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SUPPLEMENTARY APPENDIX A: PROOFS

A.1. Proofs of results from Section 3.

PROOF OF THEOREM 1. Let d′(P ) represent the functionw 7→ I(Q̄b(P )(w) >
0). For any P , let Ψ(P ) , EPEP [Y |A = d(P )(W ),W ]. Note that

Ψ(P )− EPEP [Y |A = 0,W ] = EP
[
d∗(P )(W )Q̄b(P )(W )

]
= EP

[
d′(P )(W )Q̄b(P )(W )

]
,

where we used the fact that d∗(P )(w) = d′(P )(w) on the set where Q̄b(P )(w) 6=
0. Let the fluctuation submodel {Pε : ε} through P0 be as defined in Section 3 of
the main text, where we note that P0 = Pε=0. Telescoping shows that, for fixed ε,

Ψ(Pε)−Ψ(P0) =EPε
[(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,ε

]
+ Ψd′0

(Pε)−Ψd′0
(P0).(A.1)

It is well known that Ψd(P ) , EPEP [Y |A = d(W ),W ] is pathwise differentiable
for fixed d. Thus dividing the second line above by ε and taking the limit as ε→ 0
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yields the pathwise derivative that treats the rule d′0 as known. For a given SY , the
fluctuated Q̄b,0 at w ∈ W is given by

Q̄b,ε(w) ,
∫
y (dQY,ε(y|A = 1,W = w)− dQY,ε(y|A = 0,W = w))

= Q̄b,0(w) + ε
(
E0 [Y SY (Y |1,W )|A = 1,W = w]

− E0 [Y SY (Y |0,W )|A = 0,W = w]
)

, Q̄b,0(w) + εh(w),(A.2)

where we note that supw |h(w)| <∞ because Y and SY are uniformly bounded.
Pathwise differentiable if (3).

Suppose (3). LetB1 , {w : Q̄b,0(w) = 0} andB2 , {w : Q̄b,0(w) = 0,maxa σ0(a,w) =
0}. Noting that B2 ⊆ B1 shows

EPε
[(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,ε

]
=

∫
W\B1

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,εdQW,ε

+

∫
B1\B2

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,εdQW,ε

+

∫
B2

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,εdQW,ε.(A.3)

Because Q̄b,0 6= 0 onW\B2, the first term above is o(|ε|) by a slight generaliza-
tion of Lemma 2 in van der Laan and Luedtke [2014a] to finite measures (since
Pr0(W\B2) may be less than 1). The second term is zero because Pr0(B1\B2) =
0 by (3). Let f(a,w) , E0 [Y SY (Y |1,W )|A = 1,W = w]. For the third term,
note that, for (a,w) ∈ {0, 1} ×B2,∫

B2

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,εdQW,ε

= ε

∫
B2

(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
(f(1, w)− f(0, w)) dQW,ε

Note that f(a,w) = CovP0(Y, SY (Y |A,W )|A = a,W = w) for a = 0, 1 be-
cause E[SY |A,W ] = 0, and thus f(a,w) = 0 for (a,w) ∈ {0, 1} × B2 since Y
has conditional variance 0 givenA = a andW = w. This shows that the third term
in (A.3) is exactly zero. Hence,

lim
ε→0

1

ε
EPε

[(
I(Q̄b,ε > 0)− I(Q̄b,0 > 0)

)
Q̄b,ε

]
= 0.
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Thus Ψ has canonical gradient D(d′0, P0), i.e. the same canonical gradient as the
parameter Ψd′0

. Recall that

D(d, P )(O) =
I(A = d(W ))

g(A|W )
(Y − Q̄(A,W )) + Q̄(d(W ),W )−Ψd(P ).

If (3) holds, then either i) Y = Q̄(A,W ) or ii) d∗0 = d′0 with P0 probability 1. Thus
D(d∗0, P0) = D(d′0, P0) almost surely if (3) holds. It follows that Ψ has canonical
gradient D(d∗0, P0).

Not pathwise differentiable if not (3).
We wish to construct a submodel so that (4) holds. Let SW (w) = 0 for all w.
Without loss of generality, suppose that

P0

(
Q̄b,0(W ) = 0, σ0(1,W ) > 0

)
> 0.(A.4)

Let

R(w) ,
Pr0(Y ≤ Q̄0(1,W )|A = 1,W = w)

Pr0(Y > Q̄0(1,W )|A = 1,W = w)
,

where we let R(w) = ∞ when Pr0(Y > Q̄0(1,W )|A = 1,W = w) = 0. Define
SY as follows:

SY (y|a,w) ,


min{1, R(w)}, if a = 1 and y > Q̄0(1, w)

−min{1, 1/R(w)}, if a = 1 and y ≤ Q̄0(1, w)

0, if a = 0.

Above we let min{1, 1/R(W )} = 0 whenR(W ) =∞ and min{1, 1/R(W )} = 1
when R(W ) = 0. Note that supw,a,y |SY (y|a,w)| ≤ 1 and E[SY |A = a,W =
w] = 0 for all a,w. We define B+ and B− as follows:

B+ , B0 ∩ {w : h(w) > 0}
B− , B0 ∩ {w : h(w) < 0} ,

where h is defined in (A.2). By (A.4), Pr0(Q̄b,0(W ) = 0, 0 < R(W ) < ∞) > 0,
and hence Pr0(B+) > 0 and Pr0(B−) > 0. Let

m(w) , (I(Q̄b,ε(w) > 0)− I(Q̄b,0(w) > 0))Q̄b,ε(w).

The first term in (A.1) yields the following limit from above:

lim
ε↓0

1

ε

∫
W
m(w)dQW,0(w)
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= lim
ε↓0

1

ε

∫
B+

m(w)dQW,0(w)

+ lim
ε↓0

1

ε

∫
B−

m(w)dQW,0(w) + lim
ε↓0

1

ε

∫
W\(B+∪B−)

m(w)dQW,0(w)

= lim
ε↓0

∫
B+

I(εh(w) > 0)h(w)dQW,0(w) + lim
ε↓0

∫
B−

I(εh(w) > 0)h(w)dQW,0(w)

+ lim
ε↓0

1

ε

∫
W\(B+∪B−)

m(w)dQW,0(w)

=

∫
B+

h(w)dQW,0(w) > 0,

(A.5)

where the integral over B− is equal to zero because the indicator in m is 0 for all
ε > 0 and the integral overW\(B+ ∪B−) is o(|ε|) because

lim
ε↓0

1

ε

∫
W\(B+∪B−)

m(w)dQW,0(w)

= lim
ε↓0

1

ε

∫
W\B0

m(w)dQW,0(w) + lim
ε↓0

1

ε

∫
{w:h(w)=0}∩B0

m(w)dQW,0(w) = 0,

where we used that the first term is 0 by a slight generalization of Lemma 2 in
van der Laan and Luedtke [2014a] to finite measures and the second term is 0
because Q̄b,ε = 0 on {w : h(w) = 0} ∩ B0. The inequality in (A.5) is strict
because Pr0(B+) > 0 and h > 0 on B+. Similarly,

lim
ε↑0

1

ε

∫
m(w)dQW,0(w) =

∫
B−

h(w)dQW,0(w) < 0.

Contrasting the above with (A.5) shows that there exists a path about P0 which
results in a fluctuation h for which the limit of the first term in (A.1) divided by ε
does not exist as ε → 0. But then Ψ cannot be pathwise differentiable: one of the
limits in the sum on the right-hand side of (A.1) exists, so the limit on the left-hand
side cannot exist. Specifically, suppose cn has a limit as n→∞ and an = bn+ cn.
If bn does not have a limit, then an does not have a limit, since an having a limit
implies that bn = an − cn has a limit, contradiction.

A.2. Proofs of results from Section 5.

PROOF OF THEOREM 2. We have that

Γn

(
Ψ̂(Pn)−Ψ(P0)

)
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=
1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)−Ψ(P0)

)(A.6)

=
1

n− `n

n∑
j=`n+1

σ̃−1
n,j

([
D̃n,j(Oj)−Ψdn,j (P0)

]
+
[
Ψdn,j (P0)−Ψ(P0)

])(A.7)

=
1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)−Ψdn,j (P0)

)
+ oP0(n−1/2)

(A.8)

=
1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)− E0

[
D̃n,j(Oj)|O1, ..., Oj−1

])
+R1n

(A.9)

+ oP0(n−1/2)

=
1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)− E0

[
D̃n,j(Oj)|O1, ..., Oj−1

])
+ oP0(n−1/2).

(A.10)

Above (A.6) is a result of moving the Ψ(P0) into the summation in the defintion of
Γn, (A.7) adds zero to the line above, (A.8) follows by C5), (A.9) is a consequence
of the fact that Ψd(P0) = P0D̃(Q̄, g, d) − E0[(1 − g0(d(W )|W )

g(d(W )|W ) )(Q̄(d(W ),W ) −
Q̄0(d(W ),W ))] for any fixed Q̄, g, and d, and (A.10) follows by C4).

For j = 1, ..., n− `n, let

Mn,j ,
1√

n− `n

(
D̃(dn,j+`n)(Oj+`n)− E0

[
D̃(dn,j+`n)(Oj+`n)|O1, ..., Oj+`n

])
σ̃n,j+`n

.

Note that, for each n, {Mn,j : j = 1, ..., n − `n} is a discrete-time martingale
with respect to the filtration Fj , where each Fj is the sigma-field generated by
O1, ..., Oj+`n . In particular, we have that, for all j ≥ 1, E0[Mn,j |Fj−1] = 0.

We also have that
∑n−`n

j=1 E0[M2
n,j |Fj−1] = 1

n−`n
∑n−`n

j=1

σ̃2
0,n,j+`n

σ̃2
n,j+`n

→ 1 by C3).

Because the conditional Lindeberg condition in C2) holds, the martingale CLT for
triangular arrays [see, e.g., Theorem 2 in Gaenssler et al., 1978] shows that

n−`n∑
j=1

Mn,j  N(0, 1).(A.11)
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Plugging this into (A.10) gives that

Γn
√
n− `n

(
Ψ̂(Pn)−Ψ(P0)

)
 N(0, 1).

The asymptotically valid 1− α CI is now constructed in the usual way.

PROOF OF COROLLARY 3. In this proof we use “.” to denote less than or
equal to up to a positive multiplicative constant. Let Fj represent the sigma-field
generated byO1, ..., Oj . Let D̃0 , D̃(d0, Q̄0, g0) and s2

0 , VarP0(D̃(d0, Q̄0, g0)(O)).
The proof can be broken into four parts, which show that: (1) D̃n,j approximates
D̃0 in mean-square; (2) Γ−1

n → s0 in probability; (3) Γn(Ψ̂(Pn)−Ψ(P0)) behaves
like an empirical mean of the normalized efficient influence curve; (4) Ψ̂(Pn) is
RAL and efficient.

Part 1: D̃n,j approximates D̃0. Note that

1

n− `n

n∑
j=`n+1

E0

[(
D̃n,j − D̃0

)2
∣∣∣∣Fj−1

]

≤ 1

n− `n

n∑
j=`n+1

E0

[(
D̃(dn,j , Q̄n,j , gn,j)− D̃(d0, Q̄n,j , gn,j)

)2
∣∣∣∣Fj−1

]

+
1

n− `n

n∑
j=`n+1

E0

[(
D̃(d0, Q̄n,j , gn,j)− D̃(d0, Q̄n,j , g0)

)2
∣∣∣∣Fj−1

]

+
1

n− `n

n∑
j=`n+1

E0

[(
D̃(d0, Q̄n,j , g0)− D̃(d0, Q̄0, g0)

)2
∣∣∣∣Fj−1

]

.
1

n− `n

n∑
j=`n+1

E0

[
(dn,j(W )− d0(W ))2

∣∣∣Fj−1

]
+

1

n− `n

n∑
j=`n+1

E0

[
(gn,j(d(W )|W )− g0(d(W )|W ))2

∣∣∣Fj−1

]
+

1

n− `n

n∑
j=`n+1

E0

[(
Q̄n,j(d0(W ),W )− Q̄0(d0(W ),W )

)2∣∣∣Fj−1

]

=oP0(1)
(A.12)

where the constant in the second inequality relies on the bounds on Y , Q̄n,j , g0,
and gn,j .
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Part 2: Γ−1
n → s0 in probability. We have that

(Γn − s−1
0 )2 ≤

 1

n− `n

n∑
j=`n+1

σ̃−1
n,js

−1
0 |σ̃n,j − s0|

2

.

 1

n− `n

n∑
j=`n+1

|σ̃n,j − s0|

2

.
1

n− `n

n∑
j=`n+1

(σ̃n,j − s0)2,(A.13)

where the second inequality on the first line holds by the assumed bounds on σ̃n,j
and the final inequality holds by Cauchy-Schwarz. Note that, for any positive real
numbers x1, x2,

(x1 − x2)2 ≤ 2|x2
1 − x2

2|.(A.14)

By the above and Condition C3’) , we have that

1

n− `n

n∑
j=`n+1

(σ̃n,j − σ̃0,n,j)
2 .

1

n− `n

n∑
j=`n+1

∣∣σ̃2
n,j − σ̃2

0,n,j

∣∣
.

1

n− `n

n∑
j=`n+1

∣∣∣∣∣ σ̃2
0,n,j

σ̃2
n,j

− 1

∣∣∣∣∣ = oP0(1).

We also have that

1

n− `n

n∑
j=1

(σ̃0,n,j − s0)2 ≤ 2

n− `n

n∑
j=1

|σ̃2
0,n,j − s2

0|

=
2

n− `n

n∑
j=`n+1

∣∣∣∣E0

[
D̃2
n,j − D̃2

0|Fj−1

]
+ E0

[
D̃n,j |Fj−1

]2
− E0

[
D̃0|Fj−1

]2
∣∣∣∣

.
1

n− `n

n∑
j=`n+1

E0

[∣∣∣D̃n,j − D̃0

∣∣∣ |Fj−1

]

.

√√√√ 1

n− `n

n∑
j=`n+1

E0

[(
D̃n,j − D̃0

)2
|Fj−1

]
,

where: the first inequality holds by (A.14); the equality holds by the definition of
conditional variance; the second inequality holds by twice using that x2

1 − x2
2 =
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(x1 + x2)(x1 − x2), the strong positivity assumption, and the bounds on Y and
Q̄n,j ; and the final inequality holds by the Cauchy-Schwarz inequality applied to
the expectations and the concavity of x 7→

√
x. By (A.12), the upper bound above

is oP0(1). By the triangle inequality and the previous two indented equations,

1

n− `n

n∑
j=`n+1

(σ̃n,j − s0)2 ≤ 1

n− `n

n∑
j=`n+1

[
(σ̃n,j − σ̃0,n,j)

2 + (σ̃0,n,j − s0)2
]

= oP0(1).

(A.15)

Plugging this into (A.13) shows that Γn = s−1
0 + oP0(1). By the continuous map-

ping theorem, Γ−1
n = s0 + oP0(1).

Part 3: Γn(Ψ̂(Pn) − Ψ(P0)) behaves like an empirical mean. For each n > 1
and j = `n + 1, ..., n, define

M ′n,j ,
D̃n,j(Oj)− E0

[
D̃n,j(O)|Fj−1

]
σ̃n,j

−
D̃0(Oj)− E0

[
D̃0(O) | Fj−1

]
s0

.

We first show that 1√
n−`n

∑n
j=`n+1M

′
n,j → 0 in probability. Note that

V ′n,j ,VarP0

(
M ′n,j

∣∣Fj−1

)
= E0

(D̃n,j(Oj)

σ̃n,j
− D̃0(Oj)

s0

)2
∣∣∣∣∣∣Fj−1


≤E0

(D̃n,j(Oj)

σ̃n,j
− D̃0(Oj)

σ̃n,j

)2
∣∣∣∣∣∣Fj−1

+ E0

(D̃0(Oj)

σ̃n,j
− D̃0(Oj)

s0

)2
∣∣∣∣∣∣Fj−1


.E0

[(
D̃n,j(Oj)− D̃0(Oj)

)2
∣∣∣∣Fj−1

]
+ E0

[
(σ̃n,j − s0)2

∣∣∣Fj−1

]
where the constants in the second inequality rely on the bounds on gn,j , g0, Q̄n,j ,
Y , σ̃0,n,j , and s0. By (A.12) and (A.15),

1

n− `n

n∑
j=`n+1

V ′n,j = oP0(1).(A.16)

Fix ε, δ > 0 and let vε,δ , ε2

log(4/δ) . We will show that there exists some N such
that

Pr0

 1√
n− `n

n∑
j=`n+1

M ′n,j ≥ ε

 < δ for all n ≥ N.(A.17)
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Note that

Pr0

 1√
n− `n

n∑
j=`n+1

M ′n,j ≥ ε


= Pr0

 1√
n− `n

n∑
j=`n+1

M ′n,j ≥ ε,
1

n− `n

n∑
j=`n+1

V ′n,j ≤ vε,δ


+ Pr0

 1√
n− `n

n∑
j=`n+1

M ′n,j ≥ ε,
1

n− `n

n∑
j=`n+1

V ′n,j > vε,δ

 .

We will bound the terms on the right separately. By our bounding assumptions,
there exists somem∗ ∈ (0,∞) such that Pr0(supj≤n |Mn,j | < m∗) = 1. By Bern-
stein’s inequality for martingale difference sequences with bounded increments
[see, e.g, Steiger, 1969; Theorem 1.6 of Freedman, 1975], we have that

Pr0

 1√
n− `n

n∑
j=`n+1

M ′n,j ≥ ε,
1

n− `n

n∑
j=`n+1

V ′n,j ≤ vε,δ


≤ Pr0

 1√
n− `n

ñ∑
j=`n+1

M ′n,j ≥ ε,
1

n− `n

ñ∑
j=`n+1

V ′n,j ≤ vε,δ for some ñ ∈ {`n + 1, ..., n}


≤ Pr0

 ñ∑
j=`n+1

M ′n,j
m∗

≥ ε
√
n− `n
m∗

,

ñ∑
j=`n+1

V ′n,j
(m∗)2

≤
vε,δ(n− `n)

(m∗)2
for some ñ ∈ {`n + 1, ..., n}


≤ exp

(
− ε2

√
n− `n

2(m∗ε+ vε,δ
√
n− `n)

)
n→∞−→ δ/4.

It follows that there exists some N1 such that the upper bound above is less than or
equal to δ/2 for all n ≥ N1. We also have that

Pr0

 1√
n− `n

n∑
j=`n+1

M ′n,j ≥ ε,
1

n− `n

n∑
j=`n+1

V ′n,j > vε,δ


≤ Pr0

 1

n− `n

n∑
j=`n+1

V ′n,j ≥ vε,δ

 .

By (A.16), there exists some N2 so that the upper bound above is no greater
than δ/4 for all n ≥ N2. Combining the previous two sets of inequalities shows
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that (A.17) is satisfied for N , max{N1, N2}. Thus 1
n−`n

∑n
j=`n+1M

′
n,j =

oP0(
√
n− `n). Because `n = o(n), 1

n−`n
∑n

j=`n+1M
′
n,j = oP0(n−1/2). Com-

bining this with (A.10) shows that

Γn

(
Ψ̂(Pn)−Ψ(P0)

)
=

1

n− `n

n∑
j=`n+1

D̃n,j(Oj)− E0[D̃n,j(O)|Fj−1]

σ̃n,j
+ oP0(n−1/2)

= s−1
0

1

n− `n

n∑
j=`n+1

(
D̃0(Oj)− E0

[
D̃0(O)

])
+

1

n− `n

n∑
j=`n+1

M ′n,j + oP0(n−1/2)

= s−1
0

1

n− `n

n∑
j=`n+1

(
D̃0(Oj)− E0

[
D̃0(O)

])
+ oP0(n−1/2)

= s−1
0

1

n

n∑
j=1

(
D̃0(Oj)− E0

[
D̃0(O)

])
+ oP0(n−1/2),

where the final equality uses that `n = o(n) and that D̃0 is bounded.

Part 4: Ψ̂(Pn) is RAL and efficient. Combining Parts 2 and 3 shows that

Ψ̂(Pn)−Ψ(P0) = Γ−1
n Γn

(
Ψ̂(Pn)−Ψ(P0)

)
= (s0 + oP0(1))Γn

(
Ψ̂(Pn)−Ψ(P0)

)
=

1

n

n∑
j=1

(
D̃0(Oj)− E0

[
D̃0(O)

])
+ oP0(n−1/2).

Thus Ψ̂(Pn) is an asymptotically linear estimator of Ψ(P0) with influence curve
D(d0, P0) = D̃0(Oj) − E0

[
D̃0(O)

]
. If P0 satisfies (3) so that D(d0, P0) =

D(d∗0, P0) almost surely, then Theorem 1 shows that D(d∗0, P0) is the efficient
influence curve of Ψ. By Proposition 1 of Section 3.3 in Bickel et al. [1993], it
follows that (3) holds if and only if Ψ̂(Pn) is a RAL estimator and is asymptoti-
cally efficient among all RAL estimators.

PROOF OF THEOREM 4. The below is an abbreviated version of (A.6) through
(A.10) and (A.11), with an added inequality which holds because R2n ≤ 0:√

n− `nΓn

(
Ψ̂(Pn)−Ψ(P0)

)
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=
1√

n− `n

n∑
j=`n+1

σ̃−1
n,j

([
D̃n,j(Oj)−Ψdn,j (P0)

]
+
[
Ψdn,j (P0)−Ψ(P0)

])
≤ 1√

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)−Ψdn,j (P0)

)
=

1√
n− `n

n∑
j=`n+1

σ̃−1
n,j

(
D̃n,j(Oj)− E0

[
D̃n,j(Oj)|O1, ..., Oj−1

])
+ oP0(1)

 N(0, 1).

Thus,

lim inf
n→∞

Pr0

(√
n− `nΓn

(
Ψ̂(Pn)−Ψ(P0)

)
≤ z1−α

)
≥ 1− α.

The first result follows by rearranging terms in the probability statement. The sec-
ond result is an immediate corollary of Theorem 2.

PROOF OF THEOREM 5. Note that

1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
Ψdn,j (P0)−Ψdn(P0)

)
=

1

n− `n

n∑
j=`n+1

σ̃−1
n,j

(
Ψdn,j (P0)− ψ1)

)
− Γn (Ψdn(P0)− ψ1) = oP0(n−1/2).

by Conditions C6) and C7). Following the proof of Theorem 2, we have

Γn

(
Ψ̂(Pn)−Ψdn(P0)

)
=

1

n− `n

n∑
j=`n+1

σ̃−1
n,j

([
D̃n,j(Oj)−Ψdn,j (P0)

]
+
[
Ψdn,j (P0)−Ψdn(P0)

])
=

1

n− `n

n∑
j=`n+1

σ̃−1
n,j

([
D̃n,j(Oj)−Ψdn,j (P0)

])
+ oP0(n−1/2).

The remainder of the proof is identical to that of Theorem 2.

A.3. Proofs of results from Section 7.

PROOF OF LEMMA 6. By the almost sure representation theorem [see, e.g., The-
orem 1.10.3 in Billingsley, 1999], there exists a probability space (Ω′,F ′, P ′) and

a sequence of random variables R′n : Ω′ → R such that nβR′n
d
=nβRn and



12 LUEDTKE AND VAN DER LAAN

nβR′n(ω′) → 0 for all ω′ ∈ Ω′. Fix ε > 0 and ω′ ∈ Ω′. There exists some N
that, for all n ≥ N , nβ|R′n(ω′)| < (1−β)ε

2 . Also note that

1

n1−β

n∑
j=1

j−β ≤ 1

n1−β

∫ n

1
(j − 1)−βdj =

1

1− β
.

Hence, for all n ≥ N ,

1

n1−β

n∑
j=1

|R′j(ω′)| =
1

n1−β

N−1∑
j=1

|R′j(ω′)|+
1

n1−β

n∑
j=N

1

jβ
jβ|R′j(ω′)|

<
1

n1−β

N−1∑
j=1

|R′j(ω′)|+
(1− β)ε

2n1−β

n∑
j=N

1

jβ

≤ 1

n1−β

N−1∑
j=1

|R′j(ω′)|+
ε

2
.

It follows that 1
n1−β

∑n
j=1 |R′j(ω′)| < ε for all n large enough, and thus that

limn→∞
1

n1−β

∑n
j=1R

′
j(ω
′) = 0. Noting that 1

n1−β

∑n
j=1Rj

d
= 1

n1−β

∑n
j=1R

′
j(ω
′)

for all n, we have that 1
n

∑n
j=1Rj = oP0(n−β).

PROOF OF THEOREM 7. Let D̃1 , {D̃(d, Q̄, g) : d, Q̄, g}, D̃2 , {D̃2(d, Q̄, g) :
d, Q̄, g}, and j∗ , min{j : δj ≤ δ0}. The class D̃1 is P0 Glivenko-Cantelli (GC)
by assumption, and D̃2 is GC by Theorem 2 of van der Vaart and Wellner [2000].
For all j ≥ j∗, we have that

∣∣σ̃2
j − σ̃2

0,j

∣∣ ≤ ∣∣∣∣∣ 1

j − 1

j−1∑
i=1

D̃2
j (Oi)− E0

[
D̃2
j (O)

∣∣∣O1, ..., Oj−1

]∣∣∣∣∣
+

∣∣∣∣∣∣
(

1

j − 1

j−1∑
k=1

D̃j(Ok)

)2

− E0

[
D̃j(O)

∣∣∣O1, ..., Oj−1

]2

∣∣∣∣∣∣ .(A.18)

The first term on the right converges to 0 in probability because D̃2 is GC. For the
second term, the mean value theorem shows that(

1

j − 1

j−1∑
k=1

D̃j(Ok)

)2

− E0

[
D̃j(O)

∣∣∣O1, ..., Oj−1

]2

= 2mj

(
1

j − 1

j−1∑
k=1

D̃j(Ok)− E0

[
D̃j(O)

∣∣∣O1, ..., Oj−1

])
︸ ︷︷ ︸

,‖Pj−P0‖D̃1

,
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where mj is an intermediate value between the two squared values on the first line.
Using that D̃1 is a GC class, we have thatmj converges toE0[D̃j(O)|O1, ..., Oj−1]
in probability and ‖Pj − P0‖D̃1

= oP0(1). Thus the above is oP0(1), and plugging
this into (A.18) shows that |σ̃2

j − σ̃2
0,j | = oP0(1). The continuous mapping theorem

shows that (13) is also satisfied. Combining this with Lemma 6 with β = 0 shows
that Condition C3) is satisfied.

PROOF OF THEOREM 8. In this proof we will omit the dependence of d∗0, dn,
Q̄b,0, and Q̄b,n on W in the notation. Suppose that

∥∥Q̄b,n − Q̄b,0∥∥2,P0
= oP0(1).

This part of the proof mimics the proof of Lemma 5.2 in Audibert and Tsybakov
[2007]. For any t > 0,

|Ψdn(P0)−Ψd∗0
(P0)|

=E0[|Q̄b,0|I(d∗0 6= dn)]

=E0[|Q̄b,0|I(d∗0 6= dn)I(0 < |Q̄b,0| ≤ t)]
+ E0[|Q̄b,0|I(d∗0 6= dn)I(|Q̄b,0| > t)]

≤E0[|Q̄b,n − Q̄b,0|I(0 < |Q̄b,0| ≤ t)]
+ E0[|Q̄b,n − Q̄b,0|I(|Q̄b,n − Q̄b,0| > t)]

≤
∥∥Q̄b,n − Q̄b,0∥∥2,P0

Pr0(0 < |Q̄b,0| ≤ t)1/2 +

∥∥Q̄b,n − Q̄b,0∥∥2

2,P0

t

≤
∥∥Q̄b,n − Q̄b,0∥∥2,P0

C
1/2
0 tα/2 +

∥∥Q̄b,n − Q̄b,0∥∥2

2,P0

t
,

where the first inequality holds because d∗0 6= dn implies that |Q̄b,n − Q̄b,0| >
|Q̄b,0|, the second inequality holds by the Cauchy-Schwarz and Markov inequali-
ties, and the third inequality holds by (16). The first result follows by optimizing
over t to find that the upper bound is minimized when t = C

∥∥Q̄b,n − Q̄b,0∥∥2(1+α)/(2+α)

2,P0

for a constant C which depends on C0 and α.
Now suppose that

∥∥Q̄b,n − Q̄b,0∥∥∞,P0
= oP0(1). Note that

|Ψdn(P0)−Ψd∗0
(P0)|

= E0

∣∣I(dn 6= d∗0)Q̄b,0
∣∣

≤ E0

[
I(0 < |Q̄b,0| ≤ |Q̄b,n − Q̄b,0|)|Q̄b,0|

]
≤ E0

[
I
(

0 < |Q̄b,0| ≤
∥∥Q̄b,n − Q̄b,0∥∥∞,P0

)
|Q̄b,0|

]
≤
∥∥Q̄b,n − Q̄b,0∥∥∞,P0

Pr0

(
0 < |Q̄b,0| ≤

∥∥Q̄b,n − Q̄b,0∥∥∞,P0

)
.

By (16), |Ψdn(P0)−Ψd∗0
(P0)| .

∥∥Q̄b,n − Q̄b,0∥∥1+α

∞,P0
.
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SUPPLEMENTARY APPENDIX B: MULTIPLE TIME POINT CASE

We now present an extension of our approach to the multiple time point case.
We give rigorous conditions under which our approach will work at the end of this
section, but we do not give interpretable sufficient conditions under which they
hold as we did for the single time point in Section 7 of the main text. The primary
challenge is showing that a condition like C5) holds for the multiple time point
case, i.e. that the estimated rule has nearly optimal value. While we believe that
interpretable sufficient conditions for the analogue of C5) exist, they are beyond
the scope of this work so leave their existence as a conjecture.

For simplicity we will consider a two time point treatment with baseline covari-
ates L(0), a treatment A(0), intermediate covariate L(1), a treatment A(1), and an
outcome Y which comes after all treatments and covariates. The extension to the
more general multiple time point case follows the same general arguments. We use
the notation Ā(1) = (A(0), A(1)) and L̄(1) = (L(0), L(1)). The presentation in
this section parallels that given in van der Laan and Luedtke [2014b], and we refer
to the reader to that work for a more detailed description of the two time point prob-
lem. For the sake of simplicity we do not consider censoring, though censoring can
easily be incorporated using the techniques in the referenced paper. The notation
is similar in spirit to that of the rest of the paper, though there is some notational
overload (e.g. d now used to represent a two time point rule, Ψ(P0) now the mean
outcome under a two time point treatment).

A dynamic rule d = (dA(0), dA(1)) consists of two rules, one for each time point.
The first time point rule dA(0) may be a function of L(0), while the second time
point rule dA(1) may rely on L(0), A(0), and L(1). Notationally, we use d(O) to
mean (dA(0)(L(0)), dA(1)(A(0), L̄(1))). For a rule d, define

Ψd(P0) , E0E0

[
E0

[
Y |Ā(1) = d(O), L̄(1)

] ∣∣∣A(0) = dA(0)(L(0)), L(0)
]
.

A (possibly non-unique) optimal rule is given by d∗0 , arg maxd Ψd(P0). Our
parameter of interest is

Ψ(P0) , Ψd∗0
(P0).

For a distributionP , define the treatment mechanisms gA(0)(P )(O) , PrP (A(0)|L(0))

and gA(1)(P )(O) , PrP (A(1)|A(0), L̄(1)). Also define

D̃(d, P )(O) ,D∗2(d, P )(O) +D∗1(d, P )(O)

+ E0

[
E0

[
Y |Ā(1) = d(O), L̄(1)

] ∣∣∣A(0) = dA(0)(L(0)), L(0)
]
,
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where

D∗1(d, P ) =
I(A(0) = dA(0)(L(0)))

gA(0)(P )(O)

(
EP
[
Y | Ā(1) = d(O), L̄(1)

]
− E0

[
E0

[
Y |Ā(1) = d(O), L̄(1)

] ∣∣∣A(0) = dA(0)(L(0)), L(0)
])
,

D∗2(d, P ) =
I(Ā(1) = d(O))∏1
k=0 gA(k)(P )(O)

(
Y − EP

[
Y | Ā(1) = d(O), L̄(1)

])
.

We can now generalize the CI presented in Section 5 to the two time point case.
Let {`n} be some sequence of natural numbers. For each j > `n, let P̂n,j rep-
resent some estimate of P0 and dn,j some estimate of d∗0, each based only on
the observations O1, ..., Oj−1. We really only need estimates of PrP (A(0)|L(0)),
PrP (A(1)|A(0), L̄(1)), and the two conditional regressions in the definition of
D∗1(d, P ). Define

σ̃2
0,n,j , VarP0

(
D̃(dn,j , P̂n,j)

∣∣∣O1, ..., Oj−1

)
.

Let σ̃2
n,j represent an estimate of σ̃2

0,n,j based on (some subset of) the observations
(O1, ..., Oj−1). Also define

Γn ,
1

n− `n

n∑
j=`n+1

σ̃−1
n,j .

Define our estimate Ψ̂(Pn) of Ψ(P0) as

Ψ̂(Pn) , Γ−1
n

1

n− `n

n∑
j=`n+1

σ̃−1
n,jD̃n,j(Oj) =

∑n
j=`n+1 σ̃

−1
n,jD̃n,j(Oj)∑n

j=`n+1 σ̃
−1
n,j

,

where D̃n,j(o) , D̃(dn,j , P̂n,j)(o). The following 1 − α CI for Ψ(P0) is asymp-
totically valid under conditions similar to C1) through C5) presented in the main
text:

Ψ̂(Pn)± z1−α/2
Γ−1
n√

n− `n
.

We now state a formal theorem establishing the validity of this CI. To avoid stating
the somewhat messy analogue of R1n = oP0(n−1/2) in Condition C4) in the two
time point case we assume that the treatment mechanisms in each P̂n,j is correctly
specified, though this assumption is not necessary since we really only need to
control a double robust remainder term.
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THEOREM 1. Suppose that

A.C1) n− `n diverges to infinity as n diverges to infinity.
A.C2) Lindeberg-like condition: for all ε > 0,

1

n− `n

n∑
j=`n+1

E0

[ (D̃n,j(O)

σ̃n,j

)2

Tn,j(O)

∣∣∣∣∣∣O1, ..., Oj−1

]
= oP0(1),

where Tn,j(O) , I
(
|D̃n,j(O)|
σ̃n,j

> ε
√
n− `n

)
.

A.C3) 1
n−`n

∑n
j=`n+1

σ̃2
0,n,j

σ̃2
n,j

converges to 1 in probability.

A.C4) gA(0)(P̂n,j) = gA(0)(P0) and gA(1)(P̂n,j) = gA(1)(P0) for all n, j.

A.C5) 1
n−`n

∑n
j=`n+1

Ψdn,j (P0)−Ψ(P0)

σ̃n,j
= oP0(n−1/2).

Then,

Γn
√
n− `n

(
Ψ̂(Pn)−Ψ(P0)

)
 N(0, 1).

It follows that an asymptotically valid 1− α CI for Ψ(P0) is given by

Ψ̂(Pn)± z1−α/2
Γ−1
n√

n− `n
,

where z1−α/2 denotes the 1−α/2 quantile of a standard normal random variable.

Readers will notice that, except for Condition A.C4), the conditions in the above
theorem are, notationally, identical to those stated in the main text for Theorem 2.
We have restated these conditions to emphasize that the notation in these conditions
now refers to the two time point objects defined in this section, rather than to the
single time point objects from the main text.

PROOF OF THEOREM 1. We can follow the Proof of Theorem 2 through (A.8).
From Bang and Robins [2005], we know that, for any treatment rule d, the cor-
rect treatment mechanism specification from Condition A.C4) yields an exact first-
order representation: Ψd(P0) = E0[D̃(d, P̂n,j)(O)] for all n, j. Thus the notation-
ally identical (A.10) holds. The remainder of the proof goes through without any
further changes.

Eliciting simple sufficient conditions under which A.C5) holds is an area of
future work.

The generalization to problems with more time points follows along the same
lines as the generalization to the two time point problem.
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FIG A.1. Examples of three densities of |Q̄b,0(W )| whose corresponding cumulative distribution
functions satisfy (16). If the rate of convergence of Q̄b,n− Q̄b,0 to zero in L2(P0) or L∞(P0) attains
the rates indicated above indicated above, then Condition C5) will be satisfied for the plug-in optimal
rule estimate considered in Theorem 8.
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FIG A.2. Comparison of optimal value estimates given two different permutations of a data set
generated according to C-E. The horizontal axis shows the average of the optimal value estimates
across the two permutations, and the vertical axis shows the absolute difference between these two
optimal value estimates. Squares represent number of observations (across 2000 Monte Carlo draws)
which have a given average optimal value-absolute difference combination. The difference between
these two estimates decreases as sample size grows.



SUPPLEMENTARY APPENDICES 19

Sample Size: 250 1000 4000

Not Run

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

3.0

D
−

E
C

−
N

E
C

−
E

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

m (as a Proportion of Sample Size)

S
ta

n
d
a
rd

iz
e
d
 A

ve
ra

g
e
 m

−
o
u
t−

o
f−

n
 C

o
n
fi
d
e
n
c
e
 I
n
te

rv
a
l 
W

id
th

Coverage

0.95 < m−out−of−n Covg.

Online Covg. < m−out−of−n Covg. < 0.95

m−out−of−n Covg. < Online Covg.

FIG A.3. Performance of the m-out-of-n bootstrap at sample sizes 250, 1000, and 4000 (NPMLE
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CI width of the online one-step CI. That is, any vertical axis value above 1 indicates the m-out-of-n
bootstrap has on average wider CIs than the online one-step CI.


