66 (-0.30 - 4.04, 5.1x10 ⁻¹)	0.02 (0.07)	7.94x10 ⁻¹	0.24 (-1.65 - 2.17, 4.2x10 ⁻¹)	
rs28834970	PTK2B	0.10 (0.01)	0.25 (0.09)	9.04x10 ⁻³	2.50 (0.60 - 4.42, 1.2x10 ⁻¹)	0.12 (0.07)	1.06x10 ⁻¹	1.23 (-0.27 - 2.92, 7.7x10 ⁻¹)	0.05 (0.07)	4.59x10 ⁻¹	0.52 (-0.87 - 2.01, 5.1x10 ⁻¹)	
rs983392	MS4A6A	-0.11 (0.01)	0.09 (0.09)	3.20x10 ⁻¹	-0.87 (-2.62 - 0.89, 6.8x10 ⁻²)	0.12 (0.07)	1.16x10 ⁻¹	-1.11 (2.62 - 0.24, 2.8x10 ⁻³)	-0.13 (0.07)	6.31x10 ⁻²	1.19 (-0.04 - 2.63, 7.6x10 ⁻¹)	
rs11218343	SORL1	-0.26 (0.03)	0.04 (0.24)	8.73x10 ⁻¹	-0.13 (-1.92 - 1.66, 2.0x10 ⁻¹)	-0.14 (0.20)	4.78x10 ⁻¹	0.54 (-0.92 - 2.11, 5.4x10 ⁻¹)	-0.27 (0.19)	1.54x10 ⁻¹	1.02 (-0.39 - 2.55, 9.8x10 ⁻¹)	
rs6733839	BIN1	0.20 (0.01)	0.21 (0.09)	2.49x10 ⁻²	1.07 (0.12 - 2.01, 8.7x10 ⁻¹)	0.19 (0.07)	1.16x10 ⁻² *	0.95 (0.23 - 1.73, 9.1x10 ⁻¹)	0.15 (0.07)	2.36x10 ⁻² *	0.78 (0.10 - 1.48, 5.2x10 ⁻¹)	
rs10792832	PICALM	0.14 (0.01)	0.16 (0.10)	1.13x10 ⁻¹	1.11 (-0.30 - 2.51, 8.8x10 ⁻¹)	0.18 (0.08)	2.10x10 ⁻² *	1.28 (0.20 - 2.43, 6.1x10 ⁻¹)	0.16 (0.07)	2.33x10 ⁻² *	1.12 (0.16 - 2.18, 8.1x10 ⁻¹)	
rs7274581	CASS4	-0.13 (0.02)	-0.26 (0.18)	1.54x10 ⁻¹	1.98 (-0.75 - 4.71, 4.8x10 ⁻¹)	-0.34 (0.15)	2.31x10 ⁻² *	2.53 (0.39 - 5.43, 1.6x10 ⁻¹)	-0.04 (0.12)	7.18x10 ⁻¹	0.33 (-1.60 - 2.24, 4.6x10 ⁻¹)	
rs143332484	TREM2 (R62H)	0.50 (0.07)	0.17 (0.37)	6.52x10 ⁻¹	0.34 (-1.10 - 1.80, 3.7x10 ⁻¹)	0.25 (0.28)	3.73x10 ⁻¹	0.51 (-0.62 - 1.67, 3.9x10 ⁻¹)	-0.03 (0.28)	9.19x10 ⁻¹	-0.06 (-1.22 - 1.09, 6.9x10 ⁻²)	
rs118172952	KANSL1	-0.14 (0.03)	-0.17 (0.14)	2.22x10 ⁻¹	1.25 (-0.74 - 3.27, 8.0x10 ⁻¹)	0.01 (0.10)	8.95x10 ⁻¹	-0.10 (-1.86 - 1.57, 1.8x10 ⁻¹)	-0.15 (0.10)	1.26x10 ⁻¹	1.09 (-0.33 - 3.20, 9.1x10 ⁻¹)	
rs6656401	CR1	-0.17 (0.01)	-0.31 (0.11)	4.39x10 ⁻³	1.87 (0.58 - 3.15, 1.9x10 ⁻¹)	-0.17 (0.09)	5.43x10 ⁻²	1.02 (0.01 - 2.14, 9.6x10 ⁻¹)	-0.08 (0.08)	3.04x10 ⁻¹	0.50 (-0.46 - 1.49, 3.0x10 ⁻¹)	
rs200538373	ABCA7 (G>C)	-0.65 (0.14)	0.00 (0.90)	9.97x10 ⁻¹	-0.02 (-2.79 - 2.74, 4.7x10 ⁻¹)	0.29 (0.62)	6.39x10 ⁻¹	-0.45 (-2.63 - 1.52, 1.3x10 ⁻¹)	-0.03 (0.64)	9.57x10 ⁻¹	0.05 (-2.10 - 2.21, 3.6x10 ⁻¹)	
rs9331896	CLU	0.15 (0.01)	0.28 (0.10)	5.39x10 ⁻³	1.92 (0.59 - 3.23, 1.8x10 ⁻¹)	0.13 (0.08)	1.03x10 ⁻¹	0.86 (-0.16 - 1.93, 7.9x10 ⁻¹)	0.20 (0.07)	4.89x10 ⁻³ *	1.34 (0.41 - 2.37, 4.6x10 ⁻¹)	
rs35349669	INPP5D	0.08 (0.01)	0.14 (0.10)	1.52x10 ⁻¹	1.82 (-0.68 - 4.35, 5.2x10 ⁻¹)	0.15 (0.07)	4.23x10 ⁻² *	2.04 (0.04 - 4.59, 3.1x10 ⁻¹)	0.04 (0.07)	5.59x10 ⁻¹	0.52 (-1.33 - 2.43, 6.0x10 ⁻¹)	

AVERAGE			0.87 ± 0.2	20, p = 7.3x10 ⁻¹		0.86 ± 0.1	6, <i>p</i> = 7.9x10 ⁻¹			1.01 ± 0.14,	<i>p</i> = 4.6x10 ⁻¹		
rs190982	MEF2C	0.08 (0.01)	-0.11 (0.09)	2.52x10 ⁻¹	-1.43 (-3.91 - 1.03, 5.3x10 ⁻²)	-0.05 (0.07)	4.98x10 ⁻¹	-0.67 (-2.85 - 1.33, §	9.7x10 ⁻²)	0.03 (0.07)	6.12x10 ⁻¹	0.45 (-1.32 -	2.41, 5.6x10 ⁻¹)
rs17125944	FERMT2	0.13 (0.02)	-0.15 (0.16)	3.44x10 ⁻¹	-1.17 (-3.63 - 1.24, 7.7x10 ⁻²)	0.01 (0.12)	9.25x10 ⁻¹	0.08 (-1.83 - 2.01, 3	3.2x10 ⁻¹)	-0.04 (0.11)	7.47x10 ⁻¹	-0.27 (-2.12 -	1.45, 1.3x10 ⁻¹)

28	Abbreviations: Rs ID, variant ID; Gene, gene associated with the variant according to paper in which was first associated; log OR_l^k , published log(odds ratio) and relative
29	standard error, <i>i.e</i> the first or largest case-control study that reported the variant association with AD; log OR ^k _{yEA-NC} , Effect-size and relative standard error of AD association
30	of 255 young AD cases (age at onset <60 years of age) vs. 1,664 normal controls; E_{yEA-NC}^{k} (95% CI, p), change in effect size when using young AD cases (age at onset <
31	60 years of age), 95% confidence intervals and p-value of difference relative to published effect sizes; log OR^k_{eEA-NC} , Effect-size and relative standard error of AD association
32	of 464 early-onset AD cases vs. normal controls; E ^k _{eEA-NC} (95% CI, p), increased effect size when using extreme AD early-onset, 95% confidence intervals and p-value of
33	difference relative to published effect sizes; log OR_{lEA-NC}^k, Effect-size and relative standard error of association of 609 late-onset AD cases vs. normal controls; E_{lEA-NC}^k
34	(95% CI, p), increased effect size when using extreme AD late-onset, 95% confidence intervals and p-value of difference relative to published effect sizes; Bold type:
35	variants with a significant difference between the effect-sizes of 464 early-onset cases (age at onset <65) and 609 late-onset cases (age at onset >65) relative to 1,664
36	normal controls; Stars*: p-value significant at nominal threshold (p<0.05).

37	Table S5: Functional	implication of a	Il the tested variants
----	----------------------	------------------	------------------------

Locus	Gene	Variant	GO	Literature	E_{EA-EC}^k
6:41129252	TREM2 R47H	rs75932628	positive regulation of antigen processing and presentation of peptide antigen via MHC class II (GO:0002588); phagocytosis (GO:0006911); humoral immune response (GO:0006569)	-	6.46
10:11720308	ECHDC3	rs7920721	metabolic process (GO:0008152)	-	4.56
14:92926952	SLC24A4	rs10498633	transport (GO:0006810); ion transport (GO:0006811); sodium ion transport (GO:0006814)	Neural development and regulation of blood pressure and hypertension	4.50
7:37841534	NME8	rs2718058	nucleoside diphosphate phosphorylation (GO:0006165); multicellular organism development (GO:0007275); cell differentiation (GO:0030154)	Cytoskeletal function and axonal transport	3.80
16:81942028	PLCG2	rs72824905	positive regulation of receptor internalization (GO:0002092); follicular B cell differentiation (GO:0002316); lipid metabolic process (GO:0006629)	-	3.28
6:32578530	HLA-DRB1	rs111418223	immune system process (GO:0002376); immunoglobulin production involved in immunoglobulin mediated immune response (GO:0002381); inflammatory response to antigenic stimulus (GO:0002437)	Immune response	3.20
7:100004446	ZCWPW1	rs1476679	-	Epistatis regulation and Neural development	2.97
19:1063443	ABCA7 A>G	rs4147929	transport (GO:0006810); phagocytosis (GO:0006909); positive regulation of cholesterol efflux (GO:0010875)	Lipid metabolism and Immune system	2.26
19:45412079	APOE ε2	rs7412	response to reactive oxygen species (GO:0000302); retinoid metabolic process (GO:0001523); negative regulation of endothelial cell proliferation (GO:0001937)	Lipid metabolism and cholesterol transport	2.24
17:47297297	ABI3	rs616338	movement of cell or subcellular component (GO:0006928); regulation of cell migration (GO:0030334)	-	2.06
4:11711232	HS3ST1	rs13113697	glycosaminoglycan biosynthetic process (GO:0006024)	-	2.06
6:47487762	CD2AP	rs10948363	protein complex assembly (GO:0006461); substrate-dependent cell migration, cell extension (GO:0006930); cell cycle (GO:0007049)	Endosomal vesicle cycling	2.00

19:45411941	APOE ɛ4	rs429358	response to reactive oxygen species (GO:0000302); retinoid metabolic process (GO:0001523); negative regulation of endothelial cell proliferation (GO:0001937)	Lipid metabolism and cholesterol transport	1.99
7:143110762	EPHA1	rs11771145	angiogenesis (GO:0001525); positive regulation of cell-matrix adhesion (GO:0001954); protein phosphorylation (GO:0006468)	Endosomal vescicle cycling and Immune system	1.94
11:47557871	CELF1	rs10838725	mRNA processing (GO:0006376); germ cell development (GO:0007281); mRNA splice site selection (GO:0006376)	Cytoskeletal function and axonal transport	1.78
8:27195121	PTK2B	rs28834970	MAPK cascade (GO:0000165); response to reactive oxygen species (GO:0000302); angiogenesis (GO:0001525)	Cell migration and synaptic function	1.76
11:59923508	MS4A6A	rs983392	-	Immune response	1.56
11:121435587	SORL1	rs11218343	protein targeting (GO:0006605); lipid metabolic process (GO:0006629); transport (GO:0006810)	Endosomal vesicle cycling	1.48
2:127892810	BIN1	rs6733839	endocytosis (GO:0006897); nucleus organization (GO:0006997); multicellular organism development (GO:0007275)	Endosomal vesicle cycling	1.28
11:85867875	PICALM	rs10792832	protein complex assembly (GO:0006461); endocytosis (GO:0006897); axonogenesis (GO:0007409)	Endosomal vesicle cycling	1.09
20:55018260	CASS4	rs7274581	cell adhesion (GO:0007155)	Cytoskeletal function and axonal transport	1.06
17:44353222	KANSL1	rs118172952	covalent chromatin modification (GO:0016569); histone H4-K5 acetylation (GO:0043981); histone H4-K8 acetylation (GO:0043982)	-	0.97
6:41129207	TREM2 R62H	rs143332484	positive regulation of antigen processing and presentation of peptide antigen via MHC class II (GO:0002588); phagocytosis (GO:0006911); humoral immune response (GO:0006569)	-	0.97
1:207692049	CR1	rs6656401	immune system process (GO:0002376); complement receptor mediated signaling pathway (GO:0002430); complement activation (GO:0006958)	Immune response	0.75
19:1061892	ABCA7 G>C	rs200538373	transport (GO:0006810); phagocytosis (GO:0006909); positive regulation of cholesterol efflux (GO:0010875)	Lipid metabolism and Immune system	0.68
8:27467686	CLU	rs9331896	cell morphogenesis (GO:0000902); microglial cell activation (GO:0001774); immune system process (GO:0002376)	Cholesterol and Lipid metabolism and Immune system	0.60
2:234068476	INPP5D	rs35349669	phosphatidylinositol biosynthetic process (GO:0006661); phosphate-containing compound metabolic process (GO:0006796); apoptotic process (GO:0006915)	Immune response	0.36

14:53400629	FERMT2	rs17125944	cell adhesion (GO:0007155); cell-matrix adhesion (GO:0007160); regulation of cell shape (GO:0008360)	Cytoskeletal function and axonal transport	-0.82
5:88223420	MEF2C	rs190982	negative regulation of transcription by RNA polymerase II (GO:0000122); MAPK cascade (GO:0000165); blood vessel development (GO:0001568)	Immune response, Neural development and synaptic functions	-1.86

B9 Abbreviations: Locus, genomic location of the variant; Gene, the nearest gene associated with the variant in the paper that first associated the variant with AD; RsID,

40 variant identifier, GO annotation, first three Gene Ontology (GO) biological processes associated with gene; Literature annotation, pathway(s) associated with each gene

41 according to a recent review regarding the genetic landscape of Alzheimer's disease⁴³; E_{EA-EC}^k , effect-size change when using extreme phenotypes relative to published

42 effect size. Orange cells indicate variants with a decreased effect-size as compared to published effect-size. Green cells correspond to variants with an increased effect-

43 size as compared to published effect-size.

47 *Figure S1*: Extreme AD cases vs. normal controls: E_{EA-NC}^{k} . The effect-size change was 48 significant for 4 variants (*p*<0.05, two-sample z-test; bars annotated with a star [*]). Orange bars 49 indicate nominal statistical significance for the association with AD (*p*<0.05). Dashed red line 50 (E_{EA-NC}^{k} =1) indicates same effect-size as reported in literature.

Figure S2: Normal ADs vs. Extreme (centenarian) controls: E_{NA-EC}^{k} . Effect-size change (E_{NA-EC}^{k}) was significant for 5 variants (p<0.05, two-sample z-test; bars annotated with a star [*]). Orange bars indicate nominal statistical significance for the association with AD (p<0.05). Dashed red line indicates same effect-size as reported in literature.

50 sizes and 95% confidence intervals of a comparison of early onset AD cases ($\log OR_{eEA-NC}^{k}$, age 51 at onset \leq 65 years) and late-onset AD ($\log OR_{lEA-NC}^{k}$, age at onset > 65 years) with normal 52 controls. For all the variants, the 95% confidence intervals overlapped. [*]: difference between 53 $\log OR_{eEA-NC}^{k}$ and $\log OR_{lEA-NC}^{k}$ was significant (*p*<0.05, two-sample z-test).

58 59

65

67 *Figure S4:* Comparison of effect size changes at the variant level

68 A: Effect of using extreme AD cases vs normal AD cases: X-axis: E^kEA-EC: Effect size changes 69 from a comparison of the extreme cases and extreme (centenarian) controls relative to published 70 effect sizes. Dashed line x-axis average effect-size increase E^{k}_{EA-EC} at 1.90 ±0.29: Y-axis: E^{k}_{NA-EC} 71 EC: effect size changes from a comparison normal AD cases with extreme (centenarian) controls 72 relative to published effect sizes. Dashed line y-axis: average effect-size increase $E^{k_{NA-EC}}$ at 1.88 73 \pm 0.24. See *Table 2* for *E*^{*k*}_{*EA-EC*} and *Table* S3 for *E*^{*k*}_{*NA-EC*} values **B. Effect of using extreme cases** 74 vs using extreme controls: X-axis: effect-size changes of extreme AD cases vs. normal controls 75 relative to published effect-sizes. Dashed line x-axis: average effect-size increase E^{k}_{EA-NC} at 0.94 76 ± 0.12. Y-axis: Variant effect-size change of normal AD cases vs. extreme controls relative to 77 published effect-sizes. Dashed line y-axis: average effect-size increase E^{k}_{NA-EC} at 1.88 ± 0.24. 78 See Table S3 for E^{k}_{EA-NC} and E^{k}_{NA-EC} values.