

Supplemental Figure 1. *Lpar4* expression in freshly isolated fractions of adipose tissue, cultured adipocyte progenitors, C3H10T1/2 cells and mouse embryonic fibroblasts (MEFs).

Mouse *Lpar4* mRNA expression levels in adipocytes, lineage-positive (Lin+) and -negative (Lin-) populations of the stromal vascular fraction (SVF) isolated from WAT, along with cultured Lin- SVF containing adipocyte progenitors, C3H10T1/2 and MEFs are shown (n = 3). Note that cultured Lin- SVF cells show substantially low expression of *Lpar4* even after adipocyte differentiation procedure. Each symbol represents the value from sample prepared from an independent experiment. Data are expressed as the mean ± SEM.

Supplemental Figure 2. Octadecenyl phosphate (ODP), a full agonist for LPA4 and LPA5, activates RhoA. (A) Confirmation of the heterologous expression of LPA4 or LPA5 in RH7777 cells. Representative anti-HA antibody (green) immunostaining images of RH7777 cells stably over-expressing HA-tagged LPA4 or LPA5 (RH7777-LPA4 or RH7777-LPA5, respectively) are shown. RH7777 cells transfected with empty vector (RH7777-Vector) were used as a negative control. The cells are counterstained with DAPI (blue). (B) Intracellular Ca2+ responses to ODP (1 µM) in RH7777-LPA4 and RH7777-LPA5 cells. Representative traces of two independent experiments are shown. (C) ODP-induced impedance responses in B103 cells stably over-expressing LPA4 or LPA6 (B103-LPA4 or B103-LPA6, respectively). Real-time impedance traces after ODP (1 µM) or 1-oleoyl lysophosphatidic acid (LPA, 1 µM) were measured by the xCELLigence system. A unitless parameter called Cell Index (CI) representing impedance of electric flow was monitored, and CI after vehicle treatment is subtracted from that after ligand application to present the ligand-dependent impedance changes. B103 cells transfected with empty vector (B103-Vector) were used as a negative control. Data are expressed as the mean \pm SEM (n = 4-6). (D) RhoA is activated by ODP. After the overnight serum-starvation, the C3H10T1/2-derived adipocytes were treated with vehicle or ODP (2.5 µM) for 1 min. The cell lysates were processed for the measurement of Rho-GTP levels with the colorimetric-based G-LISA activation assay kit. Each plot represents the mean values from technical duplicates. Results are representative of at least 2 independent experiments.

Supplemental Figure 3. Octadecenyl phosphate (ODP) does not affect lipolysis in freshly isolated adipocytes.

The primary adipocytes were collected from epididymal white adipose tissue (eWAT) of WT mice by enzymatic digestion and centrifugation, and stimulated with ODP (2.5 μ M), isoproterenol (ISOP, 100 nM) and/or lactic acid (15 mM) for 2 h, and the glycerol concentration was determined by colorimetric detection. Data are expressed as the mean ± SEM (*n* = 3). NS, not significant. **P* < 0.05, one-way ANOVA with Bonferroni's *post hoc* test. Representative data of two independent experiments are shown.

Supplemental Figure 4. Serum lipid levels of WT and Lpar4-KO mice fed high-fat diet (HFD).

Serum triglyceride (TG) (A), non-esterified fatty acid (NEFA) (B), and total cholesterol (C) levels of WT and *Lpar4*-KO mice fed HFD (n = 8-13) are shown. Serum TG, NEFA, and cholesterol levels were determined by enzymatic reagents. Each symbol represents an individual mouse. Data are expressed as the mean ± SEM. NS, not significant, unpaired Student's *t*-test.

Supplemental Figure 5. LPA4 ablation does not affect brown adipose tissue (BAT) weight, food intake, body temperature or BAT marker gene expression on high-fat diet (HFD).

(A-C) BAT weight (A, n = 22-30), food intake (B, n = 13-15) and body temperature (C, n = 24-32) of WT and *Lpar4*-KO mice fed HFD. (D) Relative mRNA expression of BAT genes from HFD-fed WT and *Lpar4*-KO mice (n = 6 each). Each symbol represents an individual mouse. Data are expressed as the mean \pm SEM. NS, not significant, unpaired Student's *t*-test.

Supplemental Figure 6. The reconstitution efficiencies of bone marrow transfer experiments. (A) Percentage of C57BL/6-Ly5.1-derived cells in peripheral blood of recipient WT or Lpar4-KO mice (*n* = 9 each). (B) Percentage of WT or *Lpar4*-KO mice-derived cells in peripheral blood of recipient C57BL/6-Ly5.1 mice (n = 9-10). Each symbol represents an individual mouse.

The mRNA expression for *Lpar4* (**A**), *Lpp3* (**B**), and *Enpp2* (**C**) in adipocytes was compared between chow-fed (n = 3) and HFD-fed (n = 4) mice by RT-qPCR analysis. eWAT was collected, enzymatically digested, and centrifuged to isolate adipocytes. Each symbol represents an individual mouse. Data are expressed as the mean ± SEM. NS, not significant. ***P < 0.001, unpaired Student's *t*-test.

Supplemental Table 1. Lists of significantly enriched GO terms found in up- or down-regulated genes in WAT of *Lpar4*-KO mice.

Gene Ontology (GO) terms significantly enriched in 418 (eWAT) and 297 (iWAT) up-regulated, and 467 (eWAT) and 360 (iWAT) down-regulated genes in WAT from *Lpar4*-KO mice are shown. Gene annotation enrichment analysis of up-regulated probe sets was performed with Database for Annotation, Visualization and Integrated Discovery (DAVID). To extract the statistically overrepresented GO terms in differentially expressed genes (DEGs), we used modified Fisher's exact test with Benjamini and Hochberg false discovery rate (FDR) correction. A GO term with an FDR-corrected P-value < 0.05 was considered to be significantly enriched. GO terms significantly enriched in analyses of both eWAT and iWAT are shaded in gray.

Up-regulated genes in WAT of Lpar4-KO mice

eWAT (418 genes)

Biological processes

GO ID	GO term	No. DEGs	No. listed genes	P-value
GO:0006091	generation of precursor metabolites and energy	22	261	7.17E-04
GO:0055114	oxidation reduction	37	672	8.52E-04
GO:0060548	negative regulation of cell death	20	245	8.97E-04
GO:0043066	negative regulation of apoptosis	20	239	1.03E-03
GO:0043069	negative regulation of programmed cell death	20	244	1.05E-03
GO:0006006	glucose metabolic process	13	140	1.13E-02
GO:0015980	energy derivation by oxidation of organic compounds	11	98	1.16E-02
GO:0019217	regulation of fatty acid metabolic process	6	19	1.22E-02
GO:0010941	regulation of cell death	29	563	1.24E-02
GO:0006732	coenzyme metabolic process	13	143	1.27E-02
GO:0043067	regulation of programmed cell death	29	560	1.27E-02
GO:0042981	regulation of apoptosis	29	553	1.36E-02
GO:0010565	regulation of cellular ketone metabolic process	6	23	1.64E-02
GO:0006916	anti-apoptosis	10	88	1.65E-02
GO:0009628	response to abiotic stimulus	17	251	1.72E-02
GO:0046486	glycerolipid metabolic process	12	129	1.73E-02
GO:0006457	protein folding	12	127	1.74E-02
GO:0009409	response to cold	5	14	2.01E-02
GO:0051186	cofactor metabolic process	14	182	2.09E-02
GO:0019216	regulation of lipid metabolic process	8	58	2.58E-02
GO:0045333	cellular respiration	8	59	2.73E-02
GO:0005996	monosaccharide metabolic process	14	191	2.88E-02
GO:0019318	hexose metabolic process	13	169	3.15E-02
GO:0006638	neutral lipid metabolic process	7	45	3.38E-02
GO:0044093	positive regulation of molecular function	18	306	3.68E-02
GO:0006084	acetyl-CoA metabolic process	6	31	3.82E-02
GO:0019637	organophosphate metabolic process	13	176	3.85E-02
GO:0008610	lipid biosynthetic process	17	285	4.82E-02
GO:0009266	response to temperature stimulus	7	51	4.82E-02
GO:0022900	electron transport chain	10	112	4.89E-02
GO:0008015	blood circulation	10	111	4.89E-02
GO:0003013	circulatory system process	10	111	4.89E-02

Cellular components

GO ID	GO term	No. DEGs	No. listed genes	P-value
GO:0005739	mitochondrion	88	1322	2.70E-1
GO:0031090	organelle membrane	50	809	2.89E-0
GO:0044429	mitochondrial part	39	524	3.83E-0
GO:0031975	envelope	39	542	4.02E-0
GO:0031967	organelle envelope	39	540	4.51E-0
GO:0019866	organelle inner membrane	27	312	6.26E-0
GO:0005743	mitochondrial inner membrane	26	296	7.95E-0
GO:0031966	mitochondrial membrane	28	368	3.10E-0
GO:0005740	mitochondrial envelope	29	391	3.37E-0
GO:0031980	mitochondrial lumen	17	163	2.98E-0
GO:0005759	mitochondrial matrix	17	163	2.98E-0
GO:0000267	cell fraction	32	596	4.54E-0
GO:0005625	soluble fraction	10	99	1.05E-0
GO:0042175	nuclear envelope-endoplasmic reticulum network	12	160	2.33E-0
GO:0005626	insoluble fraction	25	528	2.46E-0
GO:0005624	membrane fraction	24	510	2.95E-0
GO:0005792	microsome	12	176	4.32E-0
GO:0042598	vesicular fraction	12	182	4.70E-0
GO:0012505	endomembrane system	24	535	4.77E-0
GO:0005783	endoplasmic reticulum	33	838	4.93E-0

Molecular functions

GO ID	GO term	No. DEGs	No. listed genes	P-value
GO:0048037	cofactor binding	22	226	8.89E-06
GO:0050662	coenzyme binding	16	160	4.76E-04
GO:0031406	carboxylic acid binding	10	85	1.15E-02
GO:0000166	nucleotide binding	73	2183	1.19E-02

iWAT (297 genes)

Biological processes

GO ID	GO term	No. DEGs	No. listed genes	P-value
GO:0055114	oxidation reduction	31	672	2.08E-05
GO:0015980	energy derivation by oxidation of organic compounds	9	98	4.95E-02
GO:0051050	positive regulation of transport	10	132	4.75E-02

Cellular components

GO ID	GO term	No. DEGs	No. listed genes	P-value
GO:0005739	mitochondrion	58	1322	9.89E-11
GO:0044429	mitochondrial part	23	524	2.74E-03
GO:0005759	mitochondrial matrix	12	163	3.79E-03
GO:0031980	mitochondrial lumen	12	163	3.79E-03
GO:0005625	soluble fraction	9	99	8.88E-03
GO:0000267	cell fraction	23	596	7.31E-03

Molecular functions

GO ID	GO term	No. DEGs	No. listed genes	<i>P</i> -value
GO:0048037	cofactor binding	19	226	2.44E-06
GO:0019842	vitamin binding	12	121	3.48E-04
GO:0031406	carboxylic acid binding	10	85	6.02E-04
GO:0030246	carbohydrate binding	17	317	1.90E-03
GO:0050662	coenzyme binding	12	160	2.06E-03
GO:0051287	NAD or NADH binding	6	44	3.22E-02

Down-regulated genes in WAT of Lpar4-KO mice

eWAT (467 genes)

Biological processes

GO ID	GO term	No. DEGs	No. listed genes	<i>P</i> -value
GO:0007155	cell adhesion	33	561	4.66E-03
GO:0022610	biological adhesion	33	562	2.42E-03
GO:0001944	vasculature development	20	250	3.56E-03
GO:0001568	blood vessel development	19	244	6.97E-03
GO:0006954	inflammatory response	18	225	7.04E-03
GO:0009611	response to wounding	22	347	1.80E-02
GO:0007167	enzyme linked receptor protein signaling pathway	19	273	1.74E-02
GO:0002526	acute inflammatory response	10	81	2.22E-02
GO:0030198	extracellular matrix organization	11	101	2.20E-02
GO:0048514	blood vessel morphogenesis	15	198	3.70E-02

Cellular components

GO ID	GO term	No. DEGs	No. listed genes	P-value
GO:0005576	extracellular region	102	1680	1.49E-15
GO:0031012	extracellular matrix	36	309	1.10E-11
GO:0005578	proteinaceous extracellular matrix	35	297	1.25E-11
GO:0044421	extracellular region part	58	774	1.21E-11
GO:0044420	extracellular matrix part	12	92	1.08E-03
GO:0005615	extracellular space	28	511	1.13E-02

Molecular functions

GO ID	GO term	No. DEGs	No. listed genes	P-value
GO:0001871	pattern binding	33	561	1.04E-03
GO:0030247	polysaccharide binding	33	562	1.04E-03
GO:0019838	growth factor binding	20	250	1.76E-03
GO:0005520	insulin-like growth factor binding	19	244	1.48E-03
GO:0005539	glycosaminoglycan binding	18	225	2.04E-03
GO:0030246	carbohydrate binding	22	347	2.34E-03
GO:0003779	actin binding	19	273	1.52E-02
GO:0042562	hormone binding	10	81	1.44E-02
GO:0008201	heparin binding	11	101	4.58E-02
GO:0008092	cytoskeletal protein binding	15	198	4.97E-02

iWAT (360 genes)

Biological processes

GO ID	GO term	No. DEGs	No. listed genes	P-value
GO:0042127	regulation of cell proliferation	23	538	4.19E-02
GO:0022610	biological adhesion	24	562	4.51E-02
GO:0048666	neuron development	16	292	4.53E-02
GO:0043062	extracellular structure organization	11	149	4.68E-02
GO:0042325	regulation of phosphorylation	16	290	4.81E-02
GO:0044093	positive regulation of molecular function	16	306	4.97E-02

Cellular components

GO ID	GO term	No. DEGs	No. listed genes	P-value
GO:0005576	extracellular region	64	1680	3.20E-06
GO:0044421	extracellular region part	38	774	9.49E-06
GO:0031012	extracellular matrix	19	309	1.38E-03
GO:0005578	proteinaceous extracellular matrix	18	297	2.24E-03
GO:0044420	extracellular matrix part	9	92	1.45E-02
GO:0005615	extracellular space	22	511	2.06E-02

Supplemental Table 2. Primers used for PCR analysis

Gene	Forward	Reverse
Lpar1*	CGCCAGAGGACTATGAGGATGT	CAGCAGACAATAAAGGCACCAAG
Lpar2 [#]	TCAGCCTAGTCAAGACGGTTGTC	CCAGAACGTTGCAGGACTTACAG
Lpar2 ^{##}	CCGCTACCGAGAGACCACAC	ACTTACAGTCCAGGCCATCCA
Lpar3 [#]	CCAACGTCTTATCTCCACACACC	CTTCACGTGTTGCACGTTACACT
Lpar3 ^{##}	TGCTCATTCTGCTGGTGTGG	TGATGAAGAAGGCCAGGAGGT
Lpar4*	GTCAACAATGCGACCACCAC	AAGCACCACAGAAGAACAAGAAACA
Lpar5*	TCAGCCAACACGACTTCTACCA	GAGCGTTGAGAGGGAGACCA
Lpar6*	GGTCATCTTCTGTTTCTGTTTTGTG	TGAGTTCTGAATTGTGTCTGAGGTG
Ucp1	ACACGGGGACCTACAATGCTTAC	CGTCATCTGCCAGTATTTTGTTG
Dio2	CAGCTTCCTCCTAGATGCCTACAA	CTGCACTGGCAAAGTCAAGAAG
Cidea	GCAACCAAAGAAATCGGGAATAG	CAGCATAGGACATAAACCTCAGCA
Ppargc1a	CAGAGAGAGAGGCAGAAGCAGAA	CAGGTGTAACGGTAGGTGATGAAAC
Ppara	GTGGCTGCTATAATTTGCTGTGG	AGCTTTGGGAAGAGGAAGGTGT
Esrra	GGCCACTCTCTGTGACCTTTTT	CAGCACTTCCATCCACACACTC
Nrf1	GCAACAGGGAAGAAACGGAAA	GGAGGGTGAGATGCAGAGTACAA
Tfam	AGCTGATGGGTATGGAGAAGGAG	GCTGAACGAGGTCTTTTTGGTTT
Cox8b	CATTCAGGGTGCCTCTTTGG	GGAGTTTTGGCTGGCTTGG
Cyc1	GCCGAAAGGTGATGCTGTC	TCCGAATGCTGGTGTGGTC
Cycs	CCAAATCTCCACGGTCTGTTC	тствссстттстсссттсттс
ldh3a	ATCACCGAAGAAGCAAGCAAG	AGAAAGAGCCCATCTGACATCC
Aco2	AAGTGGGACGGCAAAGACC	ACCGATGAGCAGGTTGTTAGAGA
Cd68	CTCCCTGTGTGTCTGATCTTGCT	CTGTGCTTTCTGTGGCTGTAGGT
Emr1	CCACTCACCTGCTGCTACTCATT	CAGCACAGACCTCTCTCTTGAGC
Tnfa	CCAGACCCTCACACTCAGATCAT	TGGCACCACTAGTTGGTTGTCTT
Ccl2	CCACTCACCTGCTGCTACTCATT	CAGCACAGACCTCTCTCTTGAGC
Col1a1	GAACCCCAAGGAAAAGAAGCAC	GTGGACATTAGGCGCAGGAA
Col6a3	AGCACACCGAGCATCCAGTT	GTCCACACAAGTCCCAGCATC
Fgf1a	AAGCCTCCCAGAGCAGACAGA	CAGTTTGGGCTTTTTGTAGTTTCC
Pparg2	TATGCTGTTATGGGTGAAACTCTGG	GTCAAAGGAATGCGAGTGGTCT
Cebpa	CCCAGAGGACCAATGAAATGAAG	GTGTGTATGAACTGGCTGGAGGT
Fasn	TGGTCACAGATGATGACAGGAGA	GGGTTGATACCTCCATCCACAAT
Lpl	CAACAAGGTCAGAGCCAAGAGAA	TGCCGTACAGAGAAATCTCGAAG
Srebp1c	GGCACTGAAGCAAAGCTGAATAA	TCATGCCCTCCATAGACACATCT
Adipoq	AAAGGAGATGCAGGTCTTCTTGG	TGAACGCTGAGCGATACACATAA
Cyp2f2	ACCCAAACCTCTCCCAATCCT	TGAACACCGACCCATACTCCTT

*Used for RT-PCR followed by gel electrophoresis (Figure 2A) and qRT-PCR analyses. #Used only for RT-PCR followed by gel electrophoresis (Figure 2A). ##Used only for qRT-PCR analyses.