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1 Model description

1.1 Surface geometry

We model a bilayer as a two-dimensional surface ω with a non-uniform distribution of

curvature-inducing lipids and proteins. The position vector to an arbitrary point on the

surface is given by r(θµ), where θµ are the surface coordinates. Here and henceforth, Greek

indices range over {1, 2} and, if repeated, are summed over that range. The basis vectors on

the tangent plane are given by aα = r,α which yields the metric aαβ = aα · aβ and the unit

surface normal vector n = a1 × a2/ |a1 × a2|. Here, (),α = ∂()/∂θα. The curvature tensor is

given by b = bαβa
α ⊗ aβ where bαβ = n · r,αβ = −aα · n,β are the coefficients of the second

fundamental form, aα = aαβaβ are the contravariant basis vectors, and (aαβ) = (aαβ)−1 is

the dual metric Kreyszig (1959). These yield the three curvature invariants on a surface

H =
1

2
aαβbαβ = (κλ + κµ)/2,

K =
1

2
εαβεθψbαθbβψ = κλκµ − τ 2.

D =
1

2
bαβ(λαλβ − µαµβ) = (κλ − κµ)/2

(1)

where H is the mean curvature, K is the Gaussian curvature and D is the curvature devi-

ator. Above, {κλ, κµ} are the principal curvatures, τ is the twist, and εαβ = a−
1
2 eαβ is the

permutation tensor density where eαβ is the permutation tensor.

1.2 The energy functional and the equilibrium equations

For isotropic membranes, the strain energy W depends only on the mean and the Gaussian

curvatures Jenkins (1977); Steigmann (1999). We refer the reader to Deserno (2015) for more

details on the theory of membranes. For anisotropic membranes where proteins break the

isotropic symmetry and introduce an orthotropic symmetry (invariance under 180· rotation),

the strain energy depends on the third invariant- curvature deviator D Fošnaric et al. (2005);

Kralj-Iglič et al. (1999, 2002); Walani et al. (2014). For the problem investigated in this

study, lipids and proteins have a contrasting effect. The curvature inducing lipids PE and

CL generate spherical curvature and preserve isotropy. On the other hand, the Drp1 proteins

induce cylindrical curvatures and introduce orthotropic symmetry. For the generalized strain
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energy, the total free energy of a bilayer that accounts for the areal and volume constraints

is given by

E = Eb − Ef (2)

where

Ef =

∫
ωa

f(θα).(r− r0)da (3)

Eb =

∫
ω

(W (H,D,K; θα) + λ(θα))da− pV (ω). (4)

where here, f is the force per unit area (applied by actin filaments) on a point on the surface

with a position vector r in the current configuration and r0 in the reference configuration,

λ is the surface tension field which is the Lagrange multiplier associated with the local area

constraint, p is the transmembrane pressure which is the Lagrange multiplier associated with

the volume constraint and V is the enclosed volume.

To derive the stationarity conditions, we consider a general variation

u =uαaα + un. (5)

where uα are the tangential variations, and u is the normal variation. As shown in Walani

et al. (2014), the tangential variations yield the Euler equation

λ,η = −∂W/∂θη −WD(bαβ(λαλβ);η)− f .aη. (6)

This equation allows computation of the surface tension field as a function of the surface

coordinates. For homogeneous membranes, it is trivially satisfied and yields a constant

surface tension value. In the domains where the membrane possesses isotropic symmetry,

dependence of W on D is suppressed.

For normal variation, following the procedure outlined in Walani et al. (2014), we derive

the so-called shape equation that governs the geometry of the membrane

1

2
[WD(λαλβ − µαµβ)];βα +

1

2
WD(λαλβ − µαµβ)bαγb

γ
β + ∆(

1

2
WH) + (WK);βαb̃

βα

+WH(2H2 −K) + 2H(KWK −W )− 2Hλ = p+ f .n.

(7)

1.2.1 Boundary Forces and Moment

The procedure outlined in Agrawal and Steigmann (2009); Walani et al. (2014) also yields

the boundary terms from the tangential and the normal variations

ĖB =

∫
∂ω

(Fνν +Fττ +Fnn) · uds−
∫
∂ω

Mτ · ωds. (8)
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where

M =
1

2
WH + κτWK +WDλ

αλβνβνα −
1

2
WD,

Fν = W + λ− κνM,

Fτ = −τM,

Fn = (τWK)′ − 1

2
(WH),ν − (WK),β b̃

αβνα,

+
1

2
(WD),ν − (WDλ

αλβ);βνα − (WDλ
αλβνβτα)′.

(9)

Above, M is the bending moment per unit length, Fν is the in-plane normal force per unit

length, Fτ is the in-plane shear force per unit length, Fn is the transverse shear force per

unit length, and the edge discontinuities have been neglected.

1.3 Axisymmetric Deformations

We assume that the undeformed and the deformed mitochondria shapes possess axisymmetry.

We therefore parametrize the surface by the meridional arc length s and the azimuthal angle

θ. For such a surface,

r(s, θ) = r(s)er(θ) + z(s)k (10)

where r(s) is the radius from axis of revolution, z(s) is the elevation from a base plane and

(er, eθ,k) form the coordinate basis. Since (r′)2 + (z′)2 = 1, we can define an angle ψ such

that

r′(s) = cosψ and z′(s) = sinψ. (11)

Above, ()′ = ∂()/∂s. With θ1 = s and θ2 = θ, we can easily show that

a1 = r′er + z′k, a2 = reθ,

n = − sin(ψ)er + cos(ψ)k,
(12)

λ = −eθ, µ = cosψer + sinψk. (13)

Fig. S3a shows the orientations of n, λ and µ. In the axisymmetric setting, the normal

curvatures are given by κλ = (sinψ)/r and κµ = ψ′ which then yield the curvature invariants

2H =
sinψ

r
+ ψ′,

K = H2 − (H − (sinψ)/r)2, and

D = [(sinψ)/r − ψ′]/2.

(14)

Using these expressions, the Euler-Lagrange equations for an axisymmetric geometry reduce

to

λ′ = −W ′ − f .a1. (15)
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and

p+ f .n =
L′

r
+WH(2H2 −K)− 2H(W + λ−WDD) +

((WD)′ cosψ)

r
(16)

where

L/r =
1

2
[(WH)′ − (WD)′]. (17)

In the above equations, we suppress the dependence on D in the isotropic domains.

For an axisymmetric case, we can express the strain energy density in terms of curvatures

along principal directions {κλ, κµ}

W = k̂1(κλ − κ0λ)2 + k̂2(κµ − κ0µ)2 + 2k̂12(κλ − κ0λ)(κµ − κ0µ). (18)

The bending moduli in the {H,D} and the {κλ, κµ} framework are related by the following

expressions k̂1 = k̂2 = (K̂1 + K̂2) and k̂12 = (K̂1 − K̂2). In order to maintain a control over

the domains over which PE and Drp1 proteins interact with the membrane, we transform

the independent variable from arclength s to area a with the help of the relation da/ds = 2πr.

In addition, we use the radius of the initial spherocylinder R0 to non-dimensionalize the

system of equations. The non-dimensional variables are given by

r̄ = r/R0, z̄ = z/R0, ā = a/2πR0
2, κ̄λ = R0κλ, W̄ = WR0

2/k0,

κ̄µ = R0κµ, H̄ = R0H, D̄ = R0D, K̄ = R0
2K, λ̄ = λR0

2/k0,

L̄ = R0L/k0, k̄1 = k̂1/k0, k̄2 = k̂2/k0, p̄ = pR0
3/k0, f̄ = R0

3/k0f .

(19)

In terms of these normalized parameters and the partial derivative with respect to a, (̊) =

∂()/∂ā, the system of equations can be written as

˚̄r = cosψ/r̄, ˚̄z = sinψ/r̄, (20)

ψ̊ = κ̄λ/r̄, (21)

L̄/r̄2 =
1

2
( ˚̄WH − ˚̄WD), (22)

˚̄L = p̄+ f̄ .n− W̄H(2H̄2 − K̄) + 2H̄(W̄ + λ̄− W̄DD̄)− ˚̄WD cosψ, and (23)

˚̄λ = − ˚̄W − f̄ .a1/r̄. (24)
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In terms of the normalized principal curvatures, Eqs. (22)-(24) can be expressed as

˚̄L =

(
p̄+ f̄ .n + (κ̄λ + κ̄µ)(W + λ̄)− 2κ̄2λ[k̄1(κ̄λ − κ̄0λ) + k̄12(κ̄µ − κ̄0µ)]− 2κ̄2µ[k̄12(κ̄λ − κ̄0λ)

+k̄2(κ̄µ − κ̄0µ)]

)
− W̊D cosψ,

(25)

˚̄κλ =
(cosψ)κ̄µ

r̄2
− (sinψ cosψ)

r̄3
, (26)

˚̄λ = −
(

˚̄k1(κ̄λ − κ̄0λ)2 − 2k̄1(κ̄λ − κ̄0λ)̊κ̄0λ +˚̄k2(κ̄µ − κ̄0µ)2 − 2k̄2(κ̄µ − κ̄0µ)̊κ̄0µ

+ 2̊k̄12(κ̄λ − κ̄0λ)(κ̄µ − κ̄0µ)− 2k̄12(κ̄µ − κ̄0µ)̊κ̄0λ − 2k̄12(κ̄λ − κ̄0λ)̊κ̄0µ
)
− f̄ .a1/r̄.

(27)

Above,

W̊D = (2̊k̄1−2̊k̄12)(κ̄λ−κ̄0λ)+(2k̄1−2k̄12)(̊κ̄λ−˚̄κ0λ)+(2̊k̄12−2̊k̄2)(κ̄µ−κ̄0µ)+(2k̄12−2k̄2)(̊κ̄µ−˚̄κ0µ),

(28)

and

˚̄κµ =
L̄

2k̄2r̄2
+ ˚̄κ0µ −

˚̄k2
k2

(κ̄µ − κ̄0µ)− k̄12
k2

(̊κ̄λ − ˚̄κ0λ)−
˚̄k12
k2

(κ̄λ − κ̄0λ). (29)

The expressions for the boundary forces and moments reduce to:

Fτ = −τM = 0,

M̄ = 2k̄2(κ̄µ − κ̄0µ) + 2k̄12(κ̄λ − κ̄0λ),

Fν = W + λ− κ̄µ(2k̄2(κ̄µ − κ0µ) + 2k̄12(κ̄λ − κ̄0λ)),

F̄ν = k̄1(κ̄λ − κ̄0λ)2 + k̄2(κ̄µ − κ̄0µ)2 + 2k̄12(κ̄λ − κ̄0λ)(κ̄µ − κ̄0µ) + λ̄− κ̄µ(2k̄2(κ̄µ − κ̄0µ)

+ 2k̄12(κ̄λ − κ̄0λ)),

F̄n = −L̄/r̄.

(30)

1.4 Simulation procedure:

We solve six simultaneous ODE’s (20), (21), (25), (26), and (27) to compute the shape of

the mitochondria. We prescribe six boundary conditions at the two ends of the simulation

domain as shown in Fig. S3b.

i) At the pole of the spherocylinder (ā = 0)

r̄ = 0, ψ = 0 and L̄ = 0 (31)

ii) At the equatorial plane passing through the middle of the spherocylinder (ā = ā0)

z̄ = 0, ψ =
π

2
and L̄ = 0, (32)
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The ODE’s along with the boundary conditions are solved in Matlab using ‘bvp4c solver’.

For simulating the fission process, we start from an undeformed spherocylinder as the initial

shape (Fig. S6a). The initial spherocylinder has a higher curvature at the poles and lower

curvature in the middle as shown in Fig. S6b.

The entire shape transition is obtained in 3 steps:

1) ER/Actin-lipid phase: ER/Actin apply force onto the membrane. (Fig. S6a, magenta

domain). Since the orientation of the force is not yet established, we assume α = 0◦ and

α = 45◦. Th results for α = 45◦ are presented in the main paper, while the results for α = 0◦

have been presented in Fig. S4. During squeezing, we have assume aggregation of conical

lipids in the vicinity of actin domain. Since conical lipids generate spherical curvatures,

we increase the curvatures in the longitudinal (κλ) and circumferential (κν) directions. We

further assume that the total amount of PE is constant. As a result, an increase in the PE

concentration in one region leads to a decrease in the PE concentration in the other regions

(Figs. S6b,d,f,h,j). For the simulations presented in Fig. 3, we have assumed that the actin

force increases linearly from 0 pN to 1.573 pN and the lipid curvature increases linearly from

0.002 nm−1 to 0.0035 nm−1. During the depolymerization phase, the actin force is gradually

reduced back to 0 pN while the lipid curvature is held constant (Fig. 3b-4 and Fig. S4-4).

2) Drp1-lipid phase: Drp1 forms a cylindrical coat around the membrane tubule and squeezes

it. To model this effect, we increase the stiffness, area and curvature of the protein coat lin-

early during the polymerization phase. The protein stiffness is changed from 0 to 14.5kBT ,

area is changed from 0% to 1.3% of the total area, and the circumferential curvature is

changed from 0.0155 nm−1 (curvature of the tubule at the initiation of Drp1 polymeriza-

tion) to 0.0168 nm−1. As before, we assume that the lipid concentration increases linearly

during the protein polymerization phase. We therefore increase the lipid curvature (in the

blue domain) from 0.0035 nm−1 to 0.0046 nm−1 (Fig. S6f). In addition, since Drp1 polymer-

ization is known to sequester CL underneath, we prescribe CL-induced (negative) curvature

in the Drp1-coated domain linearly from 0.00175 nm−1 to 0.0023 nm−1. We then split the

Drp1 coat and increase the separation between the two domains. The lipid curvatures and CL

curvatures are assumed to remain unchanged in the adjacent blue domains and underneath

of bar protein (Fig. S6h shows the final curvatures).

3) Dynamin 2 effect: We also model Dynamin as a cylindrical protein coat around the mem-

brane tubule (similar to Drp1). As for Drp1, we have linearly increased the circumferential

curvature, stiffness and area in the center of the tubule. The final values for these three
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parameters are 0.15 nm−1, 12 kBT and 0.35% of the total area, respectively. The lipid

curvatures are held fixed and the in-plane stress (Fν) is calculated using Eq. 30.
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Figure S1: Spherical vs cylindrical curvature from conical lipids. a) If we look at any two orthogonal

directions at any point on a sphere, the surface curves the same way. As a result the headgroup area is

reduced in all the directions. b) In contrast, if we look at the circumferential and the longitudinal directions

at any point on a cylinder, we observe a difference. The headroup area is reduced in the circumferential

direction, but remains unchanged in the longitudinal direction. As a result, cone-shaped lipids experience

higher exposure to water. For this reason, cone-shaped lipids will have a natural preference for the spherical

shape as compared to the cylindrical shape.
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Figure S2: a) Conical lipids prefer a curved leaflet. b) A symmetric distribution of conical lipids in the two

leaflets results in a flat bilayer. However, when the conical lipids have asymmetric distribution, a curved

configuration becomes the natural state of the bilayer.

n

µ

�

a

b

r

Axis of symmetry

r  = 0 
   = 0 
L = 0
 

z = 0 
   = 90 
L = 0
 

z

Figure S3: a) The orientation of the three vectors n, λ and µ on a cylindrical surface. b) The prescribed

boundary conditions at the two ends of the simulated domain. Due to reflection symmetry, only half the

spherocylinder is simulated.
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Figure S4: a) The force-deformation response for radially inwards acting actin force (α = 0o). b) The

computed shapes during the force-deformation response.
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Figure S5: The force-deformation curve generated by actin force in the absence of lipid localization. The

deformation response is completely elastic reverting back to the undeformed configuration upon removal of

actin force. b) The computed shapes during the force-deformation response.
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Figure S6: The simulated shape transition for mitochondria fission. a and b) The initial geometry and the

corresponding curvature profiles. c and d) The geometry and the corresponding curvature profiles in the

presence of ER/Actin force and lipid localization. e and f) The geometry prior to Drp1 splitting and the

corresponding curvature profiles. g and h) The final geometry after second instability and the corresponding

curvature profiles. i and j) The final squeezed shape due to Dynamin 2 and the corresponding curvature

profiles. H is the mean curvature of the surface, HL is the spontaneous curvature induced by the lipids and

H0 is the total spontaneous curvature from the lipids and the proteins.
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Figure S7: a) A super constriction of 5 nm obtained with higher lipid concentration post Drp1-lipid instability.

a) The shape after instability. b) Corresponding in-plane stress profile. In comparison to the Dynamin 2

induced squeezing, the in-plane stress remains negligible despite extreme curvatures.
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Figure S8: Cardiolipin concentrations. a) The initial geometry and the required CL concentrations. For a

tubule radius of 250 nm and CL lipid radius of curvature of 0.4 nm Renner and Weibel (2011), the required

(asymmetric) concentration is 0.16% in the hemishperical domain and 0.08% in the cylindrical domain.b)

The geometry prior to actin-lipid induced instability and the required CL concentrations. Only 0.03% change

in the CL concentration is required in the domain adjacent to actin to trigger the instability. This increase is

accompanied by a concomitant decrease in the PE concentration by 0.02% in the cylindrical domain. c) The

geometry prior to Drp1-lipid induced instability and the required CL concentrations. Only 0.12% change in

the CL concentration is required in the domain adjacent to Drp1 to trigger the instability. This increase is

accompanied by a concomitant decrease in the CL concentration by 0.055% in the cylindrical domain. These

small changes in the areal concentration are sufficient to achieve extreme necking. It is important to note

that the required CL lipids into the central blue domains can come from the nearby yellow domains and are

not required to come from the blue domains at the poles. Thus, local rearrangement by ∼ 0.1% adjacent to

the protein domain is enough to generate necking conducive for fission.
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Figure S9: Lipid concentrations for the in vitro study. a) The initial geometry and the required PE concen-

trations. b) The geometry prior to Drp1-lipid induced instability and the required PE concentrations. Only

2.48% change in the PE concentration is required in the domain adjacent to Drp1 to trigger the instability.

This increase is accompanied by a concomitant decrease in the PE concentration by 0.94% in the cylindrical

domain.
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Figure S10: Actin-lipid cooperativity in a mitochondrion with an aspect ratio (L0/2R0) of 1.5. a) The force-

deformation response reveals a similar instability as for a spherocylinder with an aspect ratio of 3 discussed

in the main manuscript. b) The computed shapes during the force-deformation response.
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Figure S11: Drp1-lipid cooperativity in a mitochondrion with an aspect ratio (L0/2R0) of 1.5. The computed

shapes during the polymerization and the splitting phases reveal a similar instability as for a spherocylinder

with an aspect ratio of 3 discussed in the main manuscript.
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Figure S12: Actin-lipid cooperativity in a mitochondrion with an aspect ratio (L0/2R0) of 4. a) The force-

deformation response reveals a similar instability as for a spherocylinder with an aspect ratio of 3 discussed

in the main manuscript. b) The computed shapes during the force-deformation response.
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Figure S13: Drp1-lipid cooperativity in a mitochondrion with an aspect ratio (L0/2R0) of 4. The computed

shapes during the polymerization and the splitting phases reveal a similar instability as for a spherocylinder.
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Figure S14: Actin-lipid cooperativity is explored in the presence of an increase in the PE concentration in

the blue domains but in the absence of lipid redistribution in the cylindrical domain. This local change

in the PE concentration would occur as a result of lipid exchange between the two bilayer leaflets. In the

main paper, an increase in the PE concentration in the blue domains results in a concomitant decrease in

the cylindrical region, implying global reorganization. a) The force-deformation response again reveals an

instability. b) The computed shapes during the force-deformation response.
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Figure S15: Drp1-lipid cooperativity is explored in the presence of an increase in the PE concentration in

the blue domains but in the absence of lipid redistribution in the cylindrical domain. The computed shapes

during the polymerization and splitting phases again reveal an instability.
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Figure S16: Actin-lipid cooperativity in a mitochondrion with 50% increase in protein area and lipid local-

ization area compared to the system discussed in the main manuscript. The area over which actin applied

force reaches a value of 1.3 % of the total area and the area of higher PE concentration domain reaches

a value of 6.5 % of the total area. Here, the two areas reach values of 1.95 % and 9.75 % of the total

area, respectively. a) The force-deformation response reveals a similar instability as for the spherocylinder

discussed in the main manuscript. b) The computed shapes during the force-deformation response.
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Figure S17: Drp1-lipid cooperativity in a mitochondrion with 50% increase in protein area and lipid local-

ization area compared to the system discussed in the main manuscript. The area over which actin applied

force reaches a value of 1.3 % of the total area and the area of higher PE concentration domain reaches a

value of 6.5 % of the total area. Here, the two areas reach values of 1.95 % and 9.75 % of the total area,

respectively. b) The computed shapes during the polymerization and the splitting phases reveal a similar

instability as for the spherocylinder discussed in the main manuscript.
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Figure S18: Actin-lipid cooperativity in a mitochondrion with 25% decrease in protein area and lipid local-

ization area compared to the system discussed in the main manuscript. The area over which actin applied

force reaches a value of 1.3 % of the total area and the area of higher PE concentration domain reaches

a value of 6.5 % of the total area. Here, the two areas reach values of 0.98 % and 4.88 % of the total

area, respectively. a) The force-deformation response reveals a similar instability as for the spherocylinder

discussed in the main manuscript. b) The computed shapes during the force-deformation response.
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Figure S19: Drp1-lipid cooperativity in a mitochondrion with 25% decrease in protein area and lipid localiza-

tion area compared to the system discussed in the main manuscript. The area over which actin applied force

reaches a value of 1.3 % of the total area and the area of higher PE concentration domain reaches a value of

6.5 % of the total area. Here, the two areas reach values of 0.98 % and 4.88 % of the total area, respectively.

The computed shapes during the polymerization and the splitting phases reveal a similar instability as for

the spherocylinder discussed in the main manuscript.
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