Blacklisting variants common in private cohorts but not in public databases optimizes human exome analysis

Patrick Maffucci[#], Benedetta Bigio[#], Franck Rapaport, Aurélie Cobat, Alessandro Borghesi, Marie Lopez, Etienne Patin, Alexandre Bolze, Lei Shang, Matthieu Bendavid, Eric M Scott, Peter D Stenson, Charlotte Cunningham-Rundles, David N Cooper, Joseph G Gleeson, Jacques Fellay, Lluis Quintana-Murci, Jean-Laurent Casanova, Laurent Abel, Bertrand Boisson[‡], Yuval Itan[‡]

#,[‡]: Equal contributions

Corresponding authors: Jean-Laurent Casanova – casanova@rockefeller.edu, Yuval Itan – yuval.itan@mssm.edu

This PDF file includes: Figs. S1 to S19 Tables S1 to S10

Figure S1. **Methodology for blacklist generation.** The blacklist was generated by first collecting unique highquality variants (DP>=5, MQ>=30) from patient exomes and counting the occurrence of each variant. These variants were assembled into two classes: (1) biallelic, with a single alternative allele in our cohort; and (2) multiallelic, with two or more alternative alleles in the cohort, for which we collapsed all variants at a unique chromosomal position and summed the total number of patients containing these variants. We then collected the variants that had a frequency >=1% in the cohort (the Blacklist: "Common in-house variants"). Of these variants, 21.4% (167,144) were absent from gnomAD exome and genome databases. We considered these 167,144 variants to be "blacklist-annotated" (BL-A).

Figure S2. Filtering of coding sequence (CDS) or non-CDS variants in 3,104 PID exomes with the PID blacklistannotated. Exomes were restricted to CDS (A) or non-CDS (B) variants and filtered by removing variants with a MAF greater than 0.01 in gnomAD. The remaining variants were filtered with the blacklist-annotated. Filtering with the DFS list is shown for comparison. Error bars represent the 10th-90th percentiles.

Figure S3. Filtering of 3,104 PID exomes broken down by the exome capture kit. PID exomes were captured with one of three SureSelect kits: 37 Mb (n = 96), 50 Mb (n = 727), or 71 Mb (n = 2,281). (A) Filtering of all variants in each exome, using gnomAD and the blacklist-annotated. gnomAD filtering performed by removing variants with a minor allele frequency greater than 0.01 in the databases. (B) Filtering of exomes restricted to cohort-specific variants with the blacklist-annotated. Error bars represent the 10th-90th percentiles.

Figure S4. Filtering of coding sequence (CDS) and non-CDS variants in 3,104 PID exomes restricted to cohortspecific variations using the blacklist-annotated. DFS list shown for comparison. Error bars represent the 10th-90th percentiles.

Figure S5. **Comparison of quality metrics for blacklisted and non-blacklisted variants.** Mean (A) read depth (DP) and (B) mapping quality (MQ) were calculated for common variants present in gnomAD with a MAF>1% (blue bar), and for blacklist-annotated variants (green bar). Error bars represent the upper and lower limits of 1.5 times the interquartile range.

GNOMAD scoring function

Figure S6. **Comparison with machine learning-based filtering methods.** We applied random forest scoring functions to blacklist-annotated variants and to a set of true-positive (TP) variants present in both the gnomAD dataset and our cohort with a MAF exceeding 1% in each dataset. The score distributions are almost identical, indicating that the blacklist-annotated variants are not distinguishable from TP variants according to this standard classification method.

Figure S7. Comparison of CADD scores between blacklisted and non-blacklisted variants. Mean CADD scores were calculated for common variants present in gnomAD exome and genome databases with a MAF>1% (blue bar), or blacklist-annotated variants (green bar). Calculations were performed for all (A), CDS (B), and non-CDS (C) variants. Error bars represent the upper and lower limits of 1.5 times the interquartile range.

Figure S8. Characteristics of the most frequent genes in the blacklist-annotated. (A) Depiction of the top ranking genes in the blacklist-annotated according to the number of variants. The size of the text is proportional to the number of variants of the gene in the blacklist-annotated. (B) Comparison of GDI scores between the 1,000 most common genes in all the common in-house variants (gnomAD) and blacklist-annotated variants. Error bars represent the upper and lower limits of 1.5 times the interquartile range.

Figure S9. Practical analysis of a single patient exome by blacklisting. The practical utility of the blacklist approach was demonstrated with the exome of a patient with a published disease-causing mutation. The patient's exome was filtered with a standard pipeline with and without application of the blacklist-annotated. The numbers in each box represent the number of variants remaining in the exome after each filtering step. GDI: gene damage index; MSC: mutation significance cutoff.

Figure S10. Representation of ethnic subgroups in 3,104 PID exomes. The distribution of the genetic ancestry groups in the PID cohort, as determined by PCA analysis.

Figure S11. Investigation of a biallelic *HLA-DRB1* variant: 6-32551960-T-TCC

IGV screenshot of the WES alignment surrounding position 32,551,960 on chromosome 6.

	284 bp	
1,017,400 bp	1,017,500 bp	1,017,600 bp
TTTQFSTATVPGTSSIPTTGTPPSHTTFPTPLRSSTAST	HAVPTRTGTSTHNPTISTTSTSTVEPHH MUC6	<u>ISSTHSHLSTSTKATSFSSRSQSTGS</u>
p. 249		
L2466 11:1.017,357 Total count: 199 A: 198 (99%, 99+, 99+) C: 1 (1%, 1+, 0+) C: 1 (1%, 1+, 0+) T: 0 T: 0 T: 0 T: 0		

Figure S12. Investigation of a biallelic *MUC6* variant: 11-1017470-G-T

IGV screenshot of the WES alignment surrounding position 1,017,280 on chromosome 11.

54,145,680 tap	58,143,600 taj	56,143,700 kp	64,140,729 tap	56, 143, 748 tur	94,143,790 bp	59,143,790 Np	56,143,800 lap
Click and drag to zoom in.	DTRIKQL	WIFACA	G I M F I S S		Y M F I I S A		A L G R Q K /
		-					
						and the second se	-
			-				
C							
			town to a star		• •		
	1			14 14 14	2 20 C		
	-	1 T					
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
			-				
	-		-				
	-						

Figure S13. Investigation of biallelic *OR8U1* variants: **11,56143784,C,T** and **11,56143803,A,G** IGV screenshot of the WES alignment surrounding position 11,56143784 on chromosome 11.

152,195,690 bp	152,195,700 bp	152,195,710 bp	152,195,720 bp	152,195,720 bp	152,195,740 bp	152,195,750 bp	152,195,760 bp
AACATCG KHHR VD	A T G A C A G T M T Q V D D S I V T	GATGACGCCT M T P D D A I V C	T G T A G G A G T T T A C R G V L C R G V L C R G V L C R G V E F Q L L K	G G C A T T T T T T T T T T T T T T T T T T	TTTTGCAAGT FLQQV FCCK	T T G A G T A A C L G A G T A A C N T F E	C T A A A G G G A G G A A A L K C C C K P K G K C K K C C C C C C K
p. 69				HEOR		non mani misi nini kila nani kana kana kana	
		-	_				
	_			_			
(0 + ¥0)							
4		=				-	
P. 119							
					_		
_		_				_	
		-	_				

Figure S14. Investigation of a biallelic *HRNR* variant: 1-152195728-AT-A

IGV screenshot of the WES alignment at position 152195728 on chromosome 1.

•				125 b	op				
90 bp	26,737,020 bp	315	26,737,040 bp	26,737,060 bp	E.	26,737,080 bp	26,737,100 bp	24.	5,737,120 bp
G T T A T T T A T T A A C T T A A C T T A		A TA A TC A G TA G N N Q I I S R 	GCCTACTACTT			TAGGTGTTATCCCT R C Y P L C V I P V L S L G V I P	F H G F S	A TG TA TG GTA A GT TG GG N Y C K L C C M V S W M Y V → → → →	GCTTTA/
		Q		T	- A		4		
		-		A T			A A A A	т т а тт т а аа	
T T T	C T T C	0 A T A G G T	A	۸ 	c	T T T	т Т В А	T T T A T	T

Figure S15. Investigation of a multiallelic *TBC1D19* variant: 4-26737063-C-CT IGV screenshot of the WES alignment at position 26737063 on chromosome 4.

Figure S16. Investigation of a multiallelic FIG4 variant: 6-110053824-G-GT

IGV screenshot of the WES alignment at position 110053824 on chromosome 6.

400

n

Ľ

gnomAD (Ex&Gn, <1%) Africa Blacklist-Annotated 82%

93%

94%

Figure S17. Filtering of coding and non-coding sequence variants in (A) 3,869 Neuro exomes restricted to cohortspecific variants with the Neuro blacklist-annotated, (B) 902 Infection exomes restricted to cohort-specific variants with the Infection blacklist-annotated, (C) 400 Africa exomes restricted to cohort-specific variants with the Africa blacklist-annotated. Error bars represent the 10th-90th percentiles.

67%

Bi-allelic CDS variants in Blacklist-Annotated

Multi-allelic variants in Blacklist-Annotated

Figure S18. Relationship between the four blacklists. Common and unique biallelic (A), multiallelic (B), biallelic restricted to CDS (C), and multiallelic restricted to CDS (D) variants from the Blacklist-Annotated in the PID, Neuro, Africa and Infection cohorts.

Figure S19. Relationship between sample size and number of blacklist variants. Estimation of the number of exomes required to create a saturated blacklist for CDS variants. Overlays in red, gray and green indicate that blacklist generation is unsafe, safe and optimal, respectively. The green vertical line indicates the suggested minimal sample size.

Table S1. VQSR status of blacklist-annotated (BL-A) variants

	# of VQSR PASS (%)	# of VQSR non-PASS (%)					
Blacklist	125,614 (75.2%)	41,530 (24.8%)					

Chr	Position	Ref.	Alt.	HGMD	ClinVar	gnomAD	Gene	Disease	Status	Consequence	cDNA	Protein	rs ID	Publication (PMID)
4	88929173	С	CGAG	x		PASS	PKD2			inframe insertion	c.307_308insAGG	p.Glu102dup	<u>rs547253972</u>	
8	100844596	G	Т	x	x	-	VPS13B	Cohen syndrome		splice acceptor variant	c.9406-1G>T		<u>rs386834119</u>	23188044, 16917849, 15154116
10	89720633	С	СТ	x	x	PASS	PTEN	Hereditary cancer- predisposing syndrome		intron	c.802-18C>T		<u>rs376702513</u>	<u>25394175, 18951446</u>
12	102796022	А	Т	x	x	PASS	IGF1	Insulin-like growth factor I deficiency	begign/likely benign	3' UTR variant	c.*297T>A		<u>rs70961704</u>	
13	20763685	А	AC	x	x	PASS	GJB2	Deafness, autosomal recessive 1	2 alleles one closed to 1%	frameshit	c.35dupG	p.Val13CysfsTer35	<u>rs398123814</u>	<u>9482292, 24503448</u>
21	47545369	А	AC	x		PASS	COL6A2			frameshit	c.1817-10_1817-9insC	p.Asp163ArgfsTer3	<u>rs149954350</u>	
х	66765161	А	Т	x	х	PASS	AR	Infertility, male	Not tested.	Missense	c.173A>T	Gln58Leu	<u>rs200185441</u>	<u>12801573,</u> 24737579, 23637914
Х	153006092	С	Т	x		RF;AC0	ABCD1			stop gained	c.1699C>T	p.Gln567Ter	rs201114595	

Table S3. Biallelic and multi-allelic blacklist-annotated variants in the PID, Neuro, Infection and Africa cohorts

Blacklists	Blacklists											
	Biallelio		Multiallel	lic	Total							
	Count	% of Total	Count	% of Total	Count	% of Total						
PID	14,229	8.5	152,915	91.5	167,144	100						
Neuro	14,860	66.6	7,454	33.4	22,314	100						
Infection	18,717	49.0	19,451	51.0	38,168	100						
Africa	48,999	84.2	9,186	15.8	58,185	100						

Table S4. Bi-allelic and multi-allelic blacklist-annotated variants by repetitive regions

Occurrence of blacklisted variants in complex regions											
	Mult	i-allelic	Bi-a	allelic	То	tal					
	Count	% of Total	Count	% of Total	Count	% of Total					
In complex regions	118,154	77.3	6,711	47.2	124,865	74.7					
Not in complex regions	34,761	22.7	7,518	52.8	42,279	25.3					
Breakdown by comple	ex regions										
Breakdown by comple	ex regions Mult	i-allelic	Bi-a	Illelic	То	tal					
Breakdown by comple	ex regions Mult Count	i-allelic % of Total	Bi-a Count	illelic % of Total	To Count	tal % of Total					
Breakdown by comple	ex regions Mult Count 65,646	i-allelic % of Total 55.6	Bi-a Count 2,457	Illelic % of Total 36.6	To Count 68,103	tal % of Total 53.5					
Breakdown by comple STR Alu elements	ex regions Mult Count 65,646 44,866	i-allelic % of Total 55.6 38.0	Bi-a Count 2,457 1,713	Solution % of Total 36.6 25.5	Count 68,103 46,579	tal % of Total 53.5 36.7					
Breakdown by comple STR Alu elements GC-rich regions	ex regions Mult Count 65,646 44,866 4,314	i-allelic % of Total 55.6 38.0 3.7	Bi-a Count 2,457 1,713 1,742	% of Total 36.6 25.5 26.0	To Count 68,103 46,579 6,056	tal % of Total 53.5 36.7 6.2					

(STR: short tandem repeats, Alu, GC-rich regions, other repetitive regions)

Table S5. Hardy-Weinberg of bi-allelic CDS blacklist-annotated (BL-A) variants in Caucasian individuals

CDS bi-al	CDS bi-allelic variants in Caucasian Individuals (n = 1150)										
Total	<10 ⁻⁸	>=10 ⁻⁸	% Disequilibrium								
622	74 548 12										
	· · · · · ·										
CDS bi-al	lelic variants in	disequilibrium by exc	ess genotype								
	excess het	excess hom alt	excess hom WT								
Counts	35	28	11								
%	47.3	37.8	14.9								
DP	163.0	20.5	15.6								

Table S6. Ethnicity distribution of bi-allelic CDS blacklist-annotated (BL-A) variants in Hardy-Weinberg equilibrium

Ethnicity	Ethnicity Distribution of CDS bi-allelic variants in HW equilibrium										
	Total	<10 ⁻⁸	>10 ⁻⁸	Ethnical Disequilibrium (%)							
Counts	548	36.5									
Causal E	Causal Ethnicity for Disequilibrium										
	Middle Eastern	Afri	can	Caucasian							
Counts	20	20		6							
%	43.5	43.5		13.0							

Table S7: Biallelic blacklist annotated CDS variants in Hardy-Weinberg disequilibrium

Var	Gene	Unique	Exome gnomAD	Genome gnomAD	Obs	Obs	Obs	HW_	DP Δνσ	Figure
	Gene	onique	Exonic_ghomAD	Genome_BhomAb	het	hom	wt	Disequilibrium	DIAG	ligure
4,88536886,CAGTGACAGCAGCAACAGCAGTGACAGCAGCGAT,C	DSPP	unique	PASS	PASS	352	75	150	7.01E-09	50	
6,136599910,T,TGTATCGCTTCTTTCTAGAATGAGATCTTGATCTTGATCA	BCLAF1	unique	PASS	AC0;RF	348	0	797	1.33E-09	210	
6,31324025,G,GT	HLA-B	unique	PASS	PASS	689	43	401	3.1E-32	23	
6,31324603,C,T	HLA-B	unique	PASS	PASS	717	253	173	1.18E-18	61	
6,32489852,A,ACGG	HLA-DRB1	unique	PASS	RF	608	102	357	9.33E-12	49	
6,32551960,T,TCC	HLA-DRB1	multi-01	PASS	PASS	631	113	394	1.03E-09	90	Sup. Figure 11
6,32552056,A,G	HLA-DRB1	multi-01	RF	InbreedingCoeff;RF	720	0	425	2.62E-54	152	Sup. Figure 11
6,32552085,G,GC	HLA-DRB1	multi-01	PASS	InbreedingCoeff	950	47	148	1.35E-114	124	Sup. Figure 11
6,32552093,A,T	HLA-DRB1	multi-01	RF	RF	528	0	610	2.2E-24	109	Sup. Figure 11
6,32552140,T,A	HLA-DRB1	multi-01	PASS	PASS	846	16	253	3.37E-86	64	Sup. Figure 11
6,32552144,A,C	HLA-DRB1	multi-01	PASS	PASS	953	28	119	1.13E-134	58	Sup. Figure 11
6,32557610,T,C	HLA-DRB1	multi-01			451	0	693	1.01E-16	55	Sup. Figure 11
7,100550245,G,T	MUC3A	unique	InbreedingCoeff	InbreedingCoeff	533	0	192	3.3E-55	547	
7,100551331,G,T	MUC3A	unique	PASS	PASS	850	0	177	2.49E-113	508	
7,142470773,A,G	PRSS3P1	unique			992	0	153	1.85E-147	213	
7,142231826,T,C	TRBV10-1	unique	PASS	PASS	1046	0	99	4.59E-178	236	
10,94018,T,G	TUBB8	unique	RF;AC0	AC0;InbreedingCoeff;RF	404	0	729	2.81E-13	51	
11,1093430,C,CCACCACGGTGACCCCAACCCCAACACCCACGGCACACAG	MUC2	unique	PASS	PASS	740	0	404	8.39E-59	171	
	MUCE	multi 02	DE: A CO		111	0	700	2 92E 16	206	Sup Eiguro 12
11,1010901,0,1	NUC6	multi 02	KF;ACU		444	0	700	3.83E-10	300	Sup. Figure 12
11,1010972,G,A	MUC6	multi 02	DEulahraadingCooff	InbreedingCoeff;RF	/33	0	411	3.10E-57	280	Sup. Figure 12
11,1017040,0,0A	MUCO	multi 02		InbreedingCoeff,RF	1055	0	201	3.01E-95	237	Sup. Figure 12
11,1017458,A,G	NUC6	multi 02	KF;ACU	InbreedingCoeff;KF	1022	0	89	3.72E-184	231	Sup. Figure 12
11,101/4/0,0,1	MUC6	multi-02	In human dia a Caraff	In hanned in a Caraff	908	0	70	1.12E-101	253	Sup. Figure 12
11,1018483,C,G		multi-02	InbreedingCoeff	InbreedingCoeff	1015	0	129	3.5E-160	110	Sup. Figure 12
11,4838/118,0,A	OR4C5	unique	InbreedingCoeff	InbreedingCoeff	1144	0	0	9.03E-251	125	Cure Figure 12
11,56143784,0,1	08801	multi-03	InbreedingCoeff	InbreedingCoeff	1102	0	42	8.52E-217	122	Sup. Figure 13
11,50143803,A,G		multi-03	InbreedingCoeff		10/1	0	73	1.1E-194	117	Sup. Figure 13
12,11244067,A,ATT	TAS2R43	multi-04	PASS	ACU;RF	660	203	266	6.36E-09	60	
12,11244070,1,C	TAS2R43	multi-04	PASS	PASS	665	210	251	8.68E-10	60	
15,23685604,1C,1	GOLGA6L2	unique	InbreedingCoeff	InbreedingCoeff	970	1	159	1.23E-140	308	-
	GOLGA6L2	unique	PASS	KF ■	342	0	785	1.92E-09	401	-
15,9029430b,C,A	MESP1	unique	PASS	PASS	649	172	270	4.5E-11	23	
19,8999561,G,C	MUC16	unique	RF	InbreedingCoett;RF	619	0	525	4.27E-36	69	
19,4511350,1,A	PLIN4	unique		InbreedingCoeff	713	417	6	1.05E-50	140	
19,50463670,T,G	SIGLEC11	unique	PASS	PASS	404	9	730	3.97E-09	42	

Table S8. Sanger seg	uencing of 3 vari	ants from blacklist a	annotated in patient e	exomes.
Table out outget bee				

Variant					Characterization				Databases		Quality			WES Total			WES Genotype of 10 individuals			Sanger sequence of 10 individuals			Variant Status					
Gene	Chr	Pos	Ref	Alt	BL category	Diseq.	HW Eq. p-value ^a	Repeat region	CCDS	Ethnic Heterogenity	% of cohort with variant	ExAC 0.3.1	GnomAD r2.0.2	Mean DP	Mean MQ	Mean QD	WT℃	Het	Hom	WT ^c	Het	Hom	wт	Het	Hom	Variant	Call problem	Suspected reason
HRNR	1	152,195,728	AT	А	Multi allelic	nd	nd	No	No	nd	98.3	-	Yes	42.3	60.2	18.3	44	170	2890	0	0	10	nc	nc	nc	nc	Yes	Short stretch of T
TBC1D19	4	26,737,063	С	СТ	Multi allelic	nd	nd	No	No	nd	91.8	-	Yes	24.1	60.2	15.1	210	877	2017	0	5	5	nc	nc	nc	nc	Yes	Short stretch of T
FIG4	6	110,053,824	G	GT	Multi allelic	nd	nd	No	No	nd	88.6	-	Yes	28.4	60.0	13.9	349	1231	1524	0	6	4	nc	nc	nc	nc	Yes	Short stretch of T

nc : Not confirmed by Sanger sequencing due to poor quality.

Table S9. Summary of the technology employed for each cohort

Cohort								
	Size	Kit	Sequencer	Aligner	Reference Genome	Caller	Annotator	
PID	3,104	Agilent 37, 50, 71 Mb	Hiseq 2000, 2500	bwa(v0.7.12)	hg19	GATK (v3.4-46)	snpEff	
Neuro	3,869	Agilent 50 Mb	Hiseq 2000	bwa (v0.7.5)	GRCh37	GATK (v.3.1-1)	snpEff	
Africa	400	Nextera Rapid Capture Expanded Exome 61 Mb	Hiseq 2500	bwa (v0.7.7)	GRCh37	GATK (v.3.5)	snpEff	
Infection	902	Agilent 50 Mb, Illumina 65Mb	Hiseq 2000, 2500	bwa (v0.7.10)	hg19 decoy	GATK (v3.8)	snpEff	

Table S10. Primers for PCR and sanger sequencing

Gene	Forward primer (5' \rightarrow 3')	Reverse primer (5' \rightarrow 3')
FIG4	CTGTCTTGCCCAAAGTCTGC	TTCTCATTCTGCTTTTACCCGC
HRNR	GGCGTGGAGTTCTTACCTTC	CACTCTCTTGCTACATGGCTTG
TBC1D19	CTTTCTGACATTTATGAACAGAG	GTGATTAGAAATAAAGTGGTG