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Supplementary Note 1: Tunneling Characteristics

A vertical cross-section of a vdWQT device is shown in Supplementary Figure 1a. Applying

a voltage Vb between gold and graphene generates a tunnel current through the insulating h-BN.

The measured voltage-dependent current density for a six-layer h-BN device is shown in blue in

Supplementary Figure 1c. As expected, the tunnel current varies non-linearly with applied bias.

Furthermore, in the voltage range |Vb| < 0.5 V some irregularities are visible. These minute features

are pronounced more strongly when analyzing the �rst derivative of the tunneling current with

respect to the applied bias (dI/dV ), cf. red curve in Supplementary Figure 1c. Three distinct

minima are visible.

The central dI/dV minimum is indicative of the presence of a phonon-induced tunneling channel

as originally observed in scanning tunneling microscopy experiments [1, 2]. Graphene's electronic

states associated with the K and K' points of reciprocal space are characterized by a large in-plane

momentum. As a consequence, direct tunneling into and from these states is weak because of

the momentum mismatch with states in the gold electrode, as well as a faster decay of the local

density of electronic states in transport direction [3], which is evident from the low conductivity

around zero bias. At applied voltages Vb ≥ h̄Ω/e, where h̄Ω = 63 meV [2] is the phonon energy

(h̄ is the reduced Planck constant, Ω is the phonon frequency and e is the elementary charge), an

additional tunneling channel opens up that couples electronic states at the K/K' points with states

at the Γ point. This onset of phonon-assisted tunneling causes a sudden increase in conductivity.

Consequently, the dI/dV exhibits a minimum at zero bias whose width is given by twice the phonon

energy h̄Ω.

Both dI/dV minima at negative and positive voltages are caused by the minimum of graphene's

electronic density of states [4]

ρGr (E) =
2 |E − ED|
πh̄2v2

F

, (1)

at the Dirac point, where vF is the Fermi velocity of graphene. The location of the minima is

determined by the electrostatics of the heterostructure. As described in the Methods section of the

main text, in addition to serving as a tunnel contact, the gold electrode acts as an electrostatic

gate, changing the charge carrier density nGr and consequently the Fermi level position EF of

the graphene sheet with respect to the Dirac point energy ED as ∆EF = EF − ED. This dual

functionality is illustrated in the band alignment diagrams shown in Supplementary Figure 1b.

Di�erences in the band alignment and dipole layers at the gold / h-BN and graphene / h-BN
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Supplementary Figure 1. Electronic properties of vdWQT devices. a Schematic of the vertical con�guration

of the device, i.e. gold�few-layer h-BN�graphene. A voltage Vb is applied between the gold and graphene

electrodes. b Band alignment diagrams at zero bias (left), positive bias (center) and negative bias (right).

∆EF marks the shift of the graphene Fermi level with respect to the Dirac point. Areas shaded in blue,

yellow and red mark energetic regions of occupied states, unoccupied states and tunneling through h-BN,

respectively. c Measured current-voltage characteristics and its �rst derivative of a gold�6L h-BN�graphene

device. The derivative displays three distinct minima. d E�ective applied voltage, i.e. voltage reduced by

the phonon energy h̄Ω, and the calculated, electrostatically induced shift in the graphene Fermi level ∆EF

as a function of applied voltage for V0 = 0.3 eV. e Calculated voltage-dependence of the phononic tunneling

rate Γphon and its �rst derivative of a gold�6L h-BN�graphene device at 0K (dashed lines) and 300K (solid

lines).

interfaces cause initial charge equilibration, which leads to a �nite charge carrier density n0 at

Vb = 0 and a corresponding shift ∆EF of the Fermi level away from the charge neutrality point.

For our devices we �nd that ∆EF(Vb = 0) < 0, i.e. the graphene sheet is hole-doped at zero bias (cf.

left diagram of Supplementary Figure 1b). The calculated dependence of ∆EF on applied voltage is

shown in Supplementary Figure 1d for an o�set voltage of V0 = 0.3 eV (cf. Methods). For positive

voltages, the initial doping is reduced with increasing voltage until charge neutrality is reached at

Vb = V0 such that ∆EF(Vb = V0) = 0 [5], as shown in the center of Supplementary Figure 1b.

The value of V0 determines the location of the �rst dI/dV minimum (here at positive voltages).



4

The second minimum is reached at negative voltages when the applied voltage (reduced by the

phonon energy h̄Ω) equals the Fermi level o�set ∆EF, as illustrated on the right of Supplementary

Figure 1b.

We model the di�erent tunneling channels present in vdWQT devices within the framework of

the transfer Hamiltonian formalism [6, 7]. Here, the rate of elastic tunneling1 is given by2

Γel =
2π

h̄

∫ eVb

0
|T (E)|2 ρAu(E)ρGr(E) dE, (2)

where T (E) is the transfer Hamiltonian matrix element (cf. Supplementary Note 2), and ρAu is the

electronic density of states of gold. As discussed previously, tunneling in metal�insulator�graphene

devices is dominated by phonon-enabled inelastic tunneling. We describe the corresponding

`phononic' tunneling rate Γphon in analogy to elastic tunneling as

Γphon = ξ
2π

h̄

∫ eVb

h̄Ω
|T (E)|2 ρAu(E − h̄Ω)ρGr(E) dE, (3)

where ξ denotes the probability ratio between elastic tunneling and phononic inelastic tunneling.

The equation as stated applies to the positive voltage range. For negative voltages, the roles of the

two electronic state densities are interchanged. Here, in contrast to equation (2), the `activation

energy' required for phonon-induced tunneling is accounted for by restricting the integration interval

to |eVb| − h̄Ω. Furthermore, since a tunneling event is accompanied by the creation of a phonon

of energy h̄Ω, equation (3) connects electronic states of di�erent energies. While ρGr is given

by equation (1), ab initio device simulations based on density functional theory (DFT) suggest

that both T and ρAu depend only weakly on energy and are hence taken to be constant, cf.

Supplementary Note 3. The corresponding results of equation (3) are shown in Supplementary

Figure 1e. We �nd good agreement between theory and experiment. The minima of the dI/dV

are reproduced by our model,3 their location corresponds to the points where ∆EF = 0 as well as

where |eVb| − h̄Ω = |∆EF|, cf. Supplementary Figure 1d.

We now turn to the relative contribution of the di�erent tunneling channels to the overall

1By elastic tunneling we refer to tunneling processes in which the energy of the electron remains unchanged.
2For brevity we state equations in the limit kBT → 0 and omit Fermi-Dirac distribution functions.
3Thermal broadening cannot fully account for the measured width of the dI/dV minima compared to model

calculations for 0K (dashed line in Supplementary Figure 1e). The additional broadening varies from device to

device as well as with device size, and is caused by �uctuations in the charge density of graphene due to residual

contaminants [8, 9]. We account for this additional broadening by assuming a normal distribution of V0 with a width

of ∼ 50meV.
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tunneling rate Γ. It can be expressed as a sum of three tunneling rates as

Γ = Γel + Γphon + h̄

∫ ∞
0

γphot(h̄ω)dω. (4)

Our theoretical analysis of the tunneling characteristics suggests that the tunneling current is

dominated by the phonon-enhanced tunneling channel Γphon as it e�ciently bridges the momentum

mismatch between the two electrodes. This �nding stands in agreement with previous experimental

and theoretical works [1�3, 9]. The spectral rate γphot(h̄ω) shown in Figure 4c/g is normalized to the

elastic tunneling rate Γel. This normalization reveals that the quantity γphot(h̄ω)/Γel is of the order

of 2 × 10−7 eV−1 in the uncoupled vdWQT. The experimentally measured value for the spectral

e�ciency (Figure 4a/e), which is of the order of 5 × 10−9 eV−1, is a measure for γphot(h̄ω)/Γ ≈

γphot(h̄ω)/Γphon. A comparison of these values allows us to estimate that Γphon ∼ 40× Γel, which

is of the same order of magnitude as the value reported by Zhang et al. [2].



6

Supplementary Note 2: Transfer matrix elements

The transfer matrix element T (E) is given by [7]

T (E) =
h̄2

2m

[
ψAu

dψ∗Gr

dz
− ψ∗Gr

dψAu

dz

]
z=z0

. (5)

The momentum matrix element P(E) on the other hand is given by the expectation value of the

momentum operator p̂z = −ih̄d/dz and reads as

P(E, h̄ω) = 〈ψAu |p̂z|ψGr〉 = −ih̄

∫ dhBN

0
ψ∗Au(E − h̄ω)

d

dz
ψGr(E) dz. (6)

The equation as stated applies to the positive voltage range as it connects initial states in the

graphene electrode to �nal states in the gold electrode at an energy di�erence given by h̄ω,

cf. Figure 4b. For negative voltages, the roles of the two electronic wave functions are interchanged.

To calculate the matrix elements we need to mathematically describe the electronic wavefunction

inside the h-BN band gap. Within the transfer Hamiltonian framework, these wavefunctions are

approximately given by the wavefunction of the individual electrodes in the absence of the other

electrode, respectively. Inside the band gap of h-BN, gold and graphene wave functions ψAu(z) and

ψGr(z), respectively, decay exponentially with distance from the interface as:

ψAu(z) = ψAu,0 e−κz, z ≥ 0

ψGr(z) = ψGr,0 e−κ(dhBN−z), z ≤ dhBN

(7)

For simplicity we assume the decay constant κ to be independent of z and energy E (cf.

Supplementary Note 3) which results in the following expressions for the matrix elements:

T =
h̄2κ

m
ψAu,0 ψGr,0 e−κdhBN

P = −ih̄κdhBN ψAu,0 ψGr,0 e−κdhBN

(8)
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Supplementary Note 3: Ab initio device simulation

To examine the energy-dependence of the decay constant κ we performed atomistic transport

simulations of the vdWQT device structure based on density-functional theory (DFT). Supplementary

Figure 2a shows an atomistic representation of the heterostructure. The unit cell of the heterostructure

with all three materials present, that is, the middle part of Supplementary Figure 2a, is simulated

by the ab initio DFT tool VASP [10] within the generalized gradient approximation of Perdew,

Burke, and Ernzerhof [11]. Van der Waals interactions are included through the DFT-D2 method

of Grimme [12]. After the geometric optimization of the ions the single-particle electron states are
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Supplementary Figure 2. DFT of vdWQT devices. a Atomistic representation of the simulated

heterostructure consisting of gold, h-BN and graphene. b Calculated values for the decay constant κ,

extracted from the exponential decay of the DOS within h-BN as a function of distance from graphene/gold,

plotted as a function of electron energy. The zero of the vertical energy axis is aligned with the Fermi level

in gold . c Calculated density of states per unit cell inside the gold electrode.
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determined and transformed into a set of maximally localized Wannier functions (MLWFs) with the

use of the Wannier90 tool [13]. The Hamiltonian of the device depicted in Supplementary Figure 2a

is built up from the MLWF matrix elements following the procedure described in Appendix B of

ref [14]. The resulting Hamiltonian is loaded into a quantum transport simulator based on the

non-equilibrium Green's function (NEGF) formalism [15]. The energy-resolved local density of

electronic states (DOS) is determined at a constant zero external potential without considering

self-consistency. In the middle, insulating part of the device, an exponential curve is �tted to the

position-dependent DOS at every energy point, separately for the left- and right-injected states,

corresponding to the gold and the graphene states, respectively. Since the DOS is proportional to

the square of the wavefunction, the κ decay rate is calculated as one half of the characteristic length

of the �tted exponential curves. The resulting values for κ are shown in Supplementary Figure 2b.

We �nd that κ is similar for both interfaces and only weakly depends on energy across the band

gap except close to the h-BN conduction and valence band edges at approximately −1.7 eV and

+2.1 eV, respectively. As expected, the simulation underestimates the band gap of h-BN. These

results suggest that for our devices κdhBN � 1, hence we conclude that we operate well within the

validity limits of the transfer-Hamiltonian formalism [7].

We further calculate the density of electronic states ρAu(E) within the unit cell of bulk gold by

VASP, shown in Supplementary Figure 2c. The electronic DOS of gold is found to be approximately

constant over the relevant energy range.
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Supplementary Note 4: Local Density of Optical States

Uncoupled vdWQT devices. We are interested in the partial LDOS along the direction

of electron �ow and hence consider the dipole orientation p = pzz, where z is the unit vector

perpendicular to the heterostructure. The power P dissipated by a dipole placed at r0 and oscillating

at frequency ω is given by [16]

P =
ω

2
Im {p∗ ·E(r0)} =

ω

2
pzIm {Ez(r0)} , (9)

where E(r0) is the electric �eld at the position of the dipole. This �eld is a superposition of the

primary dipole �eld E0(r0) and the secondary �eld Es(r0) that is a result of the interaction with

the environment. The total �eld reads as

E(r0) = E0(r0) + Es(r0). (10)

The di�erent modes of a layered system are distinguishable in terms of their in-plane momentum

k||. For photons, k|| is given by the projection of the wave vector k onto the heterostructure plane.

In the case of guided modes, it corresponds to the complex propagation constant of the mode.

Hence it is useful to express the electric �eld in terms of a superposition of all possible k||. This

`angular spectrum representation' of the z-component of the primary dipole �eld, in cylindrical

coordinates and at r = r0, can be derived as [16]

Ez(z, z0) =
iω2pz

4πc2ε0εi

∫ ∞
0

k3
||

k2
i kzi

eikzi|z−z0|dk||, (11)

where ε0 is the vacuum permittivity and εi is the dielectric permittivity of the medium surrounding

the dipole. We additionally introduce the normalized variables s = k||/k0, where k0 is the wave

vector in vacuum, and kzi = k0

√
n2
i − s2 = k0szi, where ni is the refractive index of the medium

surrounding the dipole, such that equation (11) becomes

Ez(z, z0) =
iω3pz

4πε0εic3

∫ ∞
0

s3

szi
eik0szi|z−z0|ds. (12)

For the simplest case of a dipole radiating in vacuum, the evaluation of equation (9) using

equation (12) yields the familiar result

P0 =
ω4p2

z

12πε0c3
. (13)

In vdWQT devices, the `dipole' is embedded in a layered medium with interfaces above and

below that give rise to a secondary �eld Es(r0). Equation (12) allows us to decompose the �eld
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generated by the dipole into a superposition of plane and evanescent waves. For a source embedded

in a layered medium consisting of N layers, situated in layer i at the position z0, the z-variation of

the electric �eld in layer j can be expressed as [17]

Fj (z, z0) = δije
ikzi|z−z0| + c↑je

ikzjz + c↓je
−ikzjz, (14)

where c↑j and c↓j are complex �eld amplitudes of upward and downward propagating waves,

respectively. Hence, the z-component of the electric �eld of a dipole embedded in a layered

medium, at the position of the dipole z = z0 = 0,4 follows from equations (12) and (14) as

Ez =
iω3pz

4πε0εc3

∫ ∞
0

s3

szi

(
1 + c↑i + c↓i

)
ds, (15)

which in combination with equations (9) and (13), yields the following expression for the normalized

dissipated power or, equivalently, the normalized LDOS:

ρopt

ρ0
=

P

P0
=

3

2

∫ ∞
0

Re

{
s3

sziεi

(
1 + c↑i + c↓i

)}
ds (16)

The complex �eld amplitudes c↑j and c↓j are calculated by applying the boundary conditions

for p-polarized �elds to equation (14) [16]. The presence of graphene is included by a surface

charge density at the respective interface through the boundary conditions [18]. Graphene's in-

plane conductivity is calculated within the local random-phase approximation (RPA) at T = 300 K

as described in ref [19].

Equation (16) allows for the calculation of the angular spectrum of the normalized LDOS of

an arbitrary, layered geometry. The resulting spectrum for a Air�Graphene�h-BN�Gold�Glass5

stack, where the dipole is located in the center of the h-BN domain, is shown in Supplementary

Figure 3a. Two peaks are visible at s ∼ 1.02 and s ∼ 1.6, corresponding to the two SPP modes at

the top and bottom surface of the gold electrode, respectively. Supplementary Figure 3b-d shows

detailed excerpts of the angular spectrum corresponding to direct photon emission into angles that

are detectable through a NA = 0.9 objective (b) and the two SPP modes (c,d). The former is

associated with the (detectable) radiative LDOS ρrad of the uncoupled, planar heterostructure,

responsible for the experimentally observed direct photon emission. For comparison we carried

out calculations with and without graphene (straight and dashed lines, respectively). As discussed

4Without loss of generality we set z0 = 0. The case of z0 6= 0 introduces a global phase that does not in�uence

the results of the calculation.
5The values of the individual refractive indices and dielectric functions are taken from literature as discussed in

Supplementary Note 4.
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Supplementary Figure 3. Optical properties of a Air�Graphene�h-BN (7 × 0.33 nm)�Gold (50 nm)�Glass

stack. Straight and dashed lines refer to calculations with and without graphene, respectively. a Angular

spectrum of the normalized LDOS ρopt/ρ0, calculated at an energy of 1.5 eV, for a dipole oriented

perpendicular to the plane and placed in the center of the h-BN. b-d Excerpts of the LDOS spectrum

showing the regions related to (collectible) photons (b) and the two SPP modes associated with the top

(c) and bottom (d) surface of the gold �lm. e LDOS for photons (blue), top SPPs (green) and bottom SPPs

(orange) as a function of mode energy. The LDOS of the SPP modes is extracted by �tting a Lorentzian on

top of a linear background. The area of the curve corresponds to the LDOS of the mode. f,g The center and

FWHM of the Lorentzian correspond to the real (f) and imaginary (g) part of the propagation constant

kmode, respectively, shown for the top (green) and bottom SPPs (orange). The blue lines in f correspond to

the refractive indices of air (n = 1) and glass (n = 1.52).

in the main text, since the primary �eld components of the SPP modes are perpendicular to the

heterostucture plane, the modes only weakly interact with the graphene. Supplementary Figure 3a

shows that the presence of graphene�in the energy-range of interest�primarily causes additional

quenching, evidenced by the increase of the LDOS for large values of s.

To analyze the dependence on mode energy we �t Lorentzian line-shapes (plus a linear
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background) to the calculated angular spectra at each energy and extract the LDOS of the mode by

calculating the area of the Lorentzian. The LDOS for photon emission is calculated by numerically

integrating over the angular spectrum shown in Supplementary Figure 3b. The resulting energy-

dependence is shown in Supplementary Figure 3e. The LDOS of the two SPP modes increases with

energy due to the increase in mode con�nement and propagation constant. On the other hand,

the photon LDOS remains approximately constant at ∼ 0.04× ρ0.
6 Furthermore, the LDOS of all

modes is of the same order of magnitude. Additionally we extract the real and imaginary parts of

the propagation constant of the two SPP modes as the center and FWHM of the Lorentzian �ts,

respectively. The resulting energy-dependent values are shown in Supplementary Figure 3f/g, where

the real part renders the dispersion relation of the two modes and the imaginary part determines

its �eld propagation length as 1/Im(kmode). Again we �nd that the graphene sheet has a negligible

e�ect on the propagation constant of these modes.

We note that our geometry supports graphene plasmons in the infrared spectral range that are

not discussed here but that can be excited by electron tunneling. These plasmons do not a�ect our

results as they are strongly damped for energies h̄ω > 2∆EF [18]. As the maximum ∆EF reached in

our experiments is ∼ 0.45 eV (cf. Figure 4d/h), graphene plasmons do not contribute to the signal

in our detection window. The exploration of the excitation of these plasmons by inelastic electron

tunneling is particularly interesting in graphene�insulator�graphene tunneling devices [20�22].

6The apparent suppression of the radiative LDOS is the result of the high-index medium (h-BN) at the emitter

position, which leads to a redistribution of the LDOS towards higher values of s, as the plane wave region in this

case extends up until s = nhBN, where nhBN is the refractive index of h-BN. While (in a homogeneous medium of

refractive index n) the overall plane wave LDOS increases linearly with n, the fraction that is emitted into the angular

range detectable in our experiment, given by 0 ≤ s ≤ NA, decreases, cf. equation (16). This e�ect is responsible for

the low value of ρrad.
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Antenna-coupled vdWQT devices. To determine the LDOS inside vdWQT device-coupled

nanocube antennas we perform numerical �nite element simulations using the wave optics module

of the commercially available software package COMSOL 5.3. To acquire the simulation results

shown in Figure 5 we place an out-of-plane (in the direction of electron tunneling) oriented electric

point dipole into the center of a 7×0.33 nm thick h-BN domain which is embedded between 50 nm of

gold below and graphene on top. Graphene is modeled as a surface current density [23], calculated

within the local random phase approximation (RPA) [19]. A 75 nm silver cube with an edge radius

of 7.5 nm that is surrounded by a 3 nm thick PVP �lm is placed on top. The upper and lower

half-spaces are air and glass, respectively, and perfectly matched layers are used at the boundaries

of the simulation domain. The refractive indices n of the dielectric materials are nglass = 1.52,

nhBN = 2.2/2.0 (parallel / perpendicular to the plane) [24] and nPVP = 1.52 [25]. Interpolated,

empirical values are used for the dielectric functions of gold [26] and silver [27]. The radiative LDOS

in units of ρ0 is extracted as the power radiated into the air half-space above the antenna geometry

by integrating the time-averaged Poynting vector over the simulation boundaries, normalized by

the power radiated by the same dipole in vacuum as given by equation (13).
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Supplementary Note 5: Nanocube Antennas

Cube-to-cube variations. The spatial intensity distribution of light emission shown in

Figure 5d is characterized by four dominant emission spots corresponding to four individual

nanocube antennas. Supplementary Figure 4a shows the emission spectra of these four cubes.7

We �nd that the antennas resonantly enhance photon emission at slightly di�erent energies.

Supplementary Figure 4b shows scanning electron microscope (SEM) images of the vdWQT devices

coupled to nanocube antennas. The overview image on the left shows the locations of the individual

cubes. For the chosen SEM parameters the stack of two-dimensional materials does not generate

a signi�cant contrast and hence we only see the gold electrodes, the glass substrate and the silver

nanocubes. The image suggests that a total of seven cubes is placed on top of the vdWQT devices.

On the right we see magni�ed images of the individual cubes. The colored frames around the SEM

images assign the cubes to their respective spectra in Supplementary Figure 4a.

The size of the nanocubes 4, 6 and 5, as extracted from SEM images, are 75 nm, 72 nm and

68 nm, respectively. With decreasing size, at constant gold-silver distance, the MIM resonator length

decreases with decreasing cube size. This is expected to be accompanied by a blue-shift, i.e. a shift

towards higher energies, of the lowest order resonator mode. This expectation is in agreement

with our experimental observation of the di�erent resonance energies shown in Supplementary

Figure 4a. Antenna 3 on the other hand does not follow this trend with a size of 77 nm. Taking

a closer look at the location of the cube we �nd that only part of the nanocube overlaps with the

gold electrode, leading to an arti�cially shorter MIM resonator length and hence an additional shift

towards higher energies. Due to its size of 57 nm we do not excite the fundamental resonance of

cube 1 at the applied voltage of 2V and hence observe no emission. We do observe weak emission

from the remaining cubes 2 and 7 as seen in 5d, however we did not characterize their emission

spectra. Some variation in intensity amongst antennas is to be expected and most likely caused by

an imperfect attachment of the cube to the surface or residues from device fabrication that may

either locally suppress electron tunneling if they are localized between the layers constituting the

vdWQT device or shift the resonance energy out of our detection window, which is restricted to

approximately 1.1 eV ≤ h̄ω ≤ |eVb|, determined by the silicon band gap on the low end and the

quantum cuto� condition on the high end.

7Please not that the EMCCD image shown in 5d is not corrected for spectral variations in detection e�ciency

and chromatic aberrations, leading to an apparent discrepancy in brightness compared to the fully corrected spectra

shown in Supplementary Figure 4a.
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Supplementary Figure 4. Nanocube antennas driven by a vdWQT device. a Emission spectra of the four

nanocube antennas that are clearly visible in Figure 5d at an applied voltage Vb = 2.0 V. b Scanning electron

microscopy images of the three electrodes. The left side shows a false-color image of all three electrodes,

showing the location of the di�erent nanocubes. All nanocubes that are located on top of the vdWQT

devices are numerated. The right side shows magni�ed images of the individual cubes, all scale bars 100 nm.

The colored frames assign the cubes to their respective emission spectrum.
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Voltage-dependence of antenna-coupled emission. We further analyze the voltage-

dependence of antenna-coupled emission spectra, shown in Supplementary Figure 5. Panel a

exemplarily shows emission spectra of Cube 4 (cf. Supplementary Figure 4) in the relevant positive

(right) and negative (left) voltage ranges in steps of 0.2 eV. As only modes of energy h̄ω < |eVb|

can be excited, the resonance peak of Cube 4 at 1.43 eV is not visible at ±1.3 V and emerges at

higher voltages. For comparison we show the emission spectrum of the uncoupled heterostructure in

Supplementary Figure 5a with a relative scaling factor of 2.8× 104. In the main text we found that

the local enhancement of the spectral photon emission rate closely corresponds to the calculated

enhancement of the radiative LDOS. This implies that the enhancement should be independent of

the applied voltage. To verify this we extract the peak spectral e�ciencies of four cube antennas as a

function of voltage as the amplitude of Lorentzian peak functions which we �t to the corresponding

spectra. For comparison we extract the spectral e�ciency of the unmodi�ed heterostructure (cf.

Figure 4a/e) at the energy value that corresponds to the resonance position of the cube antenna.

The results are shown in Supplementary Figure 5b-e. Overall we �nd that indeed each cube can

be characterized with a single peak enhancement factor that generates a direct, close to voltage-

independent link to the emission e�ciency of the planar heterostructure. Minor deviations are to

be expected as the nanocube antenna probes an area that is three orders of magnitude smaller than

the total area of the tunnel junction. Furthermore, the cubes may cause small changes to the local

o�set V0 of the Fermi level position ∆EF of the graphene sheet which is most likely responsible for

the asymmetric deviation observed generally and particularly pronounced for cube 4.
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Supplementary Figure 5. Voltage-dependence of antenna-coupled emission. a Antenna emission spectra

(Cube 4) at several negative and positive voltage values. For comparison we show the emission spectrum

of the planar heterostructure (cf. Figure 4a/e) within the emission window of the nanocube antenna.

b-e Amplitude of the Lorentzian �t to the antenna-coupled emission spectra as a function of voltage in

comparison to the spectral e�ciency value of the planar heterostructure at the peak-value of the resonance

for Cubes 4, 6, 5 and 3, respectively.
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SPP scattering by nanocube antennas. The scattering of SPPs that are excited by inelastic

electron tunneling all across the tunnel junction area constitutes a secondary contribution to the

observed, localized signal emerging from the cube antenna-coupled vdWQT devices. In the following

we estimate the magnitude of this contribution.

The emission of cube 4 on resonance is enhanced by a factor of 3×104 (cf. Figure 5e) compared

to the planar heterostructure, within the footprint of the antenna (75 × 75 nm2). On the other

hand, the area of the center electrode is ∼ 4 × 2µm2 and hence ∼ 1.4 × 103 times larger than

the active area of the nanocube antenna. Hence, the total spectral photon emission rate of the

planar electrode is about a factor of 20 smaller than the spectral photon emission rate of the cube

antenna on resonance. From this we may infer the ratio of photons emitted by the antenna to SPPs

launched by the entire electrode by considering the respective LDOS contributions. As the LDOS

of the SPP mode at the top interface is about a factor of three higher than the radiative LDOS

(at 1.43 eV, cf. Supplementary Figure 3e) we conclude that the total SPP emission rate is about a

factor of seven lower than the spectral photon emission rate of the antenna on resonance.

To estimate the fraction of launched SPPs that is scattered by a single nanocube antenna we

carried out numerical �nite element simulations (COMSOL 5.3) to determine the cube antennas

SPP scattering cross section. As the SPP is con�ned along the out-of-plane direction we may de�ne

a scattering width σw to describe the e�cacy of SPP scattering. This scattering width is determined

by the power scattered by the nanocube antenna compared to the power per unit width injected

into the system. Numerically (for the same geometry described in Supplementary Note 4) we �nd

that the scattering width of the nanocube antenna on resonance is approximately half the cube

edge length. Furthermore, the scattering e�ciency ηsct of an SPP launched at any given position

at a distance r from the nanocube is well approximated (if the junction dimensions are much larger

than the cube size) by ηsct ∼ σw/(2πr). Assuming the nanocube to be located in the center of a

∼ 4×2µm2 (yielding the highest e�ciency) large tunnel junction we �nd that the average scattering

e�ciency is less than 1%. We can hence estimate that the emission rate due to SPP scattering is

two to three orders of magnitude lower than the experimentally measured antenna-coupled photon

emission rate and can thus be safely neglected.
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