Supplementary Information

Aberrant Enhancer Hypomethylation Contributes to Hepatic Carcinogenesis through

Global Transcriptional Reprogramming

Xiong *et al*.

Supplementary Figure Legends

Supplementary Figure 1. Low *C/EBP* β promoter methylation level in human HCC. (a-b) Pyrosequencing analysis of (a) 48 pairs of HCC tumor and non-tumor tissues (upstream and downstream of *C/EBP* β TSS) and (b) 8 liver cell lines (downstream of *C/EBP* β TSS).

а

Supplementary Figure 2. Molecular analyses of *C/EBPβ* enhancer. (a) The binding positions of Northern blot probes, ChIP-qPCR primers, eRNA qRT-PCR primers, sgRNA, sieRNA-1 and sieRNA-2 at *C/EBPβ* enhancer containing the C/EBP motif are indicated in the diagram. (b) qRT-PCR analysis of *C/EBPβ* eRNA levels in the anti-sense and sense strands of two liver cell lines using two sets of primers. *C/EBPβ* eRNA levels were calculated by the $2^{-\Delta\Delta Ct}$ method using 18s rRNA as internal control, and are presented as fold-changes against the average values of the respective anti-sense groups. As the qPCR signals generated from the anti-sense strand template were much lower than those from the sense strand, these findings suggest that *C/EBPβ* eRNA transcription was unidirectional. Data are presented as mean \pm SD.

Supplementary Figure 3. (a) Pyrosequencing and (b) qRT-PCR analyses of SK-Hep1 cells transfected with pPlatTET-gRNA2 and sgRNA-expressing vectors targeting control sequence or $C/EBP\beta$ enhancer. Methylation levels of 7 CpG sites in $C/EBP\beta$ enhancer region 1 as depicted in Fig. 1g are shown. C/EBP β eRNA/mRNA levels were calculated by the 2^{- $\Delta\Delta$ Ct} method using 18s rRNA as internal control, and are presented as fold-changes against the average values of the respective sgRNA control groups. (c) qRT-PCR analysis of SMIM25 and DPM1 (located upstream and downstream of C/EBP β enhancer) mRNA expressions in two

liver cell lines upon siRNA-mediated knockdown of *C/EBPβ* eRNA. The mRNA levels were calculated by the $2^{-\Delta\Delta Ct}$ method using 18s rRNA as internal control, and are presented as fold-changes against the average values of the respective siCtrl groups. Data are presented as mean \pm SD. ****P* < 0.001; *****P* < 0.0001 as calculated by unpaired two-tailed Student's *t*-test (b).

Supplementary Figure 4. *C/EBP\beta* promoter and enhancer interaction based on Hi-C data in two biological replicates of human cell lines, HeLa (upper panel) and K562 (lower panel), visualized with bin size of 5-kb. Visualization of Hi-C signals predicts the span of topologically-associating domains with distinguished chromatin interactions.

Supplementary Figure 5. Validation of CRISPR/Cas9-mediated deletion of $C/EBP\beta$ enhancer in two liver cell lines by Sanger sequencing.

Supplementary Figure 6. Functional significance of $C/EBP\beta$ eRNA and mRNA in HCC. (ab) siRNA-mediated knockdown of $C/EBP\beta$ eRNA in HepG2 and LO2 liver cells impaired (a)

cellular proliferation and (b) cell invasion determined by MTS assay and Matrigel chambers, respectively. (c-d) In contrast, *C/EBPβ* eRNA knockdown in PLC5 and SK-Hep1 liver cells modestly reduced (c) cellular proliferation and (d) cell invasion determined by MTS assay and Matrigel chambers, respectively. (e-f) shRNA-mediated knockdown of *C/EBPβ* mRNA in liver cells decreased (e) cellular proliferation and (f) cell invasion determined by MTS assay and Matrigel chambers, respectively. Western blot analysis of C/EBPβ level in HepG2 and LO2 cells. Vinculin was used as loading control. Representative images of Gentian violet-stained invaded cells are shown in b, d and f. Data are presented as mean \pm SD. **P* < 0.05; ***P* < 0.01; ****P* < 0.001 as calculated by two-way ANOVA (a, c), and unpaired two-tailed Student's t-test (b, d-f).

Supplementary Figure 7. Pyrosequencing and qRT-PCR analyses of murine $C/ebp\beta$ enhancer methylation, eRNA and mRNA expressions. (a) Methylation levels at individual CpG sites of

C/ebpβ promoter of liver tissues of 4-month-old WT and HBx TG mice by pyrosequencing. (bc) Correlation between *C/ebpβ* eRNA and mRNA levels of (b) 4- and (c) 10-month-old WT and HBx TG mice denoted with Spearman correlation coefficients. (b-c) *C/ebpβ* mRNA levels are Δ Ct values using 18s rRNA as internal control. (d) qRT-PCR analyses of *Fgfr2*, *Hif1a*, *Ralb*, and *Rara* expressions in the liver tissues of 4- and 10-month-old WT and HBx TG mice. The mRNA levels were calculated by the $2^{-\Delta\Delta Ct}$ method using 18s rRNA as internal control, and are presented as fold-changes against the average value of the 4-month-old WT group. (e) Correlations between the expressions of *C/ebpβ* and HCC driver genes in the liver tissues of WT and HBx TG mice denoted with Pearson correlation coefficient (r). The mRNA levels of *Ralb/Rara* and *Fgfr2/Hif1a* in 4- and 10-month-old mice, respectively, were calculated as in (d). **P* < 0.05; ***P* < 0.01; ****P* < 0.001 as calculated by Pearson correlation test (b, c, e), and unpaired two-tailed Student's t-test (d).

Supplementary Figure 8. Uncropped and unprocessed Western Blots. Dot line boxes indicate the cropped areas shown in the corresponding figures.

Supplementary Table 1. Integrative epigenomic analysis reveals differentially-methylated enhancers in

human HCCs

Enhancer location	Methylation changes ^a	Target gene ^b	Expression changes ^c	eRNA-mRNA correlation ^d	
chr8:142105625-142105840	-0.50	SL CAE AA	2 207240521	0.816	
chr8:142237099-142237665	-0.24	SLC45A4	5.59/549521	0.836	
chr16:11707277-11708060	-0.47			0.803	
chr16:11692306-11692793	-0.24	LITAF	1.419832002	0.83	
chr16:11705983-11706695	-0.16			0.801	
chr20:35964135-35964688	-0.37	SRC	3.886822647	0.802	
chr21:34752926-34753284	-0.36	IFNGR2	2.514799874	0.839	
chr3:182928659-182929484	-0.28	B3GNT5	7.516777301	0.819	
chr1:213090277-213090696	-0.26	FLVCR1	5.552759099	0.866	
chr15:81315785-81316530	-0.25	MESDC1	1.723013559	0.883	
chr6:13302642-13303798	-0.25	TBC1D7	3.331748742	0.83	
chr16:87987504-87988357	-0.22	BANP	1.215070263	0.891	
chr20:48900220-48901229	-0.21			0.863	
chr20:48888419-48889173	-0.19	C/EBPβ	1.271349807	0.85	
chr20:48887757-48888308	-0.19			0.803	
chr2:10471190-10471549	-0.19	HPCAL1	2.091328331	0.853	
chr20:47390467-47391044	-0.19	DDEVI	1 720201664	0.829	
chr20:47376585-47377468	-0.19	P KLA I	1.739291004	0.811	
chr21:45566076-45566451	-0.18	ICOSLG	1.651557117	0.817	
chr3:10238203-10238635	-0.17	IRAK2	4.328592295	0.839	
chr1:27160002-27160387	-0.15	ZDHHC18	2.195928042	0.948	
chr6:44230828-44231731	-0.12	NFKBIE	2.145296308	0.868	
chr8:56798106-56798776	-0.11	LYN	2.154508688	0.896	
chr3:11314967-11316155	-0.11	ATG7	1.299000289	0.815	
chr17:38482426-38483282	-0.10	RARA	1.711086537	0.857	
chr21:40182920-40183779	0.11	ETS2	0.331982605	0.852	
chr13:72438548-72439003	0.11	DACH1	0.067484498	0.823	

Footnotes:

- a. Average difference of beta value between tumor and normal liver samples
- b. Target gene based on FANTOM5 database
- c. Tumor vs. matched non-tumor ratio
- d. Expression correlation based on FANTOM5 database

HCC patient samples used for genome-wide methylation analysis Patient no. α-HCV NAFLD Differentiation AJCC Fibrosis Sex Age HBsAg Cirrhosis 190 51 3 male positive negative negative moderate yes no 293 45 1 male positive n/a negative moderate no yes 304 67 1 female positive n/a negative moderate yes no 318 32 3 male positive negative negative poor no no 2 321 male 66 positive negative negative poor no yes 51 3 328 male positive negative negative moderate yes yes 2 333 female 67 positive negative negative well yes no 339 female 65 1 positive negative negative well no yes 350 72 1 male negative negative negative moderate no no 73 3 353 positive male negative negative moderate yes yes 391 66 3 male positive negative negative poor yes yes 414 72 1 female positive n/a negative n/a poor yes 78 419 female negative negative negative moderate 1 no no 432 33 3 male positive n/a negative poor no yes 40 3 433 male positive negative negative moderate yes yes 45 434 female positive n/a negative well 1 no yes 72 2 442 male positive negative negative moderate yes yes 71 2 447 female positive n/a negative moderate yes yes 458 male 68 negative positive negative well 1 yes yes 464 68 well 1 male positive n/a negative yes no 67 469 female negative negative negative moderate 1 yes yes 485 male 43 positive positive negative moderate 2 yes yes 495 female 60 positive well 1 n/a negative no yes 506 male 57 positive moderate 3 negative negative yes yes 524 male 39 positive negative n/a 2 n/a yes no 531 male 68 positive well 1 negative negative no no 534 female 45 positive negative moderate 2 negative no no 551 male 70 positive moderate 1 n/a negative no no 663 63 1 male positive negative negative moderate yes no 672 63 3 male positive negative negative moderate no yes 675 63 well 1 male positive negative negative yes no 676 61 3 male positive negative negative moderate no no 688 female 63 positive negative 1 negative moderate yes no 705 male 75 3 negative negative positive moderate n/a yes 74 3 741 female negative negative positive moderate n/a no 768 male 55 3 negative negative positive moderate yes n/a

Supplementary Table 2. Clinicopathological information of the HCC patients

Supplementary Table 2. (continued)

HCC patient samples used for pyrosequencing									
Patient no.	Sex	Age	HBsAg	a-HCV	NAFLD	Differentiation	AJCC	Cirrhosis	Fibrosis
213	male	36	positive	n/a	negative	moderate	1	no	yes
214	male	58	positive	n/a	negative	poor	1	no	yes
285	male	50	positive	negative	negative	moderate	2	no	yes
305	male	68	positive	negative	negative	poor	1	no	yes
306	male	40	positive	n/a	negative	moderate	1	no	yes
313	male	43	positive	n/a	negative	poor	1	yes	no
315	male	60	positive	negative	negative	poor	1	no	yes
323	male	65	positive	n/a	negative	moderate	1	yes	no
324	male	64	positive	n/a	negative	moderate	1	no	yes
329	male	56	positive	negative	negative	moderate	1	yes	yes
332	male	45	positive	n/a	negative	moderate	1	no	yes
338	male	59	positive	negative	negative	moderate	1	yes	yes
376	male	36	positive	negative	negative	well	1	no	yes
391	male	66	positive	negative	negative	poor	3	yes	yes
395	male	55	positive	negative	negative	moderate	2	no	yes
396	male	70	positive	n/a	negative	moderate	1	yes	n/a
412	male	27	positive	n/a	negative	moderate	1	no	yes
418	male	59	positive	negative	negative	moderate	1	no	yes
425	male	38	positive	n/a	negative	moderate	1	no	yes
427	male	53	positive	negative	negative	moderate	1	no	yes
435	male	60	positive	negative	negative	moderate	1	yes	yes
437	male	50	positive	n/a	negative	moderate	1	no	yes
441	male	59	positive	n/a	negative	moderate	1	no	yes
443	male	65	positive	n/a	negative	moderate	2	yes	no
444	male	42	positive	n/a	negative	moderate	1	yes	yes
463	male	43	positive	negative	negative	poor	1	no	yes
488	male	60	positive	negative	negative	moderate	3	yes	no
493	male	50	positive	n/a	negative	moderate	1	no	n/a
498	male	47	positive	n/a	negative	moderate	1	yes	yes
499	male	53	positive	negative	negative	moderate	1	no	no
500	male	49	positive	n/a	negative	moderate	1	yes	yes
512	male	48	positive	n/a	negative	moderate	1	yes	no
515	male	60	positive	n/a	negative	moderate	3	yes	yes
524	male	39	positive	n/a	negative	n/a	2	yes	no
529	male	59	positive	negative	negative	moderate	1	no	no
531	male	68	positive	negative	negative	well	1	no	no
548	male	56	positive	n/a	negative	moderate	2	yes	no
564	male	61	positive	n/a	negative	moderate	1	yes	no
566	male	51	positive	negative	negative	moderate	1	yes	yes
567	male	42	positive	n/a	negative	moderate	2	yes	no
570	male	43	positive	negative	negative	moderate	1	no	yes
581	male	50	positive	n/a	negative	moderate	3	yes	no
588	male	77	positive	n/a	negative	well	1	yes	no
591	male	62	positive	negative	negative	moderate	1	no	yes
593	male	50	N/A	n/a	negative	moderate	1	yes	yes
597	male	49	positive	n/a	negative	moderate	3	no	no
620	male	58	positive	n/a	negative	moderate	1	yes	n/a
655	male	66	positive	negative	negative	moderate	1	yes	no

Primer name	Species	Sequence 5'-3'	Application
CEBPB-F	human	AGAAGACCGTGGACAAGCACAG	qRT-PCR
CEBPB-R	human	CTCCAGGACCTTGTGCTGCGT	qRT-PCR
CEBPB-eRNA-F	human	TGACTCTGGGCAAGTCACTT	qRT-PCR
CEBPB-eRNA-R	human	GGCAGAGTCAATCCCTCCAA	qRT-PCR
18s-rRNA-F	human	CAGCCACCCGAGATTGAGCA	qRT-PCR
18s-rRNA-R	human	TAGTAGCGACGGGCGGTGTG	qRT-PCR
SMIM25-F	human	GGTGGGGATTTTTGTGTGTT	qRT-PCR
SMIM25-R	human	GGAGAGGGGATTTCTGGAAG	qRT-PCR
DPM1-F	human	GTCTCTGGAACTCGCTACAAAGG	qRT-PCR
DPM1-R	human	ATCAGATGCTCCTGGTCTCAGC	qRT-PCR
Cebpb-F	mouse	CAACCTGGAGACGCAGCACAAG	qRT-PCR
Cebpb-R	mouse	GCTTGAACAAGTTCCGCAGGGT	qRT-PCR
Fgfr2-F	mouse	GTCTCCGAGTATGAGTTGCCAG	qRT-PCR
Fgfr2-R	mouse	CCACTGCTTCAGCCATGACTAC	qRT-PCR
Hifla-F	mouse	CCTGCACTGAATCAAGAGGTTGC	qRT-PCR
Hifla-R	mouse	CCATCAGAAGGACTTGCTGGCT	qRT-PCR
Ralb-F	mouse	GGTGTGCAGTACGTGGAGACAT	qRT-PCR
Ralb-R	mouse	GCTTTTCCTGCCGTTCTTGTCC	qRT-PCR
Rara-F	mouse	GCTTCCAGTCAGTGGTTACAGC	qRT-PCR
Rara-R	mouse	CAAAGCAAGGCTTGTAGATGCGG	qRT-PCR
18s-rRNA-F	mouse	GTAACCCGTTGAACCCCATT	qRT-PCR
18s-rRNA-R	mouse	CCATCCAATCGGTAGTAGCG	qRT-PCR

Supplementary Table 3. Primer sequences

Sample	Antibody	Total reads	Mapped reads	Peaks	NSC	RSC
HepG2 $C/EBP\beta$ enh ^{-/-}	H3K27ac	27,314,264	27,314,264	54,328	1.554263	1.082269
HepG2 WT	H3K27ac	25,579,504	25,579,504	57,481	1.292644	1.06017
HepG2 $C/EBP\beta$ enh ^{-/-}	CEBPB	24,966,010	24,966,010	16,345	1.02207	1.172833
HepG2 WT	CEBPB	26,030,358	26,030,358	19,240	1.031545	1.219591
HepG2 $C/EBP\beta$ enh ^{-/-}	BRD4	26,379,848	26,379,848	24,954	1.019824	1.108922
HepG2 WT	BRD4	26,030,358	26,030,358	19,240	1.031545	1.219591

Supplementary Table 4. Sequencing qualities of ChIP samples

Supplementary Methods

MBDCap-seq

Methylated DNA was eluted by the MethylMiner Methylated DNA Enrichment Kit (Invitrogen) according to the manufacturer's instructions. MBDCap libraries for sequencing were prepared following standard protocols as described previously¹. Sequencing was done using the Illumina Genome Analyzer II (GA II) up to 36 cycles for mapping to the human genome reference sequence. Image analysis and base calling were carried out with the standard Illumina pipeline. Raw tags were aligned to human reference genome hg19 by Bowtie2 v2.0.0-beta6². DMRs were identified by the R package MEDIPS v1.30.0³ after removing known copy number variation regions in HCC from our and other published studies^{4, 5, 6, 7}. Functional annotation of the DMRs was performed by the R package Annotatr v1.4.0⁸.

WGBS

Raw reads were aligned to human reference genome hg19 by Bismark v0.14.3⁹. DMRs were detected by Metilene v0.2-6¹⁰. We further filtered the DMRs by 1) length (>300-bp long), 2) CpG number (at least 8 CpG sites), 3) coverage (>10x), and 4) an average difference of beta value between tumor and normal liver samples not less than 0.1. Functional annotation of the DMRs was performed by the R package Annotatr v1.4.0⁸. Circular visualization was performed by Circos v0.69-6¹¹. The set of all human enhancers identified by FANTOM5¹² was used to identify DMEs, defined as enhancers with at least 10 CpG sites having 10x read coverage, and an average difference of beta value between tumor and non-tumor samples not less than 0.1.

Nanoscale chromatin profiling and data analysis

Nanoscale chromatin profiling was performed as described previously¹³. Tissues were fixed in 1% formaldehyde for 10 min at room temperature. Fixation was stopped by addition of glycine

to a final concentration of 125 nM. Tissue pieces were washed 3 times with TBSE buffer. Pulverized tissues were lysed in 100 µl of lysis buffer and sonicated for 16 cycles (30s on, 30s off) using a Bioruptor (Diagenode). The total volume of chromatin immunoprecipitation (ChIP) was 1 ml and the amount of antibody used was 2 µg. The input DNA was precleared with protein G Dynabeads (Life Technologies) for 1 h at 4°C and then incubated with antibodies conjugated protein G beads overnight at 4°C. The beads were washed 3 times with cold wash buffer. After recovery of ChIP and input DNA, whole-genome amplification was performed using the WGA4 kit (Sigma-Aldrich) and BpmI-WGA primers. Amplified DNA was digested with BpmI (New England Biolab). After that, 30 ng of the amplified DNA was used with the NEBNext ChIP-seq library prep reagent set (New England Biolab). Each library was sequenced to an average depth of 20 to 30 million raw reads on HiSeq4000 using 100-bp pair-end reads. Sequencing tags were mapped against the human reference genome using bowtie2 v2.2.9². Reads were trimmed 10-bp from the front and the back to produce 80-bp. Only reads with mapQ >10 and with duplicates removed by rmdup were used for subsequent analysis. Significant peaks were called using MACS2 v2.1.0¹⁴ and then the bedGraph files were fixed and converted to bigwig files with UCSC tools (bedClip, bed-Graph-ToBigWig; http://hgdownload.cse.ucsc.edu/downloads.html). Enhancer regions were identified by H3K27ac peaks and assigned to the nearest genes by GREAT¹⁵. Super-enhancers were defined on the basis of H3K27ac signal intensity and density^{16, 17, 18}. Signal visualization were performed by IGV¹⁹ and ngs.plot²⁰. The primary antibodies for ChIP are CEBPB (sc-150, Santa Cruz Biotechnology, 1:100), BRD4 (39909, Active Motif, 1:500), H3K27ac (39133, Active Motif, 1:500), and Normal Rabbit IgG (2729, Cell Signaling Technology, 1:500). The sequencing qualities of ChIP samples are shown in Supplementary Table 4.

RNA-seq and data analysis

Briefly, sequencing libraries were sequenced on HiSeq4000 sequencer (Illumina). Paired-end reads (101-bp) were aligned to hg19 reference genome using aligner tophat v2.0.13²¹. Differential transcript expression pattern discovery was performed using Cufflinks in edgeR^{22, 23}.

Supplementary References

- 1. Zuo T, *et al.* Epigenetic silencing mediated through activated PI3K/AKT signaling in breast cancer. *Cancer research* **71**, 1752-1762 (2011).
- Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nature methods* 9, 357-359 (2012).
- 3. Lienhard M, Grimm C, Morkel M, Herwig R, Chavez L. MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. *Bioinformatics* **30**, 284-286 (2014).
- 4. Wong N, *et al.* Genomic aberrations in human hepatocellular carcinomas of differing etiologies. *Clinical cancer research : an official journal of the American Association for Cancer Research* **6**, 4000-4009 (2000).
- 5. Jia D, *et al.* Genome-wide copy number analyses identified novel cancer genes in hepatocellular carcinoma. *Hepatology* **54**, 1227-1236 (2011).
- 6. Guichard C, *et al.* Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. *Nature genetics* **44**, 694-698 (2012).
- Wang K, et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. *Hepatology* 58, 706-717 (2013).
- Cavalcante RG, Sartor MA. annotatr: genomic regions in context. *Bioinformatics* 33, 2381-2383 (2017).
- Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. *Bioinformatics* 27, 1571-1572 (2011).

- Juhling F, Kretzmer H, Bernhart SH, Otto C, Stadler PF, Hoffmann S. metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. *Genome research* 26, 256-262 (2016).
- Krzywinski M, et al. Circos: an information aesthetic for comparative genomics. Genome research 19, 1639-1645 (2009).
- Andersson R, *et al.* An atlas of active enhancers across human cell types and tissues.
 Nature 507, 455-461 (2014).
- Yao X, *et al.* VHL Deficiency Drives Enhancer Activation of Oncogenes in Clear Cell Renal Cell Carcinoma. *Cancer discovery* 7, 1284-1305 (2017).
- 14. Zhang Y, *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome biology* 9, R137 (2008).
- McLean CY, *et al.* GREAT improves functional interpretation of cis-regulatory regions.
 Nature biotechnology 28, 495-501 (2010).
- 16. Hnisz D, *et al.* Super-enhancers in the control of cell identity and disease. *Cell* 155, 934-947 (2013).
- Loven J, *et al.* Selective inhibition of tumor oncogenes by disruption of super-enhancers. *Cell* 153, 320-334 (2013).
- 18. Chapuy B, *et al.* Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. *Cancer cell* **24**, 777-790 (2013).
- 19. Robinson JT, et al. Integrative genomics viewer. Nature biotechnology 29, 24-26 (2011).
- 20. Shen L, Shao N, Liu X, Nestler E. ngs.plot: Quick mining and visualization of nextgeneration sequencing data by integrating genomic databases. *BMC genomics* **15**, 284 (2014).

- 21. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome biology* **14**, R36 (2013).
- 22. Trapnell C, *et al.* Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nature protocols* **7**, 562-578 (2012).
- Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139-140 (2010).