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Figure S1. Workflow of the RO detection method.
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FigureS2. All possible scenarios on the presence of RO and BSJ in RNA-seq
reads. The position of the scissor represents BSJ. Gray arc represents a cDNA
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represents a recovered cirexon from the alignment.
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FigureS3. 5’ RO candidate read mapping & filtering steps. (A) Raw alignment of
RO merged reads on the reference genome. (B) The longest alignment is selected as
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Refine the boundaries of all alignments based on GT/AG splicing signal.
Merged-reads will be removed if one of the boundaries do not have splicing sites or
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Figure S4. Full-length circRNA reconstruction based on RO and/or BSJ features.
RO reads are shown as orange lines and BSJ read pairs are shown as blue/red lines.
Black curved lines indicate FSJ. (A) RO reads with 5° & 3’ RO can cover the full
length of circRNA. (B) RO reads without 3’RO can be reconstructed into full-length
circRNA when the mapping positions of its two terminals locate within a known
cirexon. (C) A full-length circRNA will be reconstructed when all the FSJs within a
BSJ can be continuously connected. (D) Both BSJ read pairs and RO reads are

combined to complement each other and to reconstruct a full-length circRNA.
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all the nonredundant paths.
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Figure S7. Workflow of approximate exhaustive search in the FSG algorithm. A
Monte-Carlo method estimates the coverage and splice numbers on each path per BSJ
read pair (left). Approximate exhaustive search starts by assigning a random putative
abundance to each path, where the summed abundance for all paths should be equal to
the total number of BSJ reads. Then, based on the assigned putative abundance and
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to real abundance of nodes and edges. Finally, this iteration process stops when the

distance gets converged.
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Figure S8. Characteristics of simulated data sets. (A) The length distribution of
circRNAs in the Hela dataset (SRR3476958, SRR3476956 and SRR3479116), and
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circRNAs with length < 480bp, which theoretically can be recovered by 250bp
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shorter than read length are removed.
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Figure S9. Abundance distributions of circRNAs in simulated data sets. These
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6=200). X axis represents the expression level as measured by the number of BSJ
reads. (A) Four simulated data sets with different circRNA sequencing depth (average
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Figure S11. CircRNA quantification in four real RNA-seq data sets (human
brain, liver cancer datasetl, liver cancer dataset2 and Hs68) with biological
replicates and two simulated datasets. (A) Density plot of the relative abundance
difference of highly expressed circRNA isoforms (#BSJ counts >= 30) between
replicates. (B) Scatterplot of the relative abundance of circRNA isoforms between
replicates. Red dots represent the highly expressed circRNA isoforms (#BSJ
counts >=30), and gray dots represent the moderately expressed circRNA isoforms

(#BSJ counts < 30 & >10).
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Figure S14. Length of circRNAs detected by CIRI-full in human HeLa cell line.
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examples of lowly-expressed circRNAs that were only detected by the RO feature.
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Figure S19. Experimental validations of the RO method on detecting
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denote the same as those in Figure S4. Outward-facing primers are designed to
confirm the BSJs of circRNAs detected by the RO method. PCR products are cloned
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Figure S21. RNA degradation and fragmentation can reduce the abundance of
RO reads. Two examples of circRNAs are illustrated to display the mapping of RO
and BSJ reads in the three RiboMinus/RNase R treated HeLa cell RNA-seq data sets,
RIN=10 & without fragmentation, RIN=10 with fragmentation, and RIN=5 with
fragmentation. Red and black lines represent RO reads and BSJ reads, respectively.
(A) CircRNA (chr5:127,320,946/137,324,004) with length of 329 bp. The number of
RO/BSJ reads in the three data sets is 13/44, 2/13, 0/25, respectively. (B) CircRNA
(chr12:28,458,582|28,460,682) with length of 469 bp. The number of RO/BSJ reads
in the three data sets is 8/16, 0/6, 0/2, respectively.
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Figure S22. Four examples of circRNAs in Figure 3K. Annotated exons in GTF
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Figure S24. Performance comparison between CIRI-Full and CIRCexplorer2 on

a human brain sub-dataset. This dataset was treated by RNase R & RiboMinus with

3 million read pairs. CircRNA with BSJ reads >=3 were retained. (A) Comparison of

reconstructed circular isoforms between CIRI-full and CIRCexplorer2. Black number

represents the number of isoforms that do not share BSJ with those predicted by the

other tool. Red number represents the number of isoforms that share BSJ with the

other tool but differ in their internal sequences. (B, C) Boxplot of BSJ level

expression and isoform length of three types of isoforms shown in red color in Figure

S23A. (D) An example of circRNA that all its isoforms were reconstructed by both

tools. (E, F) Examples of isoforms only predicted by CIRI-full. (G) Example of

isoforms only predicted by CIRCexplorer2.
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Figure S25. Boundary conservation of orthologous exons in mRNA, circRNA and
lincRNA. For circRNA, only ICFs are taken into account. (A-C) Boundary
conservation in orthologous genes between human and macaque. (D-F) Boundary

conservation in orthologous genes between mouse and rat.
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Table S1. RT-PCR and CIRI-full quantification results of 17 circRNA isoforms.

GAPDH_ PCR_result

BSJ Length | gene name | expression Y_axis mean CT_Mean 2N-ACT)*10000) X_axis

chr12:109046048|109048186 274 | COROIC 3 11.1% 18.92444 32.07436 1.100220264 17.6%
chr12:109046048|109048186 286 | COROIC 5 18.5% 18.92444 30.85816 2.556185224 40.9%
chr12:109046048|109048186 251 | COROIC 19 70.4% 18.92444 30.83783 2.592461168 41.5%
chr10:74474869|74475660 165 | MCU 5 55.6% 18.92444 31.79133 1.338690431 48.3%
chr10:74474869|74475660 257 | MCU 4 44.4% 18.92444 31.69297 1.433142811 51.7%
chr12:116668338|116675510 398 | MEDI3L 7 22.6% 18.92444 30.94609 2.405042485 32.7%
chr12:116668338|116675510 496 | MEDI13L 24 77.4% 18.92444 29.90671 4.943190067 67.3%
chr15:25650608|25657118 226 | UBE3A 6 23.1% 18.92444 30.75597 2.743813417 21.8%
chr15:25650608|25657118 297 | UBE3A 19 76.7% 18.92444 2891724 9.814483728 78.2%
chr8:141874411|141900868 482 | PTK2 46 92.0% 17.02938 27.93915 5.197948642 98.2%
chr8:141874411|141900868 315 | PTK2 4 8.0% 17.02938 33.68426 0.09691289 1.8%
chr8:141856359|141900868 625 | PTK2 53 94.6% 17.02938 29.85471 1.377815181 90.2%
chr8:141856359|141900868 458 | PTK2 3 5.4% 17.02938 33.05096 0.150322449 9.8%
chr1:117944808|117963271 553 | MANIA2 236 98.7% 17.02938 23.14939 143.7783238 100.0%
chr1:117944808|117963271 300 | MANIA2 3 1.3% 18.19529 36.79005 0.025259193 0.0%
¢chr9:33953283(33963789 377 | UBAP2 10 62.5% 17.92756 30.13061 2.120879095 61.7%
chr9:33953283(33963789 309 | UBAP2 6 37.5% 17.92756 30.82106 1.31422508 38.3%

chrl:117944808|117963271
chr10:74474869|74475660

chr12:109046048|109048186

® chrl2:116668338/116675510

® chrl15:2565060825657118

® chr8:141856359/141900868

chr8:141874411(141900868
chr9:33953283(33963789
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