Activation of silent biosynthetic gene clusters using transcription factor decoys

Bin Wang¹, Fang Guo², Shi-Hui Dong^{1,3}, and Huimin Zhao^{1,2,3,4,*}

¹Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ²Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ³Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. ⁴Department of Chemistry, Urbana

SUPPLEMENTARY TABLES

Streptomyces coelicolor A3(2)					
cluster	length /kb	type	known product	study	result
1	53	otherks-t1pks		this study	not activated
2	26	terpene	isorenieratene		
3	35	lantipeptide			
4	51	nrps	coelichelin		
5	10	bacteriocin	5-Hydroxyectoine		
6	41	t3pks	THN/flaviolin		
7	10	ectoine			
8	11	melanin			
9	12	siderophore	Desferrioxamine		
10	81	nrps	CDA		
11	43	t2pks	ACT		
12	21	terpene	Albaflavenone		
13	43	t2pks	spore pigment		
14	12	siderophore			
15	47	t1pks	RED		
16	11	bacteriocin			
17	22	terpene	Geosmin		
18	13	siderophore			
19	67	butyrolactone-t1pks	coelimycin		
20	48	nrps		this study	not activated
21	23	lantipeptide			
22	27	terpene	Hopene		
23	48	otherks-t1pks	1MPKSsco		
24	25	lantipeptide			
25	41	other			
26	21	indole			
27	83	t3pks-nrps-terpene	coelibactin		

Supplementary Table 1. antiSMASH¹ analysis of multiple streptomycetes used in this study

Streptomy	Streptomyces albus J1074				
cluster	length /kb	type	known product	study	result
1	59	t1pks-nrps		this study	
2	49	nrps-t1pks	6-epi-alteramides		
3	27	terpene			
4	10	bacteriocin			
5	41	otherks	paulomycin		
6	11	bacteriocin			
7	63	nrps		this study	
8	15	siderophore			
9	22	terpene			
10	21	terpene			
11	32	thiopeptide-lantipeptide			
12	11	bacteriocin			
13	23	lantipeptide			
14	50	nrps		this study	activated
15	106	nrps	surugamides		
16	44	nrps			
17	12	siderophore			
18	10	ectoine			
19	44	other	indigoidine		
20	29	bacteriocin-terpene			
21	41	t3pks			
22	155	t1pks	FR-008/candicidin		
23	74	nrps-t1pks-lantipeptide	antimycin		
24	64	t1pks			

Strepton	Streptomyces sp. F-5635 (ssp8)					
cluster	length /kb	type	similar BGC	study	result	
1	41	T3pks	Herboxidiene_biosynthetic_gene_cluster (8% of genes show similarity)			
2	96	T3pks-T1pks-Nrps	Daptomycin_biosynthetic_gene_cluster (14% of genes show similarity)	this study	activated	
3	12	Siderophore	Desferrioxamine_B_biosynthetic_gene_cluster (100% of genes show similarity)			
4	11	Melanin	Melanin_biosynthetic_gene_cluster (60% of genes show similarity)			
5	42	T2pks	Spore_pigment_biosynthetic_gene_cluster (66% of genes show similarity)			
6	21	Terpene	Albaflavenone_biosynthetic_gene_cluster (100% of genes show similarity)			
7	24	Terpene	-			
8	41	T3pks	Alkylresorcinol_biosynthetic_gene_cluster (100% of genes show similarity)			
9	10	Bacteriocin	Informatipeptin_biosynthetic_gene_cluster (42% of genes show similarity)			
10	42	T2pks	Fluostatin_biosynthetic_gene_cluster (20% of genes show similarity)	this study		
11	12	Siderophore	-			
12	51	Nrps	Coelichelin_biosynthetic_gene_cluster (100% of genes show similarity)			
13	73	Phosphonate- T1pks-Ladderane	Pactamycin_biosynthetic_gene_cluster (20% of genes show similarity)	this study		
14	73	Siderophore-Nrps	Meilingmycin_biosynthetic_gene_cluster (3% of genes show similarity)	this study	activated	
15	22	Terpene	Herboxidiene_biosynthetic_gene_cluster (3% of genes show similarity)			
16	11	Bacteriocin	-			
17	80	T1pks	Vicenistatin_biosynthetic_gene_cluster (65% of genes show similarity)	this study		
18	10	Ectoine	Ectoine_biosynthetic_gene_cluster (100% of genes show similarity)			
19	54	Nrps	Coelibactin_biosynthetic_gene_cluster (100% of genes show similarity)	this study		
20	24	Terpene	Carotenoid_biosynthetic_gene_cluster (45% of genes show similarity)			
21	46	Nucleoside-Nrps	A54145_biosynthetic_gene_cluster (5% of genes show similarity)	this study		
22	60	T1pks	Pellasoren_biosynthetic_gene_cluster (33% of genes show similarity)			
23	27	Terpene	Hopene_biosynthetic_gene_cluster (92% of genes show similarity)			
24	21	Indole	Ravidomycin_biosynthetic_gene_cluster (5% of genes show similarity)			
25	34	Oligosaccharide	Cinerubin_B_biosynthetic_gene_cluster (17% of genes show similarity)			
26	47	Nrps	Grincamycin_biosynthetic_gene_cluster (8% of genes show similarity)			
27	22	Terpene	Azinomycin_B_biosynthetic_gene_cluster (6% of genes show similarity)			
28	134	T1pks-Nrps	Lasalocid_biosynthetic_gene_cluster (13% of genes show similarity)	this study	activated	

Streptomyces griseofuscus B-5429 (sgri)

cluster	length /kb	type	similar BGC	study	result
1	12	Siderophore	Desferrioxamine_B_biosynthetic_gene_cluster (100% of genes show similarity)		
2	11	Melanin	Istamycin_biosynthetic_gene_cluster (4% of genes show similarity)		
3	84	T1pks-Nrps		this study	
4	22	terpene			
5	36	Lantipeptide	A-503083_biosynthetic_gene_cluster (7% of genes show similarity)		
6	13	Siderophore	-		
7	44	Other	-		
8	25	T1pks	Tetronasin_biosynthetic_gene_cluster (3% of genes show similarity)	this study	
9	10	Bacteriocin	Informatipeptin_biosynthetic_gene_cluster (28% of genes show similarity)		
10	43	T2pks	Spore_pigment_biosynthetic_gene_cluster (83% of genes show similarity)		
11	58	T1pks-Otherks	Tetronasin_biosynthetic_gene_cluster (3% of genes show similarity)	this study	
12	89	Nrps	Kirromycin_biosynthetic_gene_cluster (16% of genes show similarity)		
13	43	Other	SCO-2138_biosynthetic_gene_cluster (64% of genes show similarity)		
14	11	Bacteriocin	-		
15	22	Terpene	-		
16	10	Ectoine	Ectoine_biosynthetic_gene_cluster (100% of genes show similarity)		
17	93	T1pks-Nrps	Meridamycin_biosynthetic_gene_cluster (26% of genes show similarity)	this study	activated
18	74	Lantipeptide-Nrps	-		
19	52	Thiopeptide- Terpene	Hopene_biosynthetic_gene_cluster (92% of genes show similarity)		
20	68	T1pks-Nrps	Meilingmycin_biosynthetic_gene_cluster (3% of genes show similarity)		
21	52	T1pks-Otherks	Cinnamycin_biosynthetic_gene_cluster (19% of genes show similarity)		
22	55	Nrps	PM100117_/_PM100118_biosynthetic_gene_cluster (8% of genes show similarity)		
23	41	T3pks	Herboxidiene_biosynthetic_gene_cluster (7% of genes show similarity)		
24	47	T1pks	Filipin_biosynthetic_gene_cluster (92% of genes show similarity)		
25	48	T1pks			
26	71	Terpene-T2pks- T1pks- Butyrolactone	Lactonamycin_biosynthetic_gene_cluster (28% of genes show similarity)	this study	activated
27	26	terpene	Friulimicin_biosynthetic_gene_cluster (15% of genes show similarity)		
28	42	other			
29	21	terpene	Albaflavenone_biosynthetic_gene_cluster (100% of genes show similarity)		
30	50	Transatpks-T1pks- Nrps	Cinnabaramide_biosynthetic_gene_cluster (18% of genes show similarity)		
31	70	Ectoine-Nrps	Pristinamycin_biosynthetic_gene_cluster (29% of genes show similarity)		

32	13	Siderophore	Cinnabaramide_biosynthetic_gene_cluster (9% of genes show similarity)
33	23	Lantipeptide	-
34	26	Terpene	Carotenoid_biosynthetic_gene_cluster (63% of genes show similarity)
35	48	Other	-
36	60	Nrps	Stenothricin_biosynthetic_gene_cluster (13% of genes show similarity)
37	67	T1pks-Nrps	Vicenistatin_biosynthetic_gene_cluster (15% of genes show similarity)
38	48	T1pks	Carbapenem_MM_4550_biosynthetic_gene_cluster (10% of genes show similarity)
39	11	Butyrolactone	Thioviridamide_biosynthetic_gene_cluster (10% of genes show similarity)
40	48	Nrps-Siderophore	Kinamycin_biosynthetic_gene_cluster (20% of genes show similarity)
41	45	Nrps	Lankacidin_biosynthetic_gene_cluster (60% of genes show similarity)
42	47	T1pks	Lankamycin_biosynthetic_gene_cluster (56% of genes show similarity)
43	56	T1pks	Lorneic_acid_A_biosynthetic_gene_cluster (14% of genes show similarity)
44	62	T1pks	Cremimycin_biosynthetic_gene_cluster (17% of genes show similarity)

Strepton	<i>iyces</i> sp. F-43	35 (ssp7)			
cluster	length /kb	type	similar BGC	study	result
1	35	Butyrolactone	Echosides_biosynthetic_gene_cluster (11% of genes show similarity)		
2	21	Terpene	2-methylisoborneol_biosynthetic_gene_cluster (100% of genes show similarity)		
3	23	Lantipeptide	SapB_gene_cluster (100% of genes show similarity)		
4	21	Terpene	-		
5	63	Nrps	Maklamicin_biosynthetic_gene_cluster (4% of genes show similarity)		
6	44	Other	-		
7	41	Other	Gentamicin_biosynthetic_gene_cluster (3% of genes show similarity)		
8	12	Siderophore	Desferrioxamine_B_biosynthetic_gene_cluster (100% of genes show similarity)		
9	15	Siderophore	-		
10	112	T1pks-Nrps	Salinomycin_biosynthetic_gene_cluster (30% of genes show similarity)	this study	
11	22	Terpene	Dynemicin_biosynthetic_gene_cluster (3% of genes show similarity)		
12	27	Terpene	Hopene_gene_cluster (61% of genes show similarity)		
13	52	T1pks-Otherks	-		
14	59	Phosphonate- T1pks-Ladderane	Neocarzilin_biosynthetic_gene_cluster (14% of genes show similarity)	this study	
15	58	Melanin-Terpene	Melanin_gene_cluster (28% of genes show similarity)		
16	13	Siderophore	-		
17	41	T3pks	Alkylresorcinol_biosynthetic_gene_cluster (100% of genes show similarity)		
18	61	T1pks-Nrps	Akaeolide_biosynthetic_gene_cluster (12% of genes show similarity)	this study	
19	11	Butyrolactone	Sanglifehrin_A_biosynthetic_gene_cluster (4% of genes show similarity)		
20	41	Arylpolyene	Svaricin_biosynthetic_gene_cluster (12% of genes show similarity)		
21	43	T2pks	Spore_pigment_biosynthetic_gene_cluster (66% of genes show similarity)		
22	10	Ectoine	Ectoine_gene_cluster (100% of genes show similarity)		
23	44	Other	Lipstatin_biosynthetic_gene_cluster (42% of genes show similarity)		
24	98	Transatpks-Nrps	Oxazolomycin_biosynthetic_gene_cluster (21% of genes show similarity)	this study	activated
25	63	T1pks-Nrps	Coelichelin_biosynthetic_gene_cluster (72% of genes show similarity)		
26	47	T1pks	Herboxidiene_biosynthetic_gene_cluster (10% of genes show similarity)		
27	49	T1pks	Himastatin_biosynthetic_gene_cluster (20% of genes show similarity)		
28	87	Nrps	Kirromycin_biosynthetic_gene_cluster (23% of genes show similarity)	this study	activated
29	33	Bacteriocin	-		

Supplementary Table 2. Statistics for evaluating the effectiveness of t	the TFD strategy
---	------------------

Protocol	Number of	Number of	Number of	Number of	Number of
	Strains	BGCs	Constructs	Fermentations	Activated BGCs
Low throughput	3	11	27	27	4
High throughput	2	10	34	9	4

Supplementary Table 3. Streptomyces strains used in this study and their culture conditions

strains	designation	sporulation	conjugation spores/mycelia, solid media	liquid fermentation
Streptomyces albus J1074	salb	MS^2	spores, MS	MYM ³
Streptomyces coelicolor A3(2)	sco	MS	spores, MS	MYM
Streptomyces griseofuscus NRRL B-5429	sgri	MS	mycelium growing in YEME liquid medium, MS	MYM
Streptomyces lividans 66	sli	MS	spores, MS	MYM
Streptomyces sp. F-4335	ssp7	ISP4	spores, ISP4	MYM
Streptomyces sp. NRRL F- 5635	ssp8	MS	spores, MS	MYM

Supplementary Table 4. Media used in this study

MYM, 1 L		MS, 1 L	
maltose	4 g	soy bean powder	20 g
yeast extract	4 g	mannitol	20 g
malt extract	10 g	agar	20 g
agar	15 g		

Template gDNA	TFD description	Primer	Sequence
neo for constructin	g pKCW101	neoF	ccggggacctgcataggatccTGAGAATTCTAATAGCTGAC
		neoR	ccgattcattaatgcagTCAGAAGAACTCGTCAAG
S. lividans 66, RED	RsliM18I, redD	RsliM18-F1	gatcgaagaagcaggacgTGGGGTCCCGGTCGATCAC
		RsliM18-R1	ggcaccccaggctttacactCGTCCTGACCGGCCGCGA
	RsliM18II, structural	RsliM18-F2	gaagaagaagcaggacgGCGAAACCGTCGACCAGC
		RsliM18-R2	ccccaggctttacactCGGGACGGCAGACAGGAA
	RsliM18III, redZ	RsliM18-F3	ccggggacctgcatagatctTGGTCTCCACCTGCACTTTCA TGTC
		RsliM18-R3	ccgattcattaatgcagctgGCCCGGCCGCACCTTCTT
<i>S. lividans</i> 66, ACT	RsliM14I, actII-orf4	RsliM14-F1	ccggggacctgcatagatctGCACCGGCTCGCCCGGCG
		RsliM14-R1	ccgattcattaatgcagctgCGTGCCGCCTGAGGAGCAGC
	RsliM14II, mini-PKS	RsliM14-F2	gaagagaagcaggacgCCGCTGGTCGCACCCGTC
		RsliM14-R2	ccccaggetttacactGATACGGGACCCCTCGATGCC
	RsliM14III, structural	RsliM14-F3	ccggggacctgcatagatctCGTAGCCGGCGAAGTCAC
		RsliM14-R3	ccgattcattaatgcagctgGCCGACGGCTGTTGACGC
	<i>RsliM14IV</i> , hypo	RsliM14-F4	ccggggacctgcatagatctGCACCCCTACTTCGGTACC
		RsliM14-R4	ccgattcattaatgcagctgCCGCCTCGAGACCGTCGA
	RsliM14V, tetR	RsliM14-F5	ccggggacctgcatagatctTGCCGAGCGCCGTGACGA
		RsliM14-R5	ccgattcattaatgcagctgGTAACGCCGACGGCGGGG
S. coelicolor A3(2)	RscoM11	RscoM1-F1	ccggggacctgcatagatctGGTCGACCGCGTGGGTGG
		RscoM1-R1	ccgattcattaatgcagctgAGGCGCAGCCCGAGGAATC
	RscoM111	RscoM1-F2	ccggggacctgcatagatctGCAGCCGGTCGGCGGGGA
		RscoM1-R2	ccgattcattaatgcagctgCGACCAGGACGGCGCTGC
	RscoM20I	RscoM20-F1	ccggggacctgcatagatctCCAGGCCGAGTGCCCCGG
		RscoM20-R1	ccgattcattaatgcagctgAACGGGCCAGGGCGCCTTC
	RscoM20II	RscoM20-F2	ccggggacctgcatagatctGTCCCAGCAGCAACGCGG
		RscoM20-R2	ccgattcattaatgcagctgAGGTCGTGTCGGCGGCGA
S. albus J1074	RsalbM11	RsalbM1-F1	ccggggacctgcatagatctCCCGTTCGGCCAGCGCCA
		RsalbM1-R1	ccgattcattaatgcagctgGGTGGACGCAGAACAGCGGG
	RsalbM111	RsalbM1-F2	ccggggacctgcatagatctTCCGCTGGGTACCGCGCT
		RsalbM1-R2	ccgattcattaatgcagctgCCGCCGTCACCTGGAACTC
	RsalbM7I	RsalbM7-F1	ccggggacctgcatagatctCGCCCCTACACCGGCCG
		RsalbM7-R1	ccgattcattaatgcagctgCGGTGGGCAGGTCCAGGG
	RsalbM7II	RsalbM7-F2	ccggggacctgcatagatctCGTGGCGGCCTGCGTCCT
		RsalbM7-R2	ccgattcattaatgcagctgTGTCGCCCAGCGAAGCGATG
	RsalbM14I	RsalbM14-F1	ccggggacctgcatagatctCGGGGCTGTCCGGGTCGAG
		RsalbM14-R1	ccgattcattaatgcagctgCCGGGGTGGACGCGGTGG
	RsalbM14II	RsalbM14-F2	ccggggacctgcatagatctCTGTTCTGGCGAGGCGGG
		RsalbM14-R2	ccgattcattaatgcagctgCCTGCACCGCCGTGATGATC
<i>Streptomyces</i> sp. F-5635, ssp8	Rssp8M2I	Rssp8M2-F1	cggggacctgcataggatccCGCGCTTGGCGAGAAGCC

Supplementary Table 5. Primers used in this study

Template gDNA	TFD description	Primer	Secuence
Template gDNA	II D description	$R_{sen}8M_{2}R_{1}$	ctettateagetattagaatteCTCGCGCCCCTCGTCGGC
	Rssn8M2II	Rssp8M2-F2	canagectacetacategetccCCTCGTGATCGAGGATGTG
	R35p011211	Rssp8M2-R2	ctettateagetattagaatte A A C A T A GGTGGA GA A C A GG
	Reen8M101	Rssp8M10 F1	canageortaceteageteaGGGGTACCGGGTACCGGAT
	Rsspomion	Rsspom10-11	atattataa aatatta gaatta CCTCTCCCCC A TCTCCCTC
	Deem 9M10II	RSSpom10-R1	
	KSSPOMIUII	Rsspom10-F2	
	D 91/121	Rsspom10-R2	
	KSSP8M131	Kssp8M13-F1	
	D 01/12/1	KSSp8M13-K1	ctcttgtcagctattag aattc G1GCAGCAGCTCCGCGA1
	Rssp8M1311	Rssp8M13-F2	cggggacctgcataggatccGAGGGCGCTGTCCTGGGA
		Rssp8M13-R2	ctcttgtcagctattag aattc ACGATTGGCGCAGAGATAGGC
	Rssp8M141	Rssp8M14-F1	cggggacctgcataggatccCCGGGACCGTCACGTCCT
		Rssp8M14-R1	AAGGC
	Rssp8M14II	Rssp8M14-F2	cggggacctgcataggatccGAGTCCCGGTGACCGCCG
		Rssp8M14-R2	ctcttgtcagctattagaattcCAGGCAGCCCACCCGCCG
	Rssp8M17I	Rssp8M17-F1	cggggacctgcataggatccCGTTGGCGTGCATGAAGAC
		Rssp8M17-R1	ctcttgtcagctattagaattcCGTACCGCGCTCATCGCT
	Rssp8M17II	Rssp8M17-F2	cggggacctgcataggatccCGCCCCAGCGGGAAAGTT
		Rssp8M17-R2	ctcttgtcagctattagaattcGATGACTCCGCTGGCCAG
	Rssp8M19I	Rssp8M19-F1	cggggacctgcataggatccCCTCACGCAGGCGAGCAC
		Rssp8M19-R1	ctcttgtcagctattagaattcCTGCAGTGCGTGTGCGAC
	Rssp8M211	Rssp8M21-F1	cggggacctgcataggatccGTCGCCCGAGACCCGGGC
		Rssp8M21-R1	ctcttgtcagctattagaattcGCGCGCCATCACCCACAG
	Rssp8M21II	Rssp8M21-F2	cggggacctgcataggatccATGCCAGCGCCACGAGCG
		Rssp8M21-R2	ctcttgtcagctattagaattcCTCGGCCACGGCACCGATG
	Rssp8M28I	Rssp8M28-F1	cggggacctgcataggatccGTCGAGCAGGGCGTGAAC
		Rssp8M28-R1	ctcttgtcagctattagaattcCATGGACCCGGGGTCGAG
	Rssp8M28II	Rssp8M28-F2	cggggacctgcataggatccCTTGTTGGCGACGTCCGAG
		Rssp8M28-R2	ctcttgtcagctattagaattcTCCCGAGACGTGGATCAG
S. griseofuscus B-5429	RsgriM3I	RsgriM3-F1	cggggacctgcataggatccCCGCGACCGTCATCACCTG
Rsgri library		RsgriM3-R1	ctcttgtcagctattagaattcTCCGACCCGGGCGGTCTC
	RsgriM3II	RsgriM3-F2	cggggacctgcataggatccGCCCAGCACTTCCACCG
		RsgriM3-R2	ctcttgtcagctattagaattcCACCCGGCCGGCCAGATG
	RsgriM3III	RsgriM3-F3	cggggacctgcataggatccAGCCGCCGCGTGCGGCA
		RsgriM3-R3	ctcttgtcagctattagaattcCAGGTCATTGAGCGCGAGTC TGCGGAAACCC
	RsgriM17I	RsgriM17-F1	cggggacctgcataggatccCTCGCGCGAAGGGAGCGG
		RsgriM17-R1	ctcttgtcagctattagaattcCAGCCGGCACGCCAGACC
	RsgriM17II	RsgriM17-F2	cggggacctgcataggatccTCGCGGGGCGGCAGAAGGA
	-	RsgriM17-R2	ctcttgtcagctattagaattcGTGGATGTGGGTCGGCGGTG
	RsgriM17III	RsgriM17-F3	cggggacctgcataggatccCCGGCCCGGCTTCCACGA
	~	RsgriM17-R3	ctcttgtcagctattagaattcGCACACCTCCTCGTCGCGC
	RsgriM17IV	RsgriM17-F4	cggggacctgcataggatccCCTGGAGCCCGGCGGCCG
	0	5	

Template gDNA	TFD description	Primer	Sequence
1 0	Ĩ	RsgriM17-R4	ctettgtcagetattagaattcCATCGGGTGCGCCCCGGTC
	RsgriM17V	RsgriM17-F5	cggggacctgcataggatccGAGCGGCACGAACCTGCG
		RsgriM17-R5	ctcttgtcagctattagaattcCTCGTCGTGCCGTACCGG
	RsgriM26I	RsgriM26-F1	cggggacctgcataggatccGGCCCGCCATGACGCGGG
	-	RsgriM26-R1	ctcttgtcagctattagaattcCGCGAGCAGCGCGAGCAC
	RsgriM26II	RsgriM26-F2	cggggacctgcataggatccCGAGGCGCTCGGGGGCCGC
		RsgriM26-R2	ctcttgtcagctattagaattcCCGGGTCGCGGTGCGGAC
	RsgriM26III	RsgriM26-F3	cggggacctgcataggatccGCTCCAGCGCCTGCACCAG
		RsgriM26-R3	ctcttgtcagctattagaattcATGGGGCACGGGCTGCGC
	RsgriM26IV	RsgriM26-F4	cggggacctgcataggatccCGACGAGGAGACCGTACTG
		RsgriM26-R4	ctcttgtcagctattagaattcCGACAGCAGCGCGAGGAT
	RsgriM26V	RsgriM26-F5	cggggacctgcataggatccTGGCGATCAGGCGGTGGAC
		RsgriM26-R5	ctcttgtcagctattagaattcCGCCAGCAGGGCCAGCAC
	RsgriM26VI	RsgriM26-F6	cggggacctgcataggatccTGAGTGGGGTCAGCCAGG
		RsgriM26-R6	ctcttgtcagctattagaattcCACCCGTACGACCGGGCC
<i>Streptomyces</i> sp. F-4335	Rssp7M10I	Rssp7M10-F1	cggggacctgcataggatccTCGGCAACAGCGCGTGGCTCG
Rssp7 library		Rssp7M10-R1	ctcttgtcagctattagaattcGTGGCGGTGCCCGGGCCG
	Rssp7M10II	Rssp7M10-F2	cggggacctgcataggatccGACCTGCGTGTCTACCCC
		Rssp7M10-R2	ctcttgtcagctattagaattcGGCGACGACCTGCTTCTC
	Rssp7M10III	Rssp7M10-F3	cggggacctgcataggatccCGCTTCCCGAAGCTGCGC
		Rssp7M10-R3	ctcttgtcagctattagaattcCTCGACCATGAGCACCCG
	Rssp7M10IV	Rssp7M10-F4	cggggacctgcataggatccGCGAAGAAGGCCGGGCTG
		Rssp7M10-R4	ctcttgtcagctattagaattcGTGGGGGGTCGTTGTCGTC
	Rssp7M14I	Rssp7M14-F1	cggggacctgcataggatccTCGGGCCCACGGGGCCGC
		Rssp7M14-R1	ctcttgtcagctattagaattcCGCCCTCGGCGATACCTGGGTCC
	Rssp7M14II	Rssp7M14-F2	cggggacctgcataggatccCCTGGCCCCGTCCGCGAC
		Rssp7M14-R2	ctcttgtcagctattagaattcCGGGCCCGATGCCGGCAG
	Rssp7M14III	Rssp7M14-F3	cggggacctgcataggatccCTGCTCCAGGTCGCGCTG
		Rssp7M14-R3	ctcttgtcagctattagaattcGTCCATGAGCAGGTCCCAG
	Rssp7M14IV	Rssp7M14-F4	cggggacctgcataggatccGTAGGCCTGCCAGCTGGT
		Rssp7M14-R4	ctcttgtcagctattagaattcGAACTTGATCGCCAGCATCTC
	Rssp7M14V	Rssp7M14-F5	cggggacctgcataggatccCTCGTTCCCGGACCGGTG
		Rssp7M14-R5	ctcttgtcagctattagaattcGATGATGCGTACCGCGCC
	Rssp7M18I	Rssp7M18-F1	cggggacctgcataggatccGGCCGTCACGCCCGTGATGA GTGCGG
		Rssp7M18-R1	ctcttgtcagctattagaattcGGCGGGGGGGGGCCGGGT
	Rssp7M18II	Rssp7M18-F2	cggggacctgcataggatccGATGAGTTCAGCCGGGTCAAG
		Rssp7M18-R2	ctcttgtcagctattagaattcCAGCTCCTCGCCGAGCTG
	Rssp7M18III	Rssp7M18-F3	cggggacctgcataggatccCCCAGAGCTTCCAATTCCGC
		Rssp7M18-R3	ctcttgtcagctattagaattcCTGGACCACCGCGGGCAG
	Rssp7M18IV	Rssp7M18-F4	cggggacctgcataggatccGAGGGCATGTCCGGGCTC
		Rssp7M18-R4	ctcttgtcagctattagaattcGCTGGCGGCCCGGATCAG
	Rssp7M24I	Rssp7M24-F1	cggggacctgcataggatccGAGCGGATCCGCGTTGAAG

Template gDNA	TFD description	Primer	Sequence
		Rssp7M24-R1	ctcttgtcagctattagaattcCAGGTGCGTGTCGCGATAG
	Rssp7M24II	Rssp7M24-F2	cggggacctgcataggatccGGGTCCCGCCTGGAGCTG
		Rssp7M24-R2	ctcttgtcagctattagaattcCAGGCCGTCCCGCCCCTC
	Rssp7M28I	Rssp7M28-F1	cggggacctgcataggatccGGGTGATACGTCCCCTGC
		Rssp7M28-R1	ctcttgtcagctattagaattcGATGGTGTAGTCGAGGCG
	Rssp7M28II	Rssp7M28-F2	cggggacctgcataggatccCGCGTCCACGTCCACCGT
		Rssp7M28-R2	ctcttgtcagctattagaattcGTACGTGTGCCCCTGCGC
	Rssp7M28III	Rssp7M28-F3	cggggacctgcataggatccGTGATCGCCCGCCACGGC
		Rssp7M28-R3	ctcttgtcagctattagaattcGGCCGGGACGGGGTTGGC
	Rssp7M28IV	Rssp7M28-F4	cggggacctgcataggatccGACGTCGCCACCGACCAC
		Rssp7M28-R4	ctcttgtcagctattagaattcGAACTGCGGGGGGGGGGAGCAC
	Rssp7M28V	Rssp7M28-F5	cggggacctgcataggatccCAGGAAGGCCAGGATCGCG
		Rssp7M28-R5	ctcttgtcagctattagaattcGGTGCGGAGCGCGGTCTC
RT-PCR		SigmaFactor-F	GCGGCATGCTCTTCCTGG
primers		SigmaFactor-R	ACTCGCTGTCGCCGTCCT
		RTssp7M10IV-F1	ACGCACGCCGAGCGGTTGAA
		RTssp7M10IV-R1	ATCGTGGCGCACACGGTGGTCT
		RTssp7M10IV-F2	CGGCGAAGAAGTGTCGCTGAT
		RTssp7M10IV-R2	AAGTGCATGGTGGGGGGGGGG

Oxazolepoxidomycin A, oze cluster				
gene	gene locus	size in bp	proposed function	
ozeO	ctg1_3763	846	MT	
	//	13 kb		
ozeA	ctg1_3748	3330	PKS	
ozeB	ctg1_3747	3588	PKS	
ozeC	ctg1_3746	10368	PKS	
ozeD	ctg1_3745	3627	methionyl-tRNA_formyltransferase	
ozeE	ctg1_3744	1134	similar to ozmP, oxazole cyclization	
ozeF	ctg1_3743	2736	PKS	
ozeG	ctg1_3742	25035	PKS/NRPS	
ozeH	ctg1_3741	5019	PKS	
ozeI	ctg1_3740	6123	NRPS	
ozeJ	ctg1_3739	3423	AT	
ozeK	ctg1_3738	1383	CYP450	
ozeL	ctg1_3737	1380	CYP450	
ozeM	ctg1_3736	915	ER	
ozeN	ctg1_3735	738	ACPS	

Supplementary Table 6. Gene annotation of the *oze* cluster

SUPPLEMENTARY FIGURES

Supplementary Figure 1. Activation of BGCs in *Streptomyces lividans* 66. (**a-b**) are actinorhodin (*act*) and undecylprodigiosin (*red*) BGCs, respectively. (**c-d**) are recombinant strains that grew on MYM plates and harbored TFDs for activation of the *act* and *red* BGCs, respectively. The blue color in (**c**) confirmed production of the pH-dependent actinorhodin after ammonia fuming treatment. The red color in (**d**) indicated undecylprodigiosin production. (**e-i**) LC-MS analyses of actinorhodin and undecylprodigiosin. (**e-f**) are extracted ion chromatogram from RsliM14II (recombinant strain harboring the *RsliM14II* TFD) and RsliM18I (recombinant strain harboring the *RsliM18I* TFD). (**g-i**) are corresponding mass spectra. Triplicate experiments were performed for detection of pigment production on plates and LC-MS, and results were reproducible.

ctg1 25: KS-AT-ACP-KR-DH, PfaA homolog.

	250	500 750	1000 1250	1500 1750	2000 2063
QUELA SEA.	active site 🗼 🔥 🔥		active site AMA putative NADP binding site AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		
Specific hits	P P	ksD 🛛		KR_2_SDR_x	
	PKS	PKS_AT		EKS_KR	
	ketoacyl-synt			FabG	
Non-specific hits		omega_3_PfaA	KR_FAS_SOR_X PS-DH		
	PKS_KS	FabD		omega_3_PfaA	
	KAS_I_II	fabD	Р	KR_2_FRS_SDR_×	
	FabB	Acyl_transf_1		KR	

ctg1_26: KS-KS-AT-DH-DH, PfaC homolog.

Supplementary Figure 2. antiSMASH analysis showed uncommon domain organizations in ctg_25 and ctg_26. Further conserved domain analysis suggested they are polyketide-type polyunsaturated fatty acid synthase homologs.

Supplementary Figure 3. HPLC analysis of crude extracts from *Streptomyces albus* J1074 (**a**), *Streptomyces* sp. F-5635 (ssp8) (**b-c**), *Streptomyces griseofuscus* B-5429 (**d**), and *Streptomyces* sp. F-4335 (ssp7) (**e**). New peaks compared to the controls, including recombinants with empty plasmid or other TFDs, are labeled by *. Triplicate fermentation experiments were performed and results were reproducible.

с

а

ORFs in butyrolactol A			Alignment	
BGC	Accession number	Gene locus in ssp8	coverage/identity %	Gene annotation
33	WP_030403663	ctg1_5946	100/100	MarR family transcriptional regulator
32	WP_055469561	ctg1_5947	100/99	FAD-dependent oxidoreductase
30	WP_055469560	ctg1_5949	100/99	TetR/AcrR family transcriptional regulator
29	WP_055469559	ctg1_5950	100/99	ketopantoate reductase family protein
28	WP_055469558	ctg1_5951	100/99	class I SAM-dependent methyltransferase
27	WP_079080699	ctg1_5952	100/99	ABC transporter ATP-binding protein
26	WP_055469557	ctg1_5953	100/99	ABC transporter permease
25	WP_055469556	ctg1_5954	100/99	hypothetical protein
24	WP_055469555	ctg1_5955	100/99	MFS transporter
23	WP_030403672	ctg1_5956	100/100	thioesterase
22	WP_055469554	ctg1_5957	100/99	HAD-IIIC family phosphatase
21	WP_055469553	ctg1_5958	100/99	acyl-CoA dehydrogenase
20	WP_030403675	ctg1_5959	100/100	acyl carrier protein
19	WP_055469552	ctg1_5960	100/99	3-hydroxybutyryl-CoA dehydrogenase
18	WP_055469551	ctg1_5961	100/99	SDR family NAD(P)-dependent oxidoreductase
17	WP_055469550	ctg1_5962	100/99	type I polyketide synthase
16	WP_055469549	ctg1_5963	100/99	type I polyketide synthase
15	WP_055469548			type I polyketide synthase
14	WP_055469666			type I polyketide synthase
13	WP_055469547	ctg1_6852	100/99	helix-turn-helix transcriptional regulator
12	WP_055469546	ctg1_6853	100/99	propionyl-CoA carboxylase subunit beta
<u>11</u>	WP_055469545	ctg1_6854&6855	100/99	type I polyketide synthase

Supplementary Figure 4. Alignment of *Streptomyces* sp. F-5635 (ssp8) against butyrolactol A BGC from *Streptomyces* sp. NBRC $110030^{4.5}$. (a) is the dot-plotting alignment. The grey arrows in x-axis refer to the BGCs in ssp8 predicted by antiSMASH. The red dot-lines in plot show similar sequences. (b) is the sequence map alignment. (c) is the gene annotation. The data indicates cluster 22 and 28, and many small pieces in cluster 29 constitute one large cluster for synthesizing butyrolactol A.

Supplementary Figure 5. The screening result of Rsgri library. A total of 50 colonies growing on 100 µg/ml kanamycin plates were picked for sequencing, and it showed except RsgriM26 contains two decoy types, RsgriM26III and RsgriM26V, only one type of decoy recombinant strains can grow on high concentration of kanamycin. Single experiment was performed for library screening.

Supplementary Figure 6. Screening result of Rssp7 library. A total of 50 colonies growing on 100 μ g/ml kanamycin plate were picked for sequencing, and it showed only one type of decoy recombinant strains can grow on high concentration of kanamycin. Single experiment was performed for library screening.

Supplementary Figure 7. RT-PCR analysis of the expression levels of two BGCs, ssp7M10 and ssp7M24 in two TFD recombinants, Rssp7M10IV and Rssp7M24I. Corresponding regulatory DNAs are labelled in black boxes, and genes selected for RT-PCR analysis are underlined and numbered in red color. The internal reference gene is the *hrd*B homologous sigma factor. This data demonstrated that all four genes were very lowly expressed in the control group (Rssp7CK), while both of the testing groups (Rssp7M10IV and Rssp7M24I) showed high expression in the two genes from ssp7M24 (3 and 4) and low expression in the two genes from ssp7M10 (1 and 2). Duplicate experiments were performed for RT-PCR, and results were reproducible.

10 kb

Supplementary Figure 8. Proposed biosynthetic pathway for oxazolepoxidomycin A (2), oxazoltetraene acid (3), and oxazoltriene acid (4). Oxazolepoxidomycin A is synthesized by cluster 24 (ssp7M24, *oze*), a *trans*-AT PKS BGC in *Streptomyces* sp. F-4335, of which the core part from *ozeA* to *ozeN* spans 69 kb. A discrete *ozeO* encoding a missing methyltransferase is also proposed (Supplementary Table 6). Connected circles belong to same proteins as shown above, colors refer to different modules. Oxazoltetraene acid (3) and oxazoltriene acid (4) are proposed to be pathway intermediate and shunt product respectively, which are released from OzeC due to loose contact with downstream OzeG. F, formylation; C, condensation; A, adenylation; KS, ketosynthase; KS⁰, non-elongating KS; AT, acyltransferase; DH, dehydratase; KR, ketoreductase; ER, enoyl reductase; MT, methyltransferase; and the small unlabeled circles represent ACP, acyl carrier protein; or PCP, peptidyl carrier protein.

Supplementary Figure 9. Oxazolomycin family compounds⁶. Most of them contain a spirocyclic head and an oxazole tail. But the triene systems are always separated from the oxazole, which is the very difference to oxazolepoxidomycin A (2) discovered in this study.

	Hx ₉ P		Dx ₃ Q/H	
	*	+	*	+
Ery DH4	EHVVGGR	TLVPG	DAV	AQTLS
Bae DH13*	GHQFSGE	PVLVG	NSA	<u>Y L</u> A
Dif DH12*	DHLVFGK	PALMG	NSC	MSLG
Pks EI14	GHVFNNE	RVLVG	NSA	Y LA
Oze DH2	DHVVAGR	RVWPG	DGAI	LQAVV
Oze DH4	DHVIAGO	PVLAA	DGA1	LR <mark>TC</mark> H
Oze DH5	DHVVSGR	SILPG	DAAI	LH <mark>TVG</mark>
Oze DH7	DHVVHGR	PVLPG	DAAI	LQ <mark>TTG</mark>
Oze DH9	GHRVNGI	'LLL <mark>P</mark> A		
Oze DH11	GHRVGGR	ALLPG	DAAA	AVAAG

Supplementary Figure 10. Sequence alignment of DH domains⁶. Canonical DH domains contain motifs Hx₉P and Dx₃Q/H. Domains related to β , γ -double bond formation were reported to contain mutated amino acid residues, such as a DH-like domain (DH*) or enoyl-isomerase domain (EI) that doesn't contain the conserved Proline (black arrow) and also completely loses the Dx₃Q/H motif. However, for the β , γ -diene related dehydratase, Oze_DH2, the conserved amino acids are all at the exact positions. So there must be some other amino acid sequences that can also determine whether to catalyze β , γ -or canonical α , β -double bond formation. In contrast, Oze_DH4 is shown to be more like DH* or EI with both motifs mutated at the conserved points.

References

- 1. Weber, T. et al. Nucleic Acids Res. 43, W237-43 (2015).
- 2. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. & Hopwood, D.A. *Practical streptomyces genetics*, (John Innes Foundation Norwich, 2000).
- 3. Yang, K., Han, L., He, J., Wang, L. & Vining, L.C. Gene 279, 165-173 (2001).
- 4. Kotake, C. et al. J Antibiot (Tokyo) 45, 1442-50 (1992).
- 5. Harunari, E., Komaki, H. & Igarashi, Y. Beilstein J. Org. Chem. 13, 441-450 (2017).
- 6. Helfrich, E.J.N. & Piel, J. Nat. Prod. Rep. 33, 231-316 (2016).