

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Impact of renal dysfunction on the management and outcome of acute heart failure: results from the French prospective, multicenter, DeFSSICA survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022776
Article Type:	Research
Date Submitted by the Author:	03-Apr-2018
Complete List of Authors:	dos Reis, Dominique; Val de Grâce Medical School, Ministère de la Défense Fraticelli, Laurie; Centre Hospitalier de Vienne Lucien Hussel, RESCUe Network Bassand, Adrien; CHRU Nancy, Emergency Department; CHRU Nancy, CIC- P Manzo-Silberman, Stéphane; Hopital Lariboisiere, Department of Cardiology; INSERM UMR-S-942 Peschanski, Nicolas; Centre Hospitalier Eure-Seine, Emergency Department Charpentier, Sandrine; Hopital de Rangueil, Emergency Department; Universite Toulouse III Paul Sabatier Elbaz, Meyer; Hopital de Rangueil, Department of Cardiology Savary, Dominique; Annecy-Genevois, Emergency Department and Intensive Care Unit Bonnefoy-Cudraz, Eric; Höpital Cardiologique de Lyon, Department of Cardiology Laribi, Said; Centre Hospitalier Regional Universitaire de Tours, Emergency Department; INSERM UMR-S-942, Université Paris-Diderot, Sorbonne Henry, Patrick; Hopital Lariboisiere, Department of Cardiology; INSERM UMR-S-942, Université Paris-Diderot, Sorbonne Guerraoui, Abdallah; Groupement Hospitalier Edouard Herriot, Emergency Department; Universite Claude Bernard Lyon 1 Tazarourte, Karim; University Hospital, Hospices Civils, Lyon, Emergency Medicine; University Lyon 1, Health Services and Performance Research Laboratory, EA 7425 Chouihed, Tahar; CHRU Nancy, SAMU-SMUR-SAU; Institut Lorrain du Coeur et des Vaisseaux El Khoury, Carlos; Centre Hospitalier de Vienne Lucien Hussel, Emergency Department and RESCUE Network
Keywords:	acute heart failure, AHF, cardio-renal syndrome, CRS, real-life, renal dysfunction

SCHOLARONE[™] Manuscripts Page 1 of 42

2		
3	1	Impact of renal dysfunction on the management and outcome of acute heart failure: results
4 5	2	from the French prospective, multicenter, DeFSSICA survey
6		
7 8	3	Dominique dos Reis, MD ¹ , Laurie Fraticelli PhD ² , Adrien Bassand, MD ³ , Stéphane Manzo-
9		
10 11	4	Silberman, MD, PhD ⁴ , Nicolas Peschanski, MD, PhD ⁵ , Sandrine Charpentier, MD, PhD ⁶ ,
12 13	5	Meyer Elbaz, MD, PhD ⁷ , Dominique Savary, MD ⁸ , Eric Bonnefoy-Cudraz, MD, PhD ⁹ , Said
14 15	6	Laribi, MD, PhD ¹⁰ , Patrick Henry, MD, PhD ¹¹ , Abdallah Guerraoui, MD ¹² , Karim Tazarourte,
16 17 18	7	MD, PhD ¹³ , Tahar Chouihed, MD ¹⁴ , Carlos El Khoury, MD, PhD ¹⁵
19 20	8	¹ Val de Grâce Medical School, Ministère de la Défense, Paris, France (<u>d.dosreis@live.fr</u>);
21 22	9	² RESCUe Network, Lucien Hussel Hospital, Vienne, France (<u>l.fraticelli@resuval.fr</u>);
23 24 25	10	³ SAMU-SMUR-SAU Nancy, Hôpital Central, CHRU Nancy, France
25 26 27	11	(adrienbassand@gmail.com); ⁴ Lariboisière Hospital, Department of Cardiology, Paris, France
28 29	12	and INSERM UMR-S 942, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
30 31	13	(stephane.manzosilberman@aphp.fr); ⁵ Emergency Department, SAMU 27, Eure Seine
32 33	14	Evreux Hospital, France (<u>bansbari@gmail.com</u>); ⁶ Emergency Department, Rangueil
34 35	15	University Hospital, Toulouse, France; INSERM, U1027, Toulouse, France; Université
36 37 38	16	Toulouse III – Paul Sabatier, Toulouse, France (<u>charpentier.s@chu-toulouse.fr</u>); ⁷ Department
39 40	17	of Cardiology, Rangueil Hospital, Toulouse, France (<u>elbaz.m@chu-toulouse.fr</u>); ⁸ Emergency
41 42	18	Department and Intensive Care Unit, Annecy-Genevois, Metz-Tessy, France
43 44	19	(savaryd@wanadoo.fr); ⁹ Department of Cardiology, Hôpital Cardiologique de Lyon, Lyon,
45 46	20	France (<u>eric.bonnefoy-cudraz@chu-lyon.fr</u>); ¹⁰ Emergency Medicine Department, University
47 48	21	Hospital of Tours; INSERM UMR-S 942, Université Paris-Diderot, Sorbonne Paris Cité,
49 50 51	22	Paris, France (<u>s.laribi@chu-tours.fr</u>); ¹¹ Lariboisière Hospital, Department of Cardiology,
52 53	23	Paris, France; INSERM UMR-S 942, Université Paris-Diderot, Sorbonne Paris Cité, Paris,
54 55	24	France (patrick.henry@aphp.fr); ¹² Calydial Dialysis Department, Lucien Hussel Hospital,
56 57 58	25	Vienne, France (abdallah.guerraoui@calydial.org); ¹³ Emergency Department, Edouard
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open
	2
26	Herriot Hospital, Lyon, France; Univ. Lyon, Claude Bernard Lyon 1 University, HESPER EA
27	7425, Lyon, France (karim.tazarourte@chu-lyon.fr); ¹⁴ SAMU-SMUR-SAU Nancy, Hôpital
28	Central, CHRU Nancy, France; Centre d'Investigation Clinique Plurithématique 1433, Institut
29	Lorrain du Cœur et des Vaisseaux, Vandoeuvre-les-Nancy France; INSERM U1116,
30	Université de Lorraine, Nancy, France (<u>t.chouihed@gmail.com</u>); ¹⁵ Emergency Department
31	and RESCUe Network, Lucien Hussel Hospital, Vienne, France; Univ. Lyon, Claude Bernard
32	Lyon 1 University, HESPER EA 7425, Lyon, France (c.elkhoury@vienne.fr)
33	Corresponding author:
34	Carlos El Khoury, MD, PhD
35	Emergency Department and RESCUe Network, Lucien Hussel Hospital, Vienne, France;
36	Univ. Lyon, Claude Bernard Lyon 1 University, HESPER EA 7425, Lyon, France
37	Tél. +33 (0) 4 7431 3257; Mob. +33 (0) 6 2410 4024; email <u>c.elkhoury@resuval.fr</u>
38	Target journal & format: BMJ Open - Research Articles format (counts: abstract 300 words
39	[max 300]; 6 keywords; body 3513 words (max 4000); 74 references; 1 figure, 5 tables)
40	

60

1 2 3	41	Abstract (300 words [max 300])
4		
5 6 7	42	Objectives: Cardio-renal syndrome (CRS) is the combination of acute heart failure syndrome
, 8 9	43	(AHF) and renal dysfunction (creatinine clearance [CrCl] ≤ 60 mL/min). Real-life data were
10 11 12	44	used to compare the management and outcome of AHF with and without renal dysfunction.
13 14 15	45	Design: Prospective, multi-center.
16 17 18	46	Setting: Twenty-six academic, community, and regional hospitals in France.
19 20	47	Participants: 507 patients with AHF were assessed in two groups according to renal
21 22 23	48	function: Group 1 (CRS patients [CrCl ≤60 mL/min]: N=335) and Group 2 (AHF patients
24 25	49	with normal renal function [CrCl >60 mL/min]: N=172).
26 27 28	50	Results : Differences were observed (Group 1 versus Group 2) at admission for the incidence
29 30	51	of chronic heart failure (56.42% versus 47.67%), use of furosemide (60.9% versus 52.91%),
31 32	52	insulin (15.52% versus 9.3%), and amiodarone (14.33% versus 4.65%); additionally, more
33 34	53	patients in Group 1 carried a defibrillator (4.78% versus 0%), had \geq 2 hospitalizations in the
35 36 37	54	last year (15.52% versus 5.81%), and were under the care of a cardiologist (72.24% versus
38 39	55	61.63%). Clinical signs were broadly similar in each group. Brain-type natriuretic peptide
40 41	56	(BNP) and BNP prohormone were higher in Group 1 than Group 2 (1157.5 versus 534 ng/L
42 43	57	and 5120 versus 2513 ng/mL), and more patients in Group 1 were positive for troponin
44 45	58	(58.2% versus 44.19%), had cardiomegaly (51.04% versus 37.21%), and interstitial opacities
46 47 48	59	(60.3% versus 47.67%). The only difference in emergency treatment was the use of nitrates,
49 50	60	(higher in Group 1 [21.9% versus 12.21%]). In-hospital mortality and the percentage of
51 52	61	patients still hospitalized after 30 days was similar between groups, but median stay was
53 54 55 56 57	62	longer in Group 1 (8 days versus 6 days).

1		
2 3	63	Conclusions: Renal impairment in AHF should not limit the use of loop diuretics and/or
4	00	
5 6	64	vasodilators, but early assessment of pulmonary congestion and close monitoring of the
7 8	65	efficacy of conventional therapies is encouraged to allow rapid and appropriate
9 10	66	implementation of alternative therapies if necessary.
11		
12	67	
13 14		
15		
16	68	
17		
18	69	
19 20	00	
20		Keywords: acute heart failure, AHF, cardio-renal syndrome, CRS, real-life, renal dysfunction
22	70	Keywords: acute heart failure, AHF, cardio-renal syndrome, CRS, real-life, renal dysfunction
23		
24		
25	71	
26 27		
27		
29		
30		
31		
32		
33		
34 35		
35		
37		
38		
39		
40		
41 42		
43		
44		
45		
46		
47 48		
40 49		
50		
51		
52		
53		
54 55		
55 56		
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4	72	Strengths and limitations of this study
5 6	73	• Few large-scale, prospective, real-life data exist for the real-life management and
7 8 9	74	outcome of patients with cardio-renal syndrome compared to acute heart failure patients
10 11	75	without renal dysfunction.
12 13	76	• Cardio-renal syndrome is of prognostic importance.
14 15 16	77	• Only two groups were included (i.e. patients with or without kidney dysfunction), rather
17 18	78	than for each stage of chronic kidney disease although the creatinine clearance cut-off (60
19 20	79	mL/min) is commonly used.
21 22	80	• Glomerular filtration rate estimations were performed by local laboratories for each
23 24 25	81	center (i.e. a real-life situation), rather than standardized at a single center, although this
25 26 27	82	reflects the real-life situation.
28 29 30	83	
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58		reflects the real-life situation.

84 Background

85	Heart failure (HF) has an incidence of approximately 2% in adults in developed countries [1]
86	and mainly affects elderly patients, who may have multiple comorbidities. One such
87	comorbidity, impaired renal function, has been shown to be a stronger predictor of mortality
88	than impaired cardiac function [2 3] and can be present in 50% of patients treated for acute
89	HF (AHF) [4]. The prognostic importance of the association of renal dysfunction and AHF
90	has only been demonstrated recently, and cardio-renal syndrome (CRS), a complex
91	pathophysiological condition [5 6], is a combination of AHF syndrome and creatinine
92	clearance (CrCl) ≤60 mL/min.
93	Even moderate degrees of renal insufficiency are independently associated with an increased
94	risk of mortality from any cause in patients with HF [7] and CRS can lead to hesitancy among
95	some clinicians to implement appropriate treatments for HF, such as diuretics, due to the
96	effect that these may have to worsen the renal insufficiency. However, additional prospective
97	research is needed and current recommendations are to maintain such treatments in CRS
98	patients [8 9].
99	In this context, a sub-analysis was conducted using real-life data from the DeFSSICA study
100	(Description de la Filière de Soins dans les Syndromes d'Insuffisance Cardiaque Aigue), a
101	large-scale, prospective study that was conducted in patients with suspected dyspnea of
102	cardiac origin in emergency departments (EDs) throughout France [10]. The aim of this sub-

analysis was to compare the management and outcome of CRS patients to AHF patients

- 104 without renal dysfunction in France using novel real-life data, based on the hypothesis that
- 105 CRS and AHF patients would have the same outcome if the management of CRS was based
- 106 on that for AHF patients without renal dysfunction.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

110	This was a prospective, multi-center study in patients presenting with suspected heart failure
111	dyspnea in 26 EDs in academic, community, and regional hospitals (the DeFSSICA study) for
112	which the rationale and design are reported elsewhere [10]. The study received approval from
113	the National Commission for Liberties and Data Protection (Commission Nationale de
114	l'Informatique et des Libertés) (number DR-2014-543) and the Advisory Committee on the
115	Treatment of Information in the field of Health Research (Comité Consultatif sur le
116	Traitement de l'Information en matière de Recherche dans le Domaine de la Santé) (number
117	14-291). The study did not affect the patient-physician relationship or the patient's care and
118	follow-up.

Patient involvement

Methods

Study design

Written information regarding the objectives of the survey was provided to all patients prior to their inclusion. The research question was based on the prognostic importance of CRS and a need for real-life data on the management and outcome of CRS patients. Patients were not involved in the design, recruitment, and conduct of the study, and there is no plan to disseminate the results specifically to the patients who provided data used in this analysis.

125 Selection of participants

126 In the DeFSSICA survey, patients >18 years of age with dyspnea compatible with acute HF,

127 defined as dyspnea associated with peripheral edema and/or pulmonary crackles and/or

128 excessive weight gain and/or use of furosemide, were eligible for inclusion after ED

admission and prior to chest X-ray and laboratory tests. Patient enrollment occurred between

130 16 June 2014 and 7 July 2014.

131	In this analysis, only patients with known CrCl were included and were divided into those
132	with CrCl \leq 60 mL/min, i.e. renal dysfunction (Group 1) and those with CrCl $>$ 60 mL/min, i.e.
133	normal renal function (Group 2). Glomerular filtration rate (GFR) was calculated using either
134	the Cockroft-Gault, Modification of Diet in Renal Disease (MDRD) Study, or Chronic
135	Kidney Disease Epidemiology Collaboration (CKD-EPI) equations [11 12].

Study assessments

Patients' baseline characteristics, medical history, social factors, in-hospital diagnostic tests and treatment, destination after ED discharge, in-hospital mortality and length of stay were recorded by emergency physicians in a case report form, which was structured according to the progress of care. Cardiac sonographic evaluations were performed at the discretion of emergency physician. Abnormal chest X-ray was defined by the presence of cardiomegaly, and/or alveolar edema, and/or interstitial opacity, and/or pleural effusion. The choice of treatment was at the emergency physician's sole discretion, according to their usual practice. Final diagnosis of AHF was made by the emergency physician using a combination of a clinical history, abnormal chest X-ray, elevated brain-type natriuretic peptide (BNP) or BNP prohormone (proBNP), and echocardiogrpahic signs.

Although it was not possible to impose any randomization or blinding since this was an
observational study, any potential bias in the study assessments was minimized by the
provision of standard instructions to all participating physicians.

150 Data were entered into a secure database located at the Réseau Cardiologie Urgence
151 (RESCUe) (Cardiovascular Emergency Network) Coordination Center.

Statistical analysis

Page 9 of 42	2	BMJ Open
1		9
2 3	153	Medians and interquartile ranges (IQR) are provided for continuous variables, and numbers
4 5	154	and percentages for qualitative variables. Comparative analyses were performed using the $\chi 2$
6 7 8	155	or Fisher's test for binary variables and the Wilcoxon test for analysis of variance for
8 9 10	156	continuous variables [13]. The 5% level was used to identify differences between groups that
11 12	157	were of statistical significance (p<0.05). Statistical evaluations were performed using R
13 14	158	Statistical Software (Version 3.4.1).
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	159	Statistical Software (Version 3.4.1).
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Results

A total of 64,281 ED consultations took place during the survey period and 699 patients with dyspnea of cardiac origin were included in DEFSSICA study. Of these, 537 patients were identified as having AHF, of whom only those with known CrCl (N=507) were included in

this analysis.

Patients in Group 1 (N=335 [66.1%]) had renal dysfunction (CrCl $\leq 60 \text{ mL/min}$) and

comprised the population with CRS. In this group, 99 patients (29.6%) had severe renal

dysfunction (Stage 4 or 5: CrCl: <30 mL/min) and 120 (35.8%) had a known history of

chronic renal failure. All patients in Group 2 (N=172 [33.9%]) had normal renal function chrome re... (CrCl >60 mL/min). Patient disposition is presented in Figure 1.

The baseline characteristics of patients in Group 1 and Group 2 are shown in Table 1. There was no difference between Group 1 and Group 2 in age (median [IQR]: 84 [88-79] years and 82 [75-88] years; p=0.0864) or sex distribution (42.99% male in Group 1 and 44.19% male in Group 2; p=0.8699).

As well as the higher incidence of chronic renal failure in Group 1, patients with CRS were

more likely to have chronic HF (56.42% in Group 1 versus 47.67% in Group 2; p=0.0490).

There was no difference in the incidence of any other comorbidity between groups. Patients in

Group 1 were more likely than patients in Group 2 to receive furosemide (60.9% versus

52.91%; p=0.0498), insulin (15.52% versus 9.3%; p=0.0272) and amiodarone (14.33% versus

1		
2 3	182	4.65%; p=0.0004) but there were no other differences between groups for medications.
4 5 6	183	Additionally, patients in Group 1 were more likely to carry a defibrillator (4.48% versus 0%;
7 8	184	p=0.0018), to have been hospitalized for HF at least twice during the last year (15.52% versus
9 10	185	8.81%; p=0.0031), and to be under the care of a cardiologist (72.24% versus 61.63%;
11 12	186	p=0.0198), although there were no differences in the incidence of pacemakers between
13 14 15	187	groups.
16 17	188	Patients in Group 1 were more likely to have a housekeeper (31.13% versus 23.26%;
18 19	189	p=0.0170) and nurse (29.25% versus 20.93%; p=0.0359) but there was no difference between
20 21 22	190	groups regarding family support, known cognitive impairment, or the incidence of being
23 24	191	bedridden.
25 26 27 28	192	Hospitalization and clinical status
29 30	193	The only difference in clinical signs between the groups was a higher incidence of inspiratory
31 32 33	194	retraction in Group 1 than Group 2 (31.94% versus 22.67%; p=0.0229) (Table 2).
34 35	195	Vital signs were generally similar in Group 1 and Group 2, and there were no significant
36 37	196	differences between groups in their means of transport to the ED (most commonly by
38 39 40	197	personal means [45.76% overall]), Killip status (most patients in each group had a Killip
40 41 42	198	status of 2 [53.06% overall], and signs of cardiogenic shock (2.96% overall).
43 44 45 46	199	Early management and diagnosis
47 48	200	At admission, blood samples from all patients underwent biological analysis (Table 3). As
49 50	201	well as the differences between groups for CrCl, significant differences were observed for
51 52	202	BNP, which was 2.2-fold higher in Group 1 than Group 2 (1157.5 ng/L versus 534 ng/L;
53 54	203	p=0.0048), and proBNP, which was 2.0-fold higher in Group 1 than Group 2 (5120 ng/L $$
55 56 57 58	204	versus 2513 ng/L; p<0.0001). Additionally, troponin was more likely to be positive in patients
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

205	in Group 1 than Group 2 (58.21% versus 44.19%; p=0.0011). There were no differences
206	between groups for sodium, potassium, or hemoglobin.
207	Most patients underwent under an electrocardiogram (98.61% overall) chest X-ray (94.87%
208	overall). Patients in Group 1 were more likely than those in Group 2 to have left bundle
209	branch block (19.1% versus 12.79%; p=0.0461), cardiomegaly (51.04% versus 37.21%;
210	p=0.0144), and interstitial opacities (60.3% versus 47.67%; p=0.0199).
211	Echography was performed for 16.17% patients overall, more often by a cardiologist (57.32%
212	overall) than by an emergency physician (42.68% overall). There was no significant
213	difference between groups in left ventricular ejection fraction.
214	Emergency treatments
215	Patients in Group 1 were more likely than Group 2 to receive emergency treatment of nitrates
216	(21.19% versus 12.21%; p=0.0057), but there were no group differences in other emergency
217	measures (furosemide, oxygen, anticoagulant, continuous positive airway pressure, non-
218	invasive ventilation, anti-arrythmics, ionotropic agents, tracheal intubation) (Table 4). Overall
219	6.31% of patients received no emergency treatment, with no difference between groups.
220	Outcomes
221	Precipitating factors were not determined in 42.21% of cases overall, with no overall
222	difference between groups (Table 5). The most common determined precipitating factors were
223	infection (25.25% overall), arrythmia (15.19% overall), and hypertension (10.65% overall).
224	Diabetes decompensation was considered to be the precipitating factor for AHF in 2.99% of
225	patients in Group 1 but none in Group 2 (p=0.0110). There were no other group differences in
226	precipitating factors.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

З

BMJ Open

1		
4 5 6	228	
0 7 8	229	:
9		
10 11	230]
12 13	231	i
14 15	232]
16 17	233	,
18		
19 20	234	
21 22		
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
34		
35 36		
37		
38 39		
40		
41 42		
43		
44 45		
46		
47 48		
49 50		
50 51		
52		
53 54		
55		
56 57		
58		
59 60		

- cardiology [28.01% overall]), and the discharge destination was deemed appropriate for a
- similar number of patients in each group (75.35% overall).
- Neither in-hospital mortality (5.92% overall) nor the percentage of patients still hospitalized
- Je sig

 gth of stay w.

 J27) (Table 5).

 at 30 days (6.31% overall) were significantly different between Group 1 and Group 2.
- However, the median length of stay was 2 days longer in Group 1 than in Group 2 (8 days
- versus 6 days; p=0.0327) (Table 5).

235 Discussion

236	The DeFSSICA study was a large-scale, prospective, real-life study conducted following
237	admission of AHF patients to EDs throughout France. As such, the data are primarily
238	applicable to the French population, although wider extrapolation is possible due to
239	coherences with similar studies is other geographical regions. The overall DeFSSICA study
240	data are presented elsewhere [10] and the present sub-analysis reports novel real-life data
241	from sub-groups of AHF patients from the DeFSSICA study with or without concomitant
242	renal dysfunction, based on a CrCl threshold of 60 mL/min. The results show that AHF
243	admissions to EDs are often associated with renal impairment, with almost two-thirds of AHF
244	admissions having CrCl \leq 60 mL/min. This prevalence is comparable to published data from
245	France [14], Italy [15 16], Poland [17], Spain [18 19], Taiwan [20], and the USA [21-23], as
246	well as from pan-European [24 25] and wider international studies [26]. In these studies [14-
247	26], the prevalence of renal impairment on admission of AHF patients ranged from 54.5% to
248	64%, including 12.4 to 27.4% of patients with severe renal insufficiency. Patients with a
249	history of chronic renal failure ranged from 21.4% to 32.5%, which is also comparable to the
250	findings of the DeFSSICA survey. However, it should be noted that impaired cardiac function
251	leads to reduced renal perfusion, which could be in addition to an underlying chronic renal
252	insufficiency or not, and so the proportion of CRS patients is likely to be over-estimated due
253	to a possible associated transient increase in serum creatinine at admission (GFR was
254	calculated using the Cockroft-Gault, MDRD, or CKD-EPI equations). Additionally, increased
255	abdominal pressure at admission that can result from ascites can lead to a renal vein
256	compression and reduced GFR at admission, which could also result in elevated serum
257	creatinine. It is likely, therefore, that a proportion of acute kidney injury diagnosed at
258	admission based on serum creatinine could be due to temporary changes in perfusion
259	pressures rather than kidney damage per se; these functional reductions in GFR would be

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

260	expected to recover once normal hemodynamic function is restored. It is therefore important
261	to use biomarkers to provide a more precise assessment of kidney function than serum
262	creatinine [27 28]. Equations to estimate GFR have replaced 24-hour creatinine clearance
263	measurement in EDs because of the difficulty of urine collection. Creatinine clearance, urea
264	clearance, net sodium excretion, and fractional excretion of sodium calculated over 6 hours
265	can be used to evaluate kidney function and to define the natriuretic response precisely [29].
266	Conversely, the proportion of patients with a history of chronic renal injury is likely to be
267	under-estimated due to memory bias.
268	The overall baseline characteristics, clinical status, biological and diagnostic tests, emergency

treatment, and outcome of the patients included in this sub-analysis was similar to the overall population in the DeFSSICA study; however, some differences were observed between AHF patients with and without renal dysfunction. As would be expected due to reduced kidney excretion [30], and as described elsewhere [31-34], BNP and pro-BNP levels were higher in patients with CRS than in AHF patients with normal renal function and the percentage of troponin positive patients was also higher in the CRS group. These biomarkers probably reflect the congestion status and remain formally recommended for the management of AHF patients, especially for their prognostic value. The appropriate use of loop diuretics and/or vasodilators [35] in the CRS group, as well as in the AHF group without renal dysfunction, may explain in part the similar intra-hospital mortality rate in each group and the similar proportion of AHF patients with and without renal dysfunction who were still in hospital at 30 days after ED admission. Importantly, therefore, the prognosis of CRS patients was not significantly different using loop diuretics and/or nitrates to those without renal dysfunction. As such, it appears that the correct congestive assessment is vital in this complex clinical situation with concomitant failures in two organs.

284	Worsening renal function (WRF), which leads to a progressive loss of kidney function [30], is
285	a factor for poor long-term prognosis [21 36 37] and Ferreira et al [2] showed that all
286	formulae used to estimate renal function showed a strong and independent association with
287	cardiovascular mortality, with eGFR or CrCl rates under 60 mL/min being associated with
288	increasing cardiovascular mortality. As such, the use of loop diuretics has been considered to
289	be deleterious to long-term renal function, probably since impaired renal function can have
290	etiologies other than those related to congestion. However, despite WRF, Testani et al have
291	recently shown an improvement in prognosis in AHF patients when loop diuretics are used
292	[9]. Moreover, for patients treated for AHF, kidney injury appears to be more common in
293	those with an altered ejection fraction than in those with a preserved ejection fraction [37].
294	However, despite these differences in pathophysiology and etiology between AHF patients
295	with and without renal dysfunction, patient outcome is similar [38 39] meaning that renal
296	dysfunction does not have an impact on outcome in AHF patients. Overall, the results of the
297	sub-analysis of the DeFSSICA survey data for AHF patients with and without renal
298	dysfunction support this conclusion. Although a small but statistically significant increase in
299	the length of hospital stay from 6 to 8 days was observed in CRS patients, who showed a
300	greater incidence of certain co-morbidities (inspiratory retraction, left bundle branch block,
301	cardiomegaly and interstitial opacities), there was no difference in in-hospital mortality or in
302	the number of patients still hospitalized at 30 days post-admission. Additionally, there was no
303	difference in ejection fraction in CRS patients compared to AHF patients with normal renal
304	function.
305	Recent publications suggest that appropriate, fast-acting decongesting therapies, as
505	Recent publications suggest that appropriate, fast-acting decongesting therapies, as
306	recommended by international guidelines, improve the prognosis for AHF patients as long as

- 307 such therapies are introduced early, even if renal impairment develops at the same time [8].
- 308 Furthermore, it appears that renal impairment in AHF patients does not have an adverse

Page 17 of 42

BMJ Open

	309	impact on patient prognosis provided that the congestion is improved. Renal function should
	310	be assessed according to the level of patient congestion, and so tools for the assessment of
	311	congestion, such as the BNP or proBNP biomarkers [40], lung ultrasound (LUS) B-lines (38),
)	312	or the assessment of the dimensions and compliance of the inferior vena cava are vital. Novel
 <u>2</u>	313	biomarkers such as urinary angiotensinogen [41], neutrophil gelatinase-associated lipocalin
3 1	314	[42 43], kidney injury molecule-1 [44], interleukin-18 [45 46], N-acetyl-β-d-glucosaminidase
5	315	[47], cystatine C [48 49] or a combination of some or all of these could also be used to
3	316	improve the diagnosis of acute kidney injury. Furthermore, the assessment of diuresis and
) 	317	natriuresis, which reflect both glomerular and tubular function, could offer a more successful
1 2 8	318	strategy to achieve decongestion [47 50 51]. Ferreira et al [52] and Palazzuoli et al [53] have
, 1 5	319	recently demonstrated that the lack of a diuretic response is a more important prognostic
5	320	factor than the use of loop diuretics. This suggests a new diagnostic challenge, i.e. to assess
3	321	the patient's response to diuretics [54-57]. However, despite some proposals to define diuretic
)	322	resistance (e.g. persistent congestion despite adequate and escalating doses of diuretic with
2 3	323	>80 mg furosemide/day, amount of sodium excreted as a percentage of filtered load <0.2%,
+ 5	324	failure to excrete \geq 90 mmol of sodium within 72 hours of a 160 mg oral furosemide dose
, 7 3	325	given twice daily) and the means of evaluation (e.g. weight loss per unit of 40 mg furosemide
)	326	[or equivalent], net fluid loss/mg of loop diuretic [40 mg of furosemide or equivalent] during
 <u>2</u>	327	hospitalization, natriuretic response to furosemide as the ratio of urinary sodium to urinary
3	328	furosemide) [58], there is currently no consensus for commonly accepted standards.
5	329	Additionally, it is important that any alteration of GFR should be interpreted in the context of
, 3 9	330	the deterioration of the clinical situation.
) 	331	Another alternative therapy in this challenging clinical situation is the use of
<u>2</u> 3		
1 5	332	mineralocorticoid antagonists, which have been associated with an improvement in both
5 7	333	congestion [59 60] and mortality in HF patients [61 62], although the ATHENA-HF trial
3		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3		
4		
5		
6		
3 4 5 6 7		
8		
9		
10		
11		
12		
13		
14		
15		
16 17		
17		
18		
19 20		
20		
21		
22		
23		
24		
25		
26		
27		
28		
20 21 22 23 24 25 26 27 28 29 30		
30 21		
31		
32		
33 34		
35 36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

3	34	results appear to cast doubt on these favorable conclusions [63]. Combined therapies have
3	35	also been evaluated, including hypotonic saline serum in combination with diuretic therapy to
3	36	improve diuresis [64 65] and mannitol in combination with furosemide [58], although their
3	37	benefit in diuretic-resistant patients is not confirmed. The addition of metozalone to
3	38	furosemide could be of interest because of its capacity to produce diuresis even in patients
3	39	with low GFR [66 67], although metozalone is not yet marketed in France. In a recent meta-
3	40	analysis, Wang and al have shown that tolvaptan, an oral vasopressin V ₂ -receptor antagonist,
3	41	may also represent an alternative therapy in WRF [68], and several studies have demonstrated
3	42	that it can decrease the rate of WRF in patients treated with furosemide [69 70]. Finally,
3	43	venous ultrafiltration allows a controlled hydrosodic depletion by subtracting isotonic fluid
3	44	while diuretics allow the subtraction of hypotonic fluid. Other studies also suggest that the
3	45	effectiveness of ultrafiltration is associated with a reduction in inflammatory cytokines [71].
3	46	These and other approaches in patients with cardiac insufficiency and resistance to diuretics
3	47	have recently been reviewed [58].
3	48	The CRS analysis using data from the DeFSSICA survey has some limitations. First, only two
3	49	groups have been analyzed (i.e. patients with or without kidney dysfunction), although
3	50	chronic kidney disease is characterized by 5 stages. However, the CrCl threshold of 60
3	51	mL/min is commonly used [2 34 72-74] and is considered to be satisfactory for this analysis,
3	52	especially since the small number of patients would not allow a thorough analysis for five
3	53	sub-categories. The choice of a CrCl threshold of 30 mL/min could have led to a greater
3	54	chance of obtaining a significant difference between groups in terms of outcome, but the 60
3	55	mL/min cut-off is more widely used. Second, since the data used are observational, it was not
3		
	56	possible to impose any randomization or blinding, and the number of patients in each group
	56 57	possible to impose any randomization or blinding, and the number of patients in each group was not balanced. Third, GFR assessments were performed by local laboratories for each

358 center, rather than standardized at a single center, and repeated measures of GFR could have

BMJ Open

improved their accuracy and comparability. The use of different formulae to evaluate CrCl in a chronic disease state but in an acute context without knowledge of the baseline value reflects the real-life situation. While potentially problematic, with the possibility of some incorrect classification of CKD, numerous previous studies of the impact of renal failure in AHF have used a similar approach [2 34 72]. Finally, it was not possible to sub-classify different types of CRS is this analysis since Kidney Disease Improving Global Outcomes (KDIGO) data were not collected.

Conclusion

These real-life data suggested that CRS patients have the same outcome as AHF patients without renal dysfunction when the treatment of the former group is modeled on that for the latter group. This finding should not limit the use of loop diuretics and/or vasodilators as long as the patient presents congestion as assessed using biomarkers and ultrasound. The use of diuretic treatment should be based on a more rapid diagnosis of congestion and evaluation of an inadequate response to diuretics, allowing the rapid and appropriate implementation of 1 alternative therapies if necessary.

375	Funding
376	This work was supported by Novartis France, but the Sponsor was not involved in the study
377	protocol, methods, or choice of centers.
378	Competing interests
379	CEK and has received grants from Novartis (other than this work), Daiichy Sankyo, and
380	Boehringer Ingleheim.
381	NP reports has acted as a paid consultant for Vygon SA.
382	SC reports personal fees from Novartis (other than this work).
383	LF is an employee of RESCUe Network.
384	DdR, AB, SMZ, ME, DS, EBC, SL, PH, AG, KT and TC have no competing interests.
385	Authors' contributions
386	SMZ, NP, SC, ME, DS, EBC, SL, PH, TC, and CEK conceived the study, designed the trial,
387	and obtained research funding. TC and CEK supervised the conduct of the trial and data
388	collection. NP, SC, DS and TC undertook recruitment of participating centers and patients. LF
389	managed the data, including quality control, provided statistical advice and analyzed the data.
390	DdR, LF, AB, AG, KT, TC and CEK drafted the manuscript, and all authors contributed
391	substantially to its revision. All authors reviewed and approved the final version of the
392	manuscript and are accountable for its content.
393	Consent for publication
394	Not applicable since no individual patient is identified.

BMJ Open

Availability of data and material No additional data available. Acknowledgements The authors thank the emergency physicians and cardiologists and patients who participated in this survey at the following centers: CHU Toulouse, CHU Rouen, CHU Clermont Ferrand, CHU Nancy, CHR Metz-Thionville-Hôpital de Mercy, Hôpital Lariboisière-Paris, CHR Annecy Genevois, CHU Lyon-Hôp, Edouard Herriot, CHRU de Lille, Chu De Caen, CHU Nice-Hôpital Saint-Roch, CHU de Grenoble, Hôpital Bicêtre-Paris, Hôpital St Louis Paris, CH I Meulan, CH d'Avignon, CH Jacques Lacarin-Vichy, CH d'Aix En Provence, CH Fleyriat -Bourg En Bresse, CH Bourgoin Jallieu, CHU de Saint Etienne, CH du Forez Montbrison-Feurs, CH de Firminy, CH Villefranche-Sur-Saône, CHU De Brest, CH Henri Mondor, CH de Vienne. The authors also thank the RESCUe Network for the practical implementation of this survey and statistical analysis and Novartis France for its financial support. Dr Andrew Lane (Lane Medical Writing), funded by the RESCUe network, provided professional medical writing assistance in the preparation and development of the manuscript in accordance with the European Medical Writers Association guidelines and Good Publication Practice.

References

415 1. Sayago-Silva I, Garcia-Lopez F, Segovia-Cubero J. Epidemiology of heart failure in Spain
416 over the last 20 years. Rev Esp Cardiol (Engl Ed) 2013;66(8):649-56 doi:
417 10.1016/j.rec.2013.03.012.

2. Ferreira JP, Girerd N, Pellicori P, et al. Renal function estimation and Cockroft-Gault formulas for predicting cardiovascular mortality in population-based, cardiovascular risk, heart failure and post-myocardial infarction cohorts: The Heart 'OMics' in AGEing (HOMAGE) and the high-risk myocardial infarction database initiatives. BMC Med 2016;14(1):181 doi: 10.1186/s12916-016-0731-2.

- 3. Hillege HL, Girbes AR, de Kam PJ, et al. Renal function, neurohormonal activation, and
 survival in patients with chronic heart failure. Circulation 2000;102(2):203-10
- 425 4. Damman K, Valente MA, Voors AA, et al. Renal impairment, worsening renal function,
 426 and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J
 427 2014;35(7):455-69 doi: 10.1093/eurheartj/eht386.
- 428 5. Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol
 429 2008;52(19):1527-39 doi: 10.1016/j.jacc.2008.07.051.
- 6. Ronco C, House AA, Haapio M. Cardiorenal syndrome: refining the definition of a
 complex symbiosis gone wrong. Intensive Care Med 2008;34(5):957-62 doi:
 10.1007/s00134-008-1017-8.
- 433 7. Dries DL, Exner DV, Domanski MJ, et al. The prognostic implications of renal
 434 insufficiency in asymptomatic and symptomatic patients with left ventricular systolic
 435 dysfunction. J Am Coll Cardiol 2000;35(3):681-9.

BMJ Open

436	8. Hanberg JS, Tang WHW, Wilson FP, et al. An exploratory analysis of the competing
437	effects of aggressive decongestion and high-dose loop diuretic therapy in the DOSE
438	trial. Int J Cardiol 2017; 241 :277-82 doi: 10.1016/j.ijcard.2017.03.114.
439	9. Testani JM, Ter Maaten JM. Decongestion in Acute Heart Failure: Does the end justify the
440	means? JACC Heart Fail 2016;4(7):589-90 doi: 10.1016/j.jchf.2016.03.024.
441	10. Chouihed T, Manzo-Silberman S, Peschanski N, et al. Management of suspected acute
442	heart failure dyspnea in the emergency department: results from the French
443	prospective multicenter DeFSSICA survey. Scand J Trauma Resusc Emerg Med
444	2016; 24 (1):112 doi: 10.1186/s13049-016-0300-x.
445	11. National Institute of Diabetes and Digestive and Kidney Diseases. Estimating glomerular
446	filtration rate (GFR) 2015. <u>https://www.niddk.nih.gov/health-information/health-</u>
447	communication-programs/nkdep/lab-evaluation/gfr/estimating/Pages/estimating.aspx.
448	Accessed 29 March 2018.
449	12. Botev R, Mallie JP, Couchoud C, et al. Estimating glomerular filtration rate: Cockcroft-
450	Gault and modification of diet in renal disease formulas compared to renal inulin
451	clearance. Clin J Am Soc Nephrol 2009;4(5):899-906 doi: 10.2215/CJN.05371008.
452	13. Ancelle T. Statistique Epidémiologique. 3rd ed. Paris: Maloine, 2011.
453	14. Logeart D, Isnard R, Resche-Rigon M, et al. Current aspects of the spectrum of acute
454	heart failure syndromes in a real-life setting: the OFICA study. Eur J Heart Fail
455	2013;15(4):465-76 doi: 10.1093/eurjhf/hfs189.

456 15. Oliva F, Mortara A, Cacciatore G, et al. Acute heart failure patient profiles, management
457 and in-hospital outcome: results of the Italian Registry on Heart Failure Outcome. Eur
458 J Heart Fail 2012;14(11):1208-17 doi: 10.1093/eurjhf/hfs117.

- 459 16. Tavazzi L, Maggioni AP, Lucci D, et al. Nationwide survey on acute heart failure in
 460 cardiology ward services in Italy. Eur Heart J 2006;27(10):1207-15 doi:
 461 10.1093/eurheartj/ehi845.
- 462 17. Straburzynska-Migaj E, Kaluzna-Oleksy M, Maggioni AP, et al. Patients with heart
 463 failure and concomitant chronic obstructive pulmonary disease participating in the
 464 Heart Failure Pilot Survey (ESC-HF Pilot) Polish population. Arch Med Sci
 465 2015;11(4):743-50 doi: 10.5114/aoms.2014.47878.
- 466 18. Conde-Martel A, Formiga F, Perez-Bocanegra C, et al. Clinical characteristics and one467 year survival in heart failure patients more than 85 years of age compared with
 468 younger. Eur J Intern Med 2013;24(4):339-45 doi: 10.1016/j.ejim.2013.01.005.
- 469 19. Llorens P, Escoda R, Miró O, et al. Characteristics and clinical course of patients with
 470 acute heart failure and the therapeutic measures applied in Spanish emergency
 471 departments: based on the EAHFE registry (Epidemiology of Acute Heart Failure in
 472 Emergency Departments). Emergencias 2015;27:11-22.
- 20. Chang H-Y, Wang C-C, Wu Y-W, et al. One-Year Outcomes of Acute Decompensated
 Systolic Heart Failure in Taiwan: Lessons from TSOC-HFrEF Registry Acta
 Cardiologica Sinica 2017;33(2):127-38.
- 476 21. Abraham WT, Fonarow GC, Albert NM, et al. Predictors of in-hospital mortality in
 477 patients hospitalized for heart failure: insights from the Organized Program to Initiate

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

478	Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J
479	Am Coll Cardiol 2008; 52 (5):347-56 doi: 10.1016/j.jacc.2008.04.028.
480	22. Adams KF, Jr., Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients
481	hospitalized for heart failure in the United States: rationale, design, and preliminary
482	observations from the first 100,000 cases in the Acute Decompensated Heart Failure
483	National Registry (ADHERE). Am Heart J 2005; 149 (2):209-16 doi:
484	10.1016/j.ahj.2004.08.005.
464	10.1010/J.allJ.2004.08.005.
485	23. Diercks DB, Fonarow GC, Kirk JD, et al. Risk stratification in women enrolled in the
486	Acute Decompensated Heart Failure National Registry Emergency Module
487	(ADHERE-EM). Acad Emerg Med 2008;15(2):151-8 doi: 10.1111/j.1553-
488	2712.2008.00030.x.
489	24. Cleland JG, Swedberg K, Follath F, et al. The EuroHeart Failure survey programme a
490	survey on the quality of care among patients with heart failure in Europe. Part 1:
491	patient characteristics and diagnosis. Eur Heart J 2003;24(5):442-63
492	25. Nieminen MS, Brutsaert D, Dickstein K, et al. EuroHeart Failure Survey II (EHFS II): a
493	survey on hospitalized acute heart failure patients: description of population. Eur
494	Heart J 2006; 27 (22):2725-36 doi: 10.1093/eurheartj/ehl193.
495	26. Follath F, Yilmaz MB, Delgado JF, et al. Clinical presentation, management and
496	outcomes in the Acute Heart Failure Global Survey of Standard Treatment (ALARM-
497	HF). Intensive Care Med 2011; 37 (4):619-26 doi: 10.1007/s00134-010-2113-0.
498	27. Molitoris BA, Levin A, Warnock DG, et al. Improving outcomes of acute kidney injury:
499	report of an initiative. Nat Clin Pract Nephrol 2007;3(8):439-42 doi:
500	10.1038/ncpneph0551.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

501	28. Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J
502	Am Soc Nephrol 2009; 20 (3):672-9 doi: 10.1681/ASN.2008070669.
503	29. Testani JM, Hanberg JS, Cheng S, et al. Rapid and Highly Accurate Prediction of Poor
504	Loop Diuretic Natriuretic Response in Patients With Heart Failure. Circ Heart Fail
505	2016;9(1):e002370 doi: 10.1161/CIRCHEARTFAILURE.115.002370.
506	30. Tuegel C, Bansal N. Heart failure in patients with kidney disease. Heart 2017 doi:
507	10.1136/heartjnl-2016-310794.
508	31. Anwaruddin S, Lloyd-Jones DM, Baggish A, et al. Renal function, congestive heart
509	failure, and amino-terminal pro-brain natriuretic peptide measurement: results from
510	the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study. J
511	Am Coll Cardiol 2006;47(1):91-7 doi: 10.1016/j.jacc.2005.08.051.
512	32. Group NW, Wu AH, Jaffe AS, et al. National Academy of Clinical Biochemistry
513	laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic
514	peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute
515	coronary syndromes and heart failure. Clin Chem 2007;53(12):2086-96 doi:
516	10.1373/clinchem.2007.095679.
517	33. Lamb EJ, Vickery S, Price CP. Amino-terminal pro-brain natriuretic peptide to diagnose
518	congestive heart failure in patients with impaired kidney function. J Am Coll Cardiol
519	2006;48(5):1060-1; author reply 61 doi: 10.1016/j.jacc.2006.06.019.
520	34. Vickery S, Price CP, John RI, et al. B-type natriuretic peptide (BNP) and amino-terminal
521	proBNP in patients with CKD: relationship to renal function and left ventricular
522	hypertrophy. Am J Kidney Dis 2005; 46 (4):610-20 doi: 10.1053/j.ajkd.2005.06.017.

BMJ Open

523	35. Peacock WF, Emerman C, Costanzo MR, Diercks DB, Lopatin M, Fonarow GC. Early
524	vasoactive drugs improve heart failure outcomes. Congest Heart Fail 2009;15(6):256-
525	64 doi: 10.1111/j.1751-7133.2009.00112.x.
526	36. Damman K, Navis G, Voors AA, et al. Worsening renal function and prognosis in heart
527	failure: systematic review and meta-analysis. J Card Fail 2007;13(8):599-608 doi:
528	10.1016/j.cardfail.2007.04.008.
529	37. McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW. Renal insufficiency and heart
530	failure: prognostic and therapeutic implications from a prospective cohort study.
531	Circulation 2004; 109 (8):1004-9 doi: 10.1161/01.CIR.0000116764.53225.A9.
532	38. Abebe TB, Gebreyohannes EA, Tefera YG, et al. Patients with HFpEF and HFrEF have
533	different clinical characteristics but similar prognosis: a retrospective cohort study.
534	BMC Cardiovasc Disord 2016; 16 (1):232 doi: 10.1186/s12872-016-0418-9.
535	39. Borlaug BA, Redfield MM. Diastolic and systolic heart failure are distinct phenotypes
536	within the heart failure spectrum. Circulation 2011;123(18):2006-13; discussion 14
537	doi: 10.1161/CIRCULATIONAHA.110.954388.
538	40. Gargani L, Frassi F, Soldati G, et al. Ultrasound lung comets for the differential diagnosis
539	of acute cardiogenic dyspnoea: a comparison with natriuretic peptides. Eur J Heart
540	Fail 2008;10(1):70-7 doi: 10.1016/j.ejheart.2007.10.009.
541	41. Yang X, Chen C, Tian J, et al. Urinary Angiotensinogen Level Predicts AKI in Acute
542	Decompensated Heart Failure: A Prospective, Two-Stage Study. J Am Soc Nephrol
543	2015; 26 (8):2032-41 doi: 10.1681/ASN.2014040408.

544	42. Elsharawy S, Raslan L, Morsy S, et al. Plasma neutrophil gelatinase-associated lipocalin
545	as a marker for the prediction of worsening renal function in children hospitalized for
546	acute heart failure. Saudi J Kidney Dis Transpl 2016;27(1):49-54 doi: 10.4103/1319-
547	2442.174071.
548	43. Ito M, Doi K, Takahashi M, et al. Plasma neutrophil gelatinase-associated lipocalin
549	predicts major adverse cardiovascular events after cardiac care unit discharge. J
550	Cardiol 2016;67(2):184-91 doi: 10.1016/j.jjcc.2015.05.010.
551	44. Medic B, Rovcanin B, Basta Jovanovic G, et al. Kidney Injury Molecule-1 and
552	Cardiovascular Diseases: From Basic Science to Clinical Practice. Biomed Res Int
553	2015; 2015 :854070 doi: 10.1155/2015/854070.
554	45. Les biomarqueurs en médécine d'urgence [French]. 1 ed. Paris: Springer-Verlag, 2012.
555	46. Taub PR, Borden KC, Fard A, et al. Role of biomarkers in the diagnosis and prognosis of
556	acute kidney injury in patients with cardiorenal syndrome. Expert Rev Cardiovasc
557	Ther 2012; 10 (5):657-67 doi: 10.1586/erc.12.26.
558	47. Verbrugge FH, Dupont M, Steels P, et al. The kidney in congestive heart failure: 'are
559	natriuresis, sodium, and diuretics really the good, the bad and the ugly?'. Eur J Heart
560	Fail 2014; 16 (2):133-42 doi: 10.1002/ejhf.35.
561	48. Lassus JP, Harjola VP, Peuhkurinen K, et al. Cystatin C, NT-proBNP, and inflammatory
562	markers in acute heart failure: insights into the cardiorenal syndrome. Biomarkers
563	2011; 16 (4):302-10 doi: 10.3109/1354750X.2011.555822.

BMJ Open

56	4 49. Legrand M, De Berardinis B, Gaggin HK, et al. Evidence of uncoupling between renal
56	5 dysfunction and injury in cardiorenal syndrome: insights from the BIONICS study.
56	6 PloS one 2014;9(11):e112313 doi: 10.1371/journal.pone.0112313.
56	50. Metra M, Davison B, Bettari L, et al. Is worsening renal function an ominous prognostic
56	8 sign in patients with acute heart failure? The role of congestion and its interaction with
56	9 renal function. Circ Heart Fail 2012; 5 (1):54-62 doi:
57	0 10.1161/CIRCHEARTFAILURE.111.963413.
57	1 51. Mullens W, Verbrugge F, Nijst P, et al. Renal sodium avidity in heart failure: from
57	2 pathophysiology to treatment strategies. European Heart Journal 2017 doi:
57	3 10.1093/eurheartj/ehx035.
57	52. Ferreira JP, Girerd N, Bettencourt Medeiros P, et al. Lack of Diuretic Efficiency (but Not
57	5 Low Diuresis) Early in An Acutely Decompensated Heart Failure Episode Is
57	Associated with Increased 180-Day Mortality. Cardiorenal Med 2017;7(2):137-49 doi:
57	7 10.1159/000455903.
57	53. Palazzuoli A, Testani JM, Ruocco G, et al. Different diuretic dose and response in acute
57	9 decompensated heart failure: Clinical characteristics and prognostic significance. Int J
58	0 Cardiol 2016; 224 :213-19 doi: 10.1016/j.ijcard.2016.09.005.
58	1 54. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J
58	2 2015; 36 (23):1437-44 doi: 10.1093/eurheartj/ehv010.
58	55. Hoorn EJ, Ellison DH. Diuretic Resistance. Am J Kidney Dis 2017;69(1):136-42 doi:
58	4 10.1053/j.ajkd.2016.08.027.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

585	56. Ray EC, Boyd-Shiwarski CR, Kleyman TR. Why Diuretics Fail Failing Hearts. J Am Soc
586	Nephrol 2017 doi: 10.1681/ASN.2017070797.
587	57. Valente MA, Voors AA, Damman K, et al. Diuretic response in acute heart failure:
588	clinical characteristics and prognostic significance. Eur Heart J 2014;35(19):1284-93
589	doi: 10.1093/eurheartj/ehu065.
590	58. ter Maaten JM, Valente MA, Damman K, et al. Diuretic response in acute heart failure-
591	pathophysiology, evaluation, and therapy. Nat Rev Cardiol 2015;12(3):184-92 doi:
592	10.1038/nrcardio.2014.215.
593	59. Bansal S, Lindenfeld J, Schrier RW. Sodium retention in heart failure and cirrhosis:
594	potential role of natriuretic doses of mineralocorticoid antagonist? Circ Heart Fail
595	2009; 2 (4):370-6 doi: 10.1161/CIRCHEARTFAILURE.108.821199.
596	60. Hensen J, Abraham WT, Durr JA, et al. Aldosterone in congestive heart failure: analysis
597	of determinants and role in sodium retention. Am J Nephrol 1991;11(6):441-6.
598	61. The RALES investigators. Effectiveness of spironolactone added to an angiotensin-
599	converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart
600	failure (the Randomized Aldactone Evaluation Study [RALES]). Am J Cardiol
601	1996; 78 (8):902-7.
602	62. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and
603	mortality in patients with severe heart failure. Randomized Aldactone Evaluation
604	Study Investigators. The New England journal of medicine 1999;341(10):709-17 doi:
605	10.1056/NEJM199909023411001.

Page 31 c	of 42	BMJ Open
1		31
2 3	606	63. Butler J, Anstrom KJ, Felker GM, et al. Efficacy and Safety of Spironolactone in Acute
4 5	607	Heart Failure: The ATHENA-HF Randomized Clinical Trial. JAMA Cardiol 2017 doi:
6 7 8	608	10.1001/jamacardio.2017.2198.
9 10 11	609	64. Licata G, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and small-
12 13	610	volume hypertonic saline solution infusion in comparison with a high dose of
14 15	611	furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart
16 17 18	612	J 2003; 145 (3):459-66 doi: 10.1067/mhj.2003.166.
19 20	613	65. Paterna S, Di Pasquale P, Parrinello G, et al. Changes in brain natriuretic peptide levels
21 22	614	and bioelectrical impedance measurements after treatment with high-dose furosemide
23 24	615	and hypertonic saline solution versus high-dose furosemide alone in refractory
25 26 27	616	congestive heart failure: a double-blind study. J Am Coll Cardiol 2005;45(12):1997-
28 29 30	617	2003 doi: 10.1016/j.jacc.2005.01.059.
31 32	618	66. Ng TM, Konopka E, Hyderi AF, et al. Comparison of bumetanide- and metolazone-based
33 34	619	diuretic regimens to furosemide in acute heart failure. J Cardiovasc Pharmacol Ther
35 36 37	620	2013; 18 (4):345-53 doi: 10.1177/1074248413482755.
38 39	621	67. Tilstone WJ, Dargie H, Dargie EN, et al. Pharmacokinetics of metolazone in normal
40 41 42	622	subjects and in patients with cardiac or renal failure. Clin Pharmacol Ther
43 44	623	1974; 16 (2):322-9.
45 46 47	624	68. Wang C, Xiong B, Cai L. Effects of Tolvaptan in patients with acute heart failure: a
48 49	625	systematic review and meta-analysis. BMC Cardiovasc Disord 2017;17(1):164 doi:
50 51 52 53 54	626	10.1186/s12872-017-0598-y.
55 56 57 58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- 627 69. Jujo K, Saito K, Ishida I, et al. Randomized pilot trial comparing tolvaptan with
 628 furosemide on renal and neurohumoral effects in acute heart failure. ESC Heart Fail
 629 2016;3(3):177-88 doi: 10.1002/ehf2.12088.
 - 630 70. Kimura K, Momose T, Hasegawa T, et al. Early administration of tolvaptan preserves
 631 renal function in elderly patients with acute decompensated heart failure. J Cardiol
 632 2016;67(5):399-405 doi: 10.1016/j.jjcc.2015.09.020.
- 71. Torina AG, Silveira-Filho LM, Vilarinho KA, et al. Use of modified ultrafiltration in
 adults undergoing coronary artery bypass grafting is associated with inflammatory
 modulation and less postoperative blood loss: a randomized and controlled study. J
 Thorac Cardiovasc Surg 2012;144(3):663-70 doi: 10.1016/j.jtcvs.2012.04.012.
- 637 72. Chew DP, Astley C, Molloy D, Vaile J, De Pasquale CG, Aylward P. Morbidity, mortality
 638 and economic burden of renal impairment in cardiac intensive care. Intern Med J
 639 2006;36(3):185-92 doi: 10.1111/j.1445-5994.2006.01012.x.
- 640 73. Schaub JA, Coca SG, Moledina DG, Gentry M, Testani JM, Parikh CR. Amino-Terminal
 641 Pro-B-Type Natriuretic Peptide for Diagnosis and Prognosis in Patients With Renal
 642 Dysfunction: A Systematic Review and Meta-Analysis. JACC Heart Fail
 643 2015;3(12):977-89 doi: 10.1016/j.jchf.2015.07.014.
 - 74. Tsutamoto T, Kawahara C, Yamaji M, et al. Relationship between renal function and
 serum cardiac troponin T in patients with chronic heart failure. Eur J Heart Fail
 2009;11(7):653-8 doi: 10.1093/eurjhf/hfp072.

649 Tables

Table 1 Baseline characteristics of patients with confirmed acute heart failure (AHF)

651 syndrome

	All AHF			
	patients	Group 1	Group 2	
	(N=507)	(n=335)	(n=172)	p-value
Age, y	83 [77;88]	84 [78;89]	82 [75;88]	0.0864
Men	220 (43.39%)	144 (42.99%)	76 (44.19%)	0.8699
Comorbidities				
- Hypertension	353 (69.63%)	234 (69.85%)	119 (69.19%)	0.7939
- Chronic HF	271 (53.45%)	189 (56.42%)	82 (47.67%)	0.0490
- Atrial fibrillation	223 (43.98%)	151 (45.07%)	72 (41.86%)	0.4312
- Coronary heart disease	150 (29.59%)	98 (29.25%)	52 (30.23%)	0.9999
- Diabetes type I	14 (2.76%)	12 (3.58%)	2 (1.16%)	0.2589
- Diabetes type II	132 (26.04%)	93 (27.76%)	39 (22.67%)	0.1978
- Chronic renal failure	114 (22.49%)	108 (32.24%)	6 (3.49%)	< 0.0001
- Chronic respiratory failure	87 (17.16%)	60 (17.91%)	27 (15.7%)	0.4565
- Known valvular disease	95 (18.74%)	70 (20.9%)	25 (14.53%)	0.0657
Priori medications				
- Furosemide	295 (58.19%)	204 (60.9%)	91 (52.91%)	0.0498
- ACEI/ARB	225 (44.38%)	153 (45.67%)	72 (41.86%)	0.2976
- β- blocker	214 (42.21%)	147 (43.88%)	67 (38.95%)	0.1981
- Anticoagulant	221 (43.59%)	151 (45.07%)	70 (40.7%)	0.2442
- Aspirin	155 (30.57%)	110 (32.84%)	45 (26.16%)	0.0763
- Other antiplatelet	56 (11.05%)	37 (11.04%)	19 (11.05%)	0.7305
- Oral antidiabetic	66 (13.02%)	47 (14.03%)	19 (11.05%)	0.2150
- Insulin	68 (13.41%)	52 (15.52%)	16 (9.3%)	0.0272
- Amiodarone	56 (11.05%)	48 (14.33%)	8 (4.65%)	0.0004
- Aldosterone antagonist	38 (7.5%)	26 (7.76%)	12 (6.98%)	0.4820
- Digoxin	38 (7.5%)	18 (5.37%)	20 (11.63%)	0.0981
- Thiazidine	32 (6.31%)	21 (6.27%)	11 (6.4%)	0.7043
- None	28 (5.52%)	14 (4.18%)	14 (8.14%)	0.3808
- Unknown	13 (2.56%)	7 (2.09%)	6 (3.49%)	0.9999
Pacemaker				
- Single	17 (3.35%)	12 (3.58%)	5 (2.91%)	0.1061
- Dual	36 (7.1%)	27 (8.06%)	9 (5.23%)	0.2992
- Triple	6 (1.18%)	6 (1.79%)	0 (0%)	0.285
Defibrillator	16 (3.16%)	16 (4.78%)	0 (0%)	0.0018
Prior hospitalization for HF				
during past year				
- 0	287 (56.61%)	180 (53.73%)	107 (62.21%)	0.1397
- 1	130 (25.64%)	83 (24.78%)	47 (27.33%)	0.8556
- ≥2	62 (12.23%)	52 (15.52%)	10 (5.81%)	0.0031

2	4
- 4	/
J	+

Followed by a cardiologist	348 (68.64%	242 (72.24%)	106 (61.63%)	0.0198
Residence				
- At home	423 (83.43%)	287 (85.67%)	136 (79.07%)	0.0626
- Retirement institution	74 (14.6%)	43 (12.84%)	31 (18.02%)	0.1815
- Other institution	8 (1.58%)	4 (1.19%)	4 (2.33%)	0.7509
Self-sufficient	258 (50.89%)	162 (48.36%)	96 (55.81%)	0.1926
Home assistance				
- Housekeeper	151 (29.78%)	111 (33.13%)	40 (23.26%)	0.0170
- Family support	121 (23.87%)	87 (25.97%)	34 (19.77%)	0.1005
- Nurse	134 (26.43%)	98 (29.25%)	36 (20.93%)	0.0359
- Known cognitive impairment	83 (16.37%)	49 (14.63%)	34 (19.77%)	0.2579
- Bedridden	45 (8.88%)	25 (7.46%)	20 (11.63%)	0.2805

Data are median (IQR) age or number (%) of patients

Group 1: patients with CRS; Group 2: patients with normal renal function

AHF, acute heart failure; ADEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker;

HF, heart failure

Table 2 Hospitalization route and clinical status of patients with confirmed acute heart failure

658 (AHF) syndrome

	All AHF			
	patients	Group 1	Group 2	
	(N = 507)	(n = 335)	(n = 172)	p-val
Means of transport				
- Personal	232 (45.76%)	157 (46.87%)	75 (43.6%)	0.504
- Ambulance	89 (17.55%)	56 (16.72%)	33 (19.19%)	0.629
- Firemen	55 (10.85%)	34 (10.15%)	21 (12.21%)	0.653
- MICU	40 (7.89%)	29 (8.66%)	11 (6.4%)	0.407
- Inter-hospital transfer	6 (1.18%)	5 (1.49%)	1 (0.58%)	0.48
Clinical signs				
- Warm extremities	390 (76.92%)	257 (76.72%)	133 (77.33%)	0.220
- Cold extremities	61 (12.03%)	45 (13.43%)	16 (9.3%)	0.96
- Signs of right heart	216 (42.6%)	144 (42.99%)	72 (41.86%)	0.680
failure				
- Inspiratory retraction	146 (28.8%)	107 (31.94%)	39 (22.67%)	0.022
- Inability to speak	42 (8.28%)	25 (7.46%)	17 (9.88%)	0.530
First recorded vital signs			• คากสมาราชการสาราชสร้างสมาราชการสาราชการสำนักสารสาราช	
- Heart failure, beats/min	85 [71;102]	85 [72;102]	85 [72;104.25]	0.48
- SBP, mmHg	140 [121;160]	140 [121;160]	140 [124;162]	0.10
- DBP, mmHg	76 [65;90]	75 [63.5;89]	78 [67.75;92.25]	0.02
- SBP <100 mmHg	34 (6.71%)	27 (8.06%)	7 (4.07%)	0.13
- Respiratory rate, breaths/min	25 [20;30]	26 [20;30]	24 [20;29]	0.15
- Pulse oximetry, %	94 [90;96.25]	94 [90;97]	94 [89;96]	0.72
- $GCS > 15$	48 (9.47%)	31 (9.25%)	17 (9.88%)	0.72
- Temperature >37°C	13 (2.56%)	12 (3.58%)	1 (0.58%)	0.36
Killip status	15 (2.5070)	12 (5.5670)	1 (0.3670)	0.50
- 1	128 (25.25%)	76 (22.69%)	52 (30.23%)	0.26
- 2	269 (53.06%)	181 (54.03%)	88 (51.16%)	0.30
- 3	84 (16.57%)	60 (17.91%)	24 (13.95%)	0.10
- Signs of shock	15 (2.96%)	8 (2.39%)	7 (4.07%)	0.89
Data are median (IQR) beats/minute,				
number (%) of patients	,	5,		(11) / 0, 0
Group 1: patients with CRS; Group 2	2: patients with norma	l renal function		
AHF, acute heart failure; DBP, diaste	olic blood pressure; G	CS, Glasgow Coma	Scale; HF, heart failure	; MICU

663 mobile intensive care unit; SBP, systolic blood pressure

665 Table 3 Biological and diagnosis tests of patients with confirmed acute heart failure (AHF)

666 syndrome

	All AHF patients	Group 1	Group 2	1
	(N=507)	(n=335)	(n=172)	p-value
Biological analysis				
- Performed	507 (100%)	335 (100%)	172 (100%)	
- Sodium, mmol/L	138 [135;141]	138 [135;141]	139 [135;141]	0.3967
- Potassium, mmol/L	4 [4;5]	4 [4;5]	4 [4;5]	0.8911
- Creatinine clearance, mL/min	50 [35;69.05]	40 [29;49.9]	78.5 [67;91]	< 0.000
- Creatinine clearance <30 mL/min	89 (17.55%)	89 (26.57%)	0 (0%)	< 0.000
- Hemoglobin, g/dL	13 [11;14]	12 [11;13]	13 [13;14]	0.0608
- Troponin positive	271 (53.45%)	195 (58.21%)	76 (44.19%)	0.0011
- BNP, ng/L	991 [507.5;2443.5]	1157.5 [569.25;2680.5]	534 [291;1292]	0.0048
	4025	5120	2513	.0.000
- Pro-BNP, ng/L	[1729;8863]	[2520;12399.75]	[1146.5;5376.5]	< 0.000
CCG			การกร้างการกระกรรมการกระกรรมการกระกรรมการกระกระกร <mark>ะ</mark> ก็การกร	
- Performed	500 (98.61%)	329 (98.20%)	171 (99.41%)	
- Sinusal	220 (44%)	145 (43.28%)	75 (43.6%)	0.9243
- Atrial fibrillation	213 (42.01)	139 (41.49%)	74 (43.02%)	0.9999
- Driven	44 (8.8%)	33 (9.85%)	11 (6.4%)	0.1940
- AVB	21 (4.14%)	14 (4.18%)	7 (4.07%)	0.8642
- LBBB	86 (17.2%)	64 (19.1%)	22 (12.79%)	0.0461
- RBBB	59 (11.8%)	34 (10.15%)	25 (14.53%)	0.4276
- Repolarization disorder	101 (20.2%)	73 (21.79%)	28 (16.28%)	0.0905
Chest X-ray				
- Performed	481 (94.87%)	318 (94.92%)	-163 (94.76%)	
- Normal	24 (4.73%)	11 (3.28%)	13 (7.56%)	0.1999
- Cardiomegaly	235 (48.86%)	171 (51.04%)	64 (37.21%)	0.0144
- Interstitial opacities	284 (59.04%)	202 (60.3%)	82 (47.67%)	0.0199
- Alveolar opacities	108 (22.45%)	64 (19.1%)	44 (25.58%)	0.0503
Echography	······			
- Performed	82 (16.17%)	55 (16.41%)	27 (15.72%)	
- By cardiologist	47 (57.32%)	36 (10.75%)	11 (6.4%)	0.0589
- Satisfactory	23 (4.54%)	18 (5.37%)	5 (2.91%)	0.2784
- Intermediate	14 (2.76%)	11 (3.28%)	3 (1.74%)	0.2781
- Weak	2 (0.39%)	2 (0.6%)	0 (0%)	0.8091
- By emergency	35 (42.68%)	19 (5.67%)	16 (9.3%)	0.0589
physician Satisfactory	Q (1 500/)	1(0.20/)	7(1070)	0.0000
- Satisfactory	8 (1.58%)	1(0.3%)	7 (4.07%)	0.0022
- Intermediate	19 (3.75%)	12 (3.58%)	7 (4.07%)	0.8919
- Weak	8 (1.58%)	1 (0.3%)	7 (4.07%)	0.0022
- LVEF				

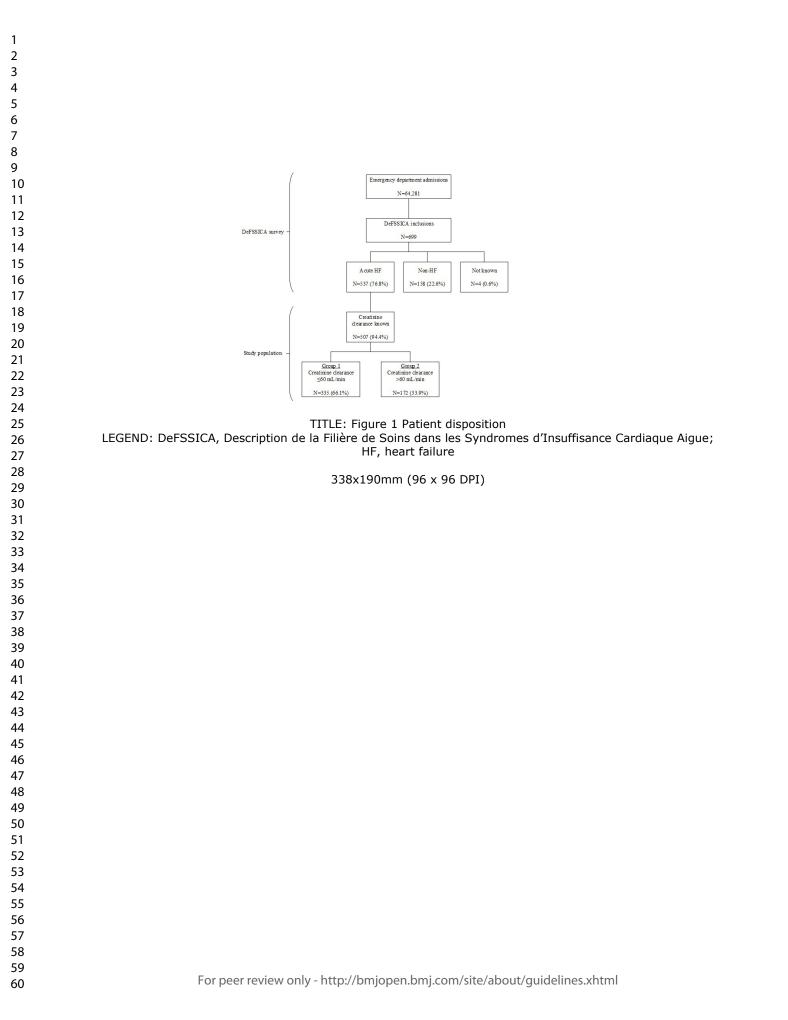
	- >50 %	32 (39.02%)	23 (6.87%)	9 (5.23%)	0.6175
	- 35-50 %	26 (31.71%)	18 (5.37%)	8 (4.65%)	0.9754
	- <35 %	19 (23.17%)	11 (3.28%)	8 (4.65%)	0.4884
	- Dilated RV	18 (21.95%)	11 (3.28%)	7 (4.07%)	0.7448
	- VC diameter, mm	21 (25.61%)	15 (4.48%)	6 (3.49%)	0.8233
667	Data are median (IQR) mmol/L,	, mL/min (IQR) median, 1	median (IQR) g/dL, me	dian (IQR) ng/L, or n	umber (%)
668	of patients				
669	Group 1: patients with CRS; Gr	oup 2: patients with norm	al renal function		
70	AHF, acute heart failure; AVB,	atrioventricular block; Bl	NP, brain natriuretic per	ptide; ECG, electroca	rdiogram;
71	HF, heart failure; IVC, inferior	vena cava; LBBB, left bu	ndle branch block; LVE	EF, left ventricular eje	ction
572	fraction; RBBB, right bundle br	vena cava; LBBB, left bu	ntricle; US, ultrasound		
673					
	For peer review	only - http://bmjopen.	hmi.com/site/about/	guidelines vhtml	
	i or heer review	only - nich.// billjopen.	ong.com/site/about/	guiuennes.xiittiili	

	All AHF patients	Group 1	Group 2	
	(N=507)	(n=335)	(n=172)	p-value
Furosemide	376 (74.16%)	252 (75.22%)	124 (72.09%)	0.2620
Oxygen	337 (66.47%)	225 (67.16%)	112 (65.12%)	0.4342
Nitrates	92 (18.15%)	71 (21.19%)	21 (12.21%)	0.0057
Anticoagulant	37 (7.3%)	22 (6.57%)	15 (8.72%)	0.9999
СРАР	8 (1.58%)	6 (1.79%)	2 (1.16%)	0.2374
NIV	45 (8.88%)	30 (8.96%)	15 (8.72%)	0.5800
Antiarrythmics	23 (4.54%)	15 (4.48%)	8 (4.65%)	0.6009
Ionotropic agents	3 (0.59%)	3 (0.9%)	0 (0%)	0.1126
Tracheal intubation	1 (0.2%)	1 (0.3%)	0 (0%)	0.2017
None	32 (6.31%)	17 (5.07%)	15 (8.72%)	0.5841

Table 4 Emergency treatment of patients with confirmed acute heart failure (AHF) syndrome

Data are number (%) of patients

Group 1: patients with CRS; Group 2: patients with normal renal function


AHF, acute heart failure; CPAP, continuous positive airway pressure; NIV, non-invasive ventilation

	All AHF patients	Group 1	Group 2	
	(N=507)	(n=335)	(n=172)	p-val
Precipitating factors		` /	× /	
- Unknown	214 (42.21%)	138 (41.19%)	76 (44.19%)	0.81
- Infection	128 (25.25%)	84 (25.07%)	44 (25.58%)	0.89
- Rhythm disorder	77 (15.19%)	47 (14.03%)	30 (17.44%)	0.66
- Hypertension	54 (10.65%)	39 (11.64%)	15 (8.72%)	0.18
- Non-adherence to treatment	30 (5.92%)	17 (5.07%)	13 (7.56%)	0.91
- Acute coronary syndrome	21 (4.14%)	15 (4.48%)	6 (3.49%)	0.32
- Eating disorder	20 (3.94%)	14 (4.18%)	6 (3.49%)	0.39
- Diabetes decompensation	10 (1.97%)	10 (2.99%)	0 (0%)	0.01
Discharge destination				
- Cardiology	142 (28.01%)	100 (29.85%)	42 (24.42%)	0.33
- Geriatric medicine	61 (12.03%)	34 (10.15%)	27 (15.7%)	0.05
- Other medical unit	99 (19.53%)	67 (20%)	32 (18.6%)	0.98
- CICU	62 (12.23%)	42 (12.54%)	20 (11.63%)	0.99
- Resuscitation unit	16 (3.16%)	11 (3.28%)	5 (2.91%)	0.97
- ED hospitalization unit	74 (14.6%)	48 (14.33%)	26 (15.12%)	0.71
- Back home	26 (5.13%)	1 4 (4.18%)	12 (6.98%)	0.13
- Other	24 (4.73%)	18 (5.37%)	6 (3.49%)	0.78
Destination considered appropriate	382 (75.35%)	246 (73.43%)	136 (79.07%)	0.13
Outcome				
- In-hospital mortality	30 (5.92%)	24 (7.16%)	6 (3.49%)	0.97
- Still hospitalized at 30 days	32 (6.31%)	20 (5.97%)	12 (6.98%)	0.99
Length of stay, days	7 [4;13]	8 [4;13]	6 [3;12]	0.03
Data are number (%) of patients or n	median (IQR) days			

Table 5 Outcomes of patients with confirmed acute heart failure (AHF) syndrome

680 Group 1: patients with CRS; Group 2: patients with normal renal function

681 AHF, acute heart failure

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

TITLE: Impact of renal dysfunction on the management and outcome of acute heart failure: results from the French prospective, multicenter, DeFSSICA survey

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7-8
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8-9
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	NA
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	NA
		(d) If applicable, explain how loss to follow-up was addressed	NA
		(e) Describe any sensitivity analyses	NA

Page 42	of 42
---------	-------

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	10 and Figure 1
		(b) Give reasons for non-participation at each stage	10
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10-11
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10-13
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-17
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	18-19
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	20

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Impact of renal dysfunction on the management and outcome of acute heart failure: results from the French prospective, multicenter, DeFSSICA survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022776.R1
Article Type:	Research
Date Submitted by the Author:	21-Jun-2018
Complete List of Authors:	dos Reis, Dominique; Val de Grâce Medical School, Ministère de la Défense Fraticelli, Laurie; Centre Hospitalier de Vienne Lucien Hussel, RESCUe Network Bassand, Adrien; CHRU Nancy, Emergency Department; CHRU Nancy, CIC-P Manzo-Silberman, Stéphane; Hopital Lariboisiere, Department of Cardiology; INSERM UMR-S-942 Peschanski, Nicolas; Centre Hospitalier Eure-Seine, Emergency Department Charpentier, Sandrine; Hopital de Rangueil, Emergency Department; Universite Toulouse III Paul Sabatier Elbaz, Meyer; Hopital de Rangueil, Department of Cardiology Savary, Dominique; Annecy-Genevois, Emergency Department and Intensive Care Unit Bonnefoy-Cudraz, Eric; Höpital Cardiologique de Lyon, Department of Cardiology Laribi, Said; Centre Hospitalier Regional Universitaire de Tours, Emergency Department; INSERM UMR-S-942, Université Paris-Diderot, Sorbonne Henry, Patrick; Hopital Lariboisiere, Department of Cardiology; INSERM UMR-S-942, Université Paris-Diderot, Sorbonne Guerraoui, Abdallah; Groupement Hospitalier Edouard Herriot, Emergency Department; Universite Claude Bernard Lyon 1 Tazarourte, Karim; University Hospital, Hospices Civils, Lyon, Emergency Medicine; University Lyon 1, Health Services and Performance Research Laboratory, EA 7425 Chouihed, Tahar; CHRU Nancy, SAMU-SMUR-SAU; Institut Lorrain du Coeur et des Vaisseaux El Khoury, Carlos; Centre Hospitalier de Vienne Lucien Hussel, Emergency Department and RESCUE Network
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Cardiovascular medicine, Renal medicine
Keywords:	acute heart failure, AHF, cardio-renal syndrome, CRS, real-life, renal dysfunction

1	
2 3	
4	
5 6	
7	SCHOLAR ONE [™]
8 9	Manuscripts
10	
11	
12 13	
14	
15 16	
17	
18	
19 20	
21	
22	
23 24	
25	
26 27	
28	
29	
30 31	
32	
33 34	
35	
36	
37 38	
39	
40	
41 42	
43	
44 45	
46	
47 48	
48 49	
50	
51 52	
53	
54	
55 56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Impact of renal dysfunction on the management and outcome of acute heart failure: results
2	from the French prospective, multicenter, DeFSSICA survey
3	Dominique dos Reis, MD ¹ , Laurie Fraticelli PhD ² , Adrien Bassand, MD ³ , Stéphane Manzo-
4	Silberman, MD, PhD ⁴ , Nicolas Peschanski, MD, PhD ⁵ , Sandrine Charpentier, MD, PhD ⁶ ,
5	Meyer Elbaz, MD, PhD ⁷ , Dominique Savary, MD ⁸ , Eric Bonnefoy-Cudraz, MD, PhD ⁹ , Said
6	Laribi, MD, PhD ¹⁰ , Patrick Henry, MD, PhD ¹¹ , Abdallah Guerraoui, MD ¹² , Karim Tazarourte,
7	MD, PhD ¹³ , Tahar Chouihed, MD ¹⁴ , Carlos El Khoury, MD, PhD ¹⁵
0	¹ Val de Grâce Medical School, Ministère de la Défense, Paris, France (<u>d.dosreis@live.fr</u>);
8	
9	² RESCUe Network, Lucien Hussel Hospital, Vienne, France (<u>l.fraticelli@resuval.fr</u>);
10	³ SAMU-SMUR-SAU Nancy, Hôpital Central, CHRU Nancy, France
11	(adrienbassand@gmail.com); ⁴ Lariboisière Hospital, Department of Cardiology, Paris, France
12	and INSERM UMR-S 942, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
13	(stephane.manzosilberman@aphp.fr); ⁵ Emergency Department, SAMU 27, Eure Seine
14	Evreux Hospital, France (<u>bansbari@gmail.com</u>); ⁶ Emergency Department, Rangueil
15	University Hospital, Toulouse, France; INSERM, U1027, Toulouse, France; Université
16	Toulouse III – Paul Sabatier, Toulouse, France (<u>charpentier.s@chu-toulouse.fr</u>); ⁷ Department
17	of Cardiology, Rangueil Hospital, Toulouse, France (<u>elbaz.m@chu-toulouse.fr</u>); ⁸ Emergency
18	Department and Intensive Care Unit, Annecy-Genevois, Metz-Tessy, France
19	(savaryd@wanadoo.fr); ⁹ Department of Cardiology, Hôpital Cardiologique de Lyon, Lyon,
20	France (<u>eric.bonnefoy-cudraz@chu-lyon.fr</u>); ¹⁰ Emergency Medicine Department, University
21	Hospital of Tours; INSERM UMR-S 942, Université Paris-Diderot, Sorbonne Paris Cité,
22	Paris, France (<u>s.laribi@chu-tours.fr</u>); ¹¹ Lariboisière Hospital, Department of Cardiology,
23	Paris, France; INSERM UMR-S 942, Université Paris-Diderot, Sorbonne Paris Cité, Paris,
24	France (patrick.henry@aphp.fr); ¹² Calydial Dialysis Department, Lucien Hussel Hospital,
25	Vienne, France (abdallah.guerraoui@calydial.org); ¹³ Emergency Department, Edouard

BMJ Open

26	Herriot Hospital, Lyon, France; Univ. Lyon, Claude Bernard Lyon 1 University, HESPER EA
27	7425, Lyon, France (karim.tazarourte@chu-lyon.fr); ¹⁴ SAMU-SMUR-SAU Nancy, Hôpital
28	Central, CHRU Nancy, France; Centre d'Investigation Clinique Plurithématique 1433, Institut
29	Lorrain du Cœur et des Vaisseaux, Vandoeuvre-les-Nancy France; INSERM U1116,
30	Université de Lorraine, Nancy, France (<u>t.chouihed@gmail.com</u>); ¹⁵ Emergency Department
31	and RESCUe Network, Lucien Hussel Hospital, Vienne, France; Univ. Lyon, Claude Bernard
32	Lyon 1 University, HESPER EA 7425, Lyon, France (c.elkhoury@vienne.fr)
33	Corresponding author:
34	Carlos El Khoury, MD, PhD
35	Emergency Department and RESCUe Network, Lucien Hussel Hospital, Vienne, France;
36	Univ. Lyon, Claude Bernard Lyon 1 University, HESPER EA 7425, Lyon, France
37	Tél. +33 (0) 4 7431 3257; Mob. +33 (0) 6 2410 4024; email <u>c.elkhoury@resuval.fr</u>
38	Target journal & format: BMJ Open - Research Articles format (counts: abstract 300 words
39	[max 300]; 6 keywords; body 3719 words (max 4000); 83 references; 1 figure, 5 tables).
40	

Abstract (300 words [max 300])

Objectives: Cardio-renal syndrome (CRS) is the combination of acute heart failure syndrome (AHF) and renal dysfunction (creatinine clearance [CrCl] ≤ 60 mL/min). Real-life data were used to compare the management and outcome of AHF with and without renal dysfunction.

Design: Prospective, multi-center.

Setting: Twenty-six academic, community, and regional hospitals in France.

Participants: 507 patients with AHF were assessed in two groups according to renal

function: Group 1 (CRS patients [CrCl ≤60 mL/min]: N=335) and Group 2 (AHF patients

- with normal renal function [CrCl >60 mL/min]: N=172).
- **Results**: Differences were observed (Group 1 versus Group 2) at admission for the incidence of chronic heart failure (56.42% versus 47.67%), use of furosemide (60.9% versus 52.91%),
 - insulin (15.52% versus 9.3%), and amiodarone (14.33% versus 4.65%); additionally, more

patients in Group 1 carried a defibrillator (4.78% versus 0%), had ≥ 2 hospitalizations in the

last year (15.52% versus 5.81%), and were under the care of a cardiologist (72.24% versus

61.63%). Clinical signs were broadly similar in each group. Brain-type natriuretic peptide

- (BNP) and BNP prohormone were higher in Group 1 than Group 2 (1157.5 versus 534 ng/L
- and 5120 versus 2513 ng/mL), and more patients in Group 1 were positive for troponin

(58.2% versus 44.19%), had cardiomegaly (51.04% versus 37.21%), and interstitial opacities

- (60.3% versus 47.67%). The only difference in emergency treatment was the use of nitrates,
- (higher in Group 1 [21.9% versus 12.21%]). In-hospital mortality and the percentage of
- patients still hospitalized after 30 days was similar between groups, but median stay was

longer in Group 1 (8 days versus 6 days).

BMJ Open

63	Conclusions: Renal impairment in AHF should not limit the use of loop diuretics and/or
64	vasodilators, but early assessment of pulmonary congestion and close monitoring of the
65	efficacy of conventional therapies is encouraged to allow rapid and appropriate
66	implementation of alternative therapies if necessary.
67	
68	
69	
70	Keywords: acute heart failure, AHF, cardio-renal syndrome, CRS, real-life, renal dysfunction
71	

atients
rather
t-off (60
ch
gh this
t

Background

1 2 BMJ Open

6

2 3	
4	
5	
6	
7	
8	
9	
10	
11 12	
13	
14	
15	
12 13 14 15 16	
17	
18	
19	
20	
21 22	
22	
24	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59 60	
60	

106

85	Heart failure (HF) has an incidence of approximately 2% in adults in developed countries [1]
86	and mainly affects elderly patients, who may have multiple comorbidities. One such
87	comorbidity, impaired renal function, has been shown to be a stronger predictor of mortality
88	than impaired cardiac function [2 3] and can be present in 50% of patients treated for acute
89	HF (AHF) [4]. The prognostic importance of the association of renal dysfunction (creatinine
90	clearance [CrCl] \leq 60 mL/min) and AHF (cardio-renal syndrome [CRS]) has only been
91	demonstrated recently. This represents a complex pathophysiological condition that has been
92	classified into 5 stages [5 6]. It is worth noting that this is a mechanistic classification and the
93	patients' clinical management must consider the full clinical presentation
94	Even moderate degrees of renal insufficiency are independently associated with an increased
95	risk of mortality from any cause in patients with HF [7]. As such, CRS can lead to hesitancy
96	among some clinicians to implement appropriate treatments for HF, such as diuretics, due to
97	the effect that these may have to worsen the renal insufficiency. However, additional
98	prospective research is needed and current recommendations are to maintain such treatments
99	in CRS patients [8 9] although the emergency physician should make an appropriate risk
100	risk:benefit assessment for each patient.
101	In this context, a sub-analysis was conducted using real-life data from the DeFSSICA study
101	
102	(Description de la Filière de Soins dans les Syndromes d'Insuffisance Cardiaque Aigue), a
103	large-scale, prospective study that was conducted in patients with suspected dyspnea of
104	cardiac origin in emergency departments (EDs) throughout France [10]. The aim of this sub-
105	analysis was to compare the management and outcome of CRS patients to AHF patients

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

without renal dysfunction in France using novel real-life data, based on the hypothesis that

- CRS and AHF patients would have the same outcome if the management of CRS was based
- on that for AHF patients without renal dysfunction.

<text>

Methods

Study design

 BMJ Open

This was a prospective, multi-center study in patients presenting with suspected heart failure dyspnea in 26 EDs in academic, community, and regional hospitals (the DeFSSICA study) for which the rationale and design are reported elsewhere [10]. The study received approval from the National Commission for Liberties and Data Protection (Commission Nationale de l'Informatique et des Libertés) (number DR-2014-543) and the Advisory Committee on the Treatment of Information in the field of Health Research (Comité Consultatif sur le Traitement de l'Information en matière de Recherche dans le Domaine de la Santé) (number 14-291). The study did not affect the patient-physician relationship or the patient's care and follow-up.

120 Patient involvement

Written information regarding the objectives of the survey was provided to all patients prior to their inclusion. The research question was based on the prognostic importance of CRS and a need for real-life data on the management and outcome of CRS patients. Patients were not involved in the design, recruitment, and conduct of the study, and there is no plan to disseminate the results specifically to the patients who provided data used in this analysis.

126 Selection of participants

127 In the DeFSSICA survey, patients >18 years of age with dyspnea compatible with acute HF,

128 defined as dyspnea associated with peripheral edema and/or pulmonary crackles and/or

129 excessive weight gain and/or use of furosemide, were eligible for inclusion after ED

admission and prior to chest X-ray and laboratory tests. Patient enrollment occurred between

131 16 June 2014 and 7 July 2014.

In this analysis, only patients with known CrCl were included and were divided into those
with CrCl ≤60 mL/min, i.e. renal dysfunction (Group 1) and those with CrCl >60 mL/min, i.e.
normal renal function (Group 2). Glomerular filtration rate (GFR) was calculated using either
the Cockroft-Gault (9 centers), Modification of Diet in Renal Disease (MDRD) Study (12
centers), or Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations (14
centers) (8 centers used two methods and 18 centers used one method) [11 12].

138 Study assessments

Patients' baseline characteristics, medical history, social factors, in-hospital diagnostic tests and treatment, destination after ED discharge, in-hospital mortality and length of stay were recorded by emergency physicians in a case report form, which was structured according to the progress of care. Cardiac sonographic evaluations were performed at the discretion of the emergency physician. Abnormal chest X-ray was defined by the presence of cardiomegaly, and/or alveolar edema, and/or interstitial opacity, and/or pleural effusion. The choice of treatment was at the emergency physician's discretion, and according to his/her usual practice. Final diagnosis of AHF was made by the emergency physician using a combination of a clinical history, abnormal chest X-ray, elevated brain-type natriuretic peptide (BNP) or BNP prohormone (proBNP), and echocardiogrpahic signs.

Although it was not possible to impose any randomization or blinding since this was an
observational study, any potential bias in the study assessments was minimized by the
provision of standard instructions to all participating physicians.

152 Data were entered into a secure database located at the Réseau Cardiologie Urgence
153 (RESCUe) (Cardiovascular Emergency Network) Coordination Center.

154 Statistical analysis

1		
2 3	155	Medians and interquartile ranges (IQR) are provided for continuous variables, and numbers
4 5	156	and percentages for qualitative variables. Comparative analyses were performed using the $\chi 2$
6 7 8	157	or Fisher's test for binary variables and the Wilcoxon test for analysis of variance for
9 10	158	continuous variables [13]. The 5% level was used to identify differences between groups that
11 12	159	were of statistical significance (p<0.05). Statistical evaluations were performed using R
13 14	160	Statistical Software (Version 3.4.1).
15 16 17 18 19	161	Statistical Software (Version 3.4.1).
20 21		
22 23		
24 25 26		
26 27 28		
28 29 30		
31 32		
33 34		
35 36		
37 38		
39 40 41		
41 42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

Results

Patient disposition and prevalence of CRS

A total of 64,281 ED consultations took place during the survey period and 699 patients with dyspnea of cardiac origin were included in DEFSSICA study. Of these, 537 patients were identified as having AHF, of whom only those with known CrCl (N=507) were included in this analysis.

Patients in Group 1 (N=335 [66.1%]) had renal dysfunction (CrCl $\leq 60 \text{ mL/min}$) and comprised the population with CRS. In this group, 99 patients (29.6%) had severe renal dysfunction (Stage 4 or 5: CrCl: <30 mL/min) and 120 (35.8%) had a known history of chronic renal failure. All patients in Group 2 (N=172 [33.9%]) had normal renal function chrome re... (CrCl >60 mL/min). Patient disposition is presented in Figure 1.

The baseline characteristics of patients in Group 1 and Group 2 are shown in Table 1. There was no difference between Group 1 and Group 2 in age (median [IQR]: 84 [88-79] years and 82 [75-88] years; p=0.09) or sex distribution (42.99% male in Group 1 and 44.19% male in Group 2; p=0.87).

As well as the higher incidence of chronic renal failure in Group 1, patients with CRS were

more likely to have chronic HF (56.42% in Group 1 versus 47.67% in Group 2; p<0.05).

There was no difference in the incidence of any other comorbidity between groups. Patients in

Group 1 were more likely than patients in Group 2 to receive furosemide (60.9% versus

52.91%; p<0.05), insulin (15.52% versus 9.3%; p=0.03) and amiodarone (14.33% versus

BMJ Open

1		
2 3	184	4.65%; p<0.01) but there were no other differences between groups for medications.
4 5	185	Additionally, patients in Group 1 were more likely to have been hospitalized for HF at least
6 7 8	186	twice during the last year (15.52% versus 8.81%; p<0.01), and to be under the care of a
9 10	187	cardiologist (72.24% versus 61.63%; p=0.02). The incidence of patients carrying a
11 12	188	defibrillator and of pacemakers (single, dual, or triple) are not presented since the sample
13 14	189	sizes were small (N=16 and N=17, N=36, and N=6, respectively) and so the data were not
15 16	190	considered sufficiently robust. Patients in Group 1 were more likely to have a housekeeper
17 18	191	(31.13% versus 23.26%; p=0.02) and nurse (29.25% versus 20.93%; p=0.04) but there was no
19 20 21	192	difference between groups regarding family support, known cognitive impairment, or the
21 22 23	193	incidence of being bedridden.
24 25 26 27	194	Hospitalization and clinical status
28 29	195	Although there were few statistically significant differences between groups in hospitalization
30 31	196	and clinical status parameters (Table 2) there was a consistent trend towards more congestion
32 33	197	in Group 1, including higher levels of dyspnea, more pulmonary infiltrates on chest X-ray,
34 35 36	198	higher BNP and proBNP (Table 3 and below).
37 38 39	199	There were no significant differences between groups in their means of transport to the ED
40 41	200	(most commonly by personal means [45.76% overall]), Killip status (most patients in each
42 43	201	group had a Killip status of 2 [53.06% overall], and signs of cardiogenic shock (2.96%
44 45	202	overall).
46 47 48 49	203	Early management and diagnosis
50 51	204	At admission, blood samples from all patients underwent biological analysis (Table 3). As
52 53	205	well as the differences between groups for CrCl, significant differences were observed for
54 55 56 57	206	BNP, which was 2.2-fold higher in Group 1 than Group 2 (1157.5 ng/L versus 534 ng/L;
58 59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3	207	p<0.01), and proBNP, which was 2.0-fold higher in Group 1 than Group 2 (5120 ng/L versus
4 5	208	2513 ng/L; p<0.01). Additionally, troponin was more likely to be positive in patients in Group
6 7	209	1 than Group 2 (58.21% versus 44.19%; p<0.01). There were no differences between groups
8 9 10 11	210	for sodium, potassium, or hemoglobin.
12 13	211	Most patients underwent under an electrocardiogram (98.61% overall) chest X-ray (94.87%
14 15	212	overall). Patients in Group 1 were more likely than those in Group 2 to have left bundle
16 17	213	branch block (19.1% versus 12.79%; p<0.05), cardiomegaly (51.04% versus 37.21%;
18 19 20	214	p=0.01), and interstitial opacities (60.3% versus 47.67%; p=0.02).
21 22 23	215	Echography was only performed for 82 patients and so the data were not considered
24 25	216	sufficiently robust for inclusion in the analysis.
26 27 28 29	217	Emergency treatments
30 31	218	Patients in Group 1 were more likely than Group 2 to receive emergency treatment of nitrates
32 33	219	(21.19% versus 12.21%; p<0.01), but there were no group differences in other emergency
34 35	220	measures (furosemide, oxygen, anticoagulant, continuous positive airway pressure, non-
36 37	221	invasive ventilation, anti-arrythmics, ionotropic agents, tracheal intubation) (Table 4). Overall
38 39 40	222	6.31% of patients received no emergency treatment, with no difference between groups.
41 42 43 44	223	Outcomes
45 46	224	Precipitating factors were not determined in 42.21% of cases overall, with no overall
47 48	225	difference between groups (Table 5). The most common determined precipitating factors were
49 50	226	infection (25.25% overall), arrythmia (15.19% overall), and hypertension (10.65% overall).
51 52	227	Diabetes decompensation was considered to be the precipitating factor for AHF in 2.99% of
53 54	228	patients in Group 1 but none in Group 2 (p=0.01). There were no other group differences in
55 56 57 58 59	229	precipitating factors.
<u> </u>		

BMJ Open

230 There was no difference between groups in discharge destination (which was most often

- cardiology [28.01% overall]), and the discharge destination was deemed appropriate for a
- similar number of patients in each group (75.35% overall).
- 233 Neither in-hospital mortality (5.92% overall) nor the percentage of patients still hospitalized
- at 30 days (6.31% overall) were significantly different between Group 1 and Group 2.
- However, the median length of stay was 2 days longer in Group 1 than in Group 2 (8 days
- 236 versus 6 days; p=0.03) (Table 5).
 237

238 Discussion

239	The DeFSSICA study was a large-scale, prospective, real-life study conducted following
240	admission of AHF patients to EDs throughout France. As such, the data are primarily
241	applicable to the French population, although wider extrapolation is possible due to
242	coherences with similar studies in other geographical regions. The overall DeFSSICA study
243	data are presented elsewhere [10] and the present sub-analysis reports real-life data from sub-
244	groups of AHF patients with or without concomitant renal dysfunction, based on a CrCl
245	threshold of 60 mL/min. The results show that AHF admissions to EDs are often associated
246	with renal impairment, with almost two-thirds of AHF admissions having CrCl \leq 60 mL/min.
247	This prevalence is comparable to published data from France [14], Italy [15 16], Poland [17],
248	Spain [18 19], Taiwan [20], and the USA [21-23], as well as from pan-European [24 25] and
249	wider international studies [26]. In these studies [14-26], the prevalence of renal impairment
250	on admission of AHF patients ranged from 54.5% to 64%, including 12.4 to 27.4% of patients
251	with severe renal insufficiency. Patients with a history of chronic renal failure ranged from
252	21.4% to 32.5%, which is also comparable to the findings of the DeFSSICA survey. However,
253	it should be noted that impaired cardiac function leads to reduced renal perfusion, which
254	could be in addition to an underlying chronic renal insufficiency. Additionally, increased
255	abdominal pressure at admission that can result from ascites can lead to renal vein
256	compression and reduced GFR at admission, which could also result in elevated serum
257	creatinine. It is likely, therefore, that a proportion of acute kidney injury diagnosed at
258	admission based on serum creatinine could be due to temporary changes in perfusion
259	pressures rather than kidney damage per se; these functional reductions in GFR would be
260	expected to recover once normal hemodynamic function is restored. While it is therefore
261	important to consider the use of biomarkers to provide a more precise assessment of kidney
262	function than serum creatinine [27 28] it is also important to note that the evidence supporting

Page 17 of 43

BMJ Open

the preferential use of novel biomarkers rather than serum creatinine to detect acute kidneyinjury can be inconsistent and remains an area for further research [29-32].

The overall baseline characteristics, clinical status, biological and diagnostic tests, emergency treatment, and outcome of the patients included in this sub-analysis was similar to the overall population in the DeFSSICA study; however, some differences were observed between AHF patients with and without renal dysfunction, including a trend towards more congestion in patients with CRS. As would be expected due to reduced kidney excretion [33], and as described elsewhere [34-37], BNP and pro-BNP levels were higher in patients with CRS than in AHF patients with normal renal function and the percentage of troponin positive patients was also higher in the CRS group. These biomarkers probably reflect the congestion status and remain formally recommended for the management of AHF patients, especially for their prognostic value. The appropriate use of loop diuretics and/or vasodilators [38] in the CRS group, as well as in the AHF group without renal dysfunction, may explain in part the similar intra-hospital mortality rate in each group and the similar proportion of AHF patients with and without renal dysfunction who were still in hospital 30 days after ED admission. Importantly, therefore, the prognosis of CRS patients was not significantly different using loop diuretics and/or nitrates to those without renal dysfunction. As such, it appears that the correct congestive assessment is vital in this complex clinical situation with concomitant failures in two organs.

Worsening renal function (WRF), which leads to a progressive loss of kidney function [33], is a factor for poor long-term prognosis [21 39 40] and Ferreira et al [2] showed that all formulae used to estimate renal function showed a strong and independent association with cardiovascular mortality, with eGFR or CrCl rates under 60 mL/min being associated with increasing cardiovascular mortality. As such, the use of loop diuretics has been considered to be deleterious to long-term renal function, probably since impaired renal function can have

288	etiologies other than those related to congestion. However, despite WRF, Testani et al have
289	recently shown an improvement in prognosis in AHF patients when loop diuretics are used
290	[9]. Moreover, for patients treated for AHF, kidney injury appears to be more common in
291	those with an altered ejection fraction than in those with a preserved ejection fraction [40].
292	However, despite these differences in pathophysiology and etiology between AHF patients
293	with and without renal dysfunction, patient outcome is similar [41 42] meaning that renal
294	dysfunction does not have an impact on outcome in AHF patients. Overall, the results of the
295	sub-analysis of the DeFSSICA survey data for AHF patients with and without renal
296	dysfunction support this conclusion. Although a small but statistically significant increase in
297	the length of hospital stay from 6 to 8 days was observed in CRS patients, who showed a
298	greater incidence of certain co-morbidities (inspiratory retraction, left bundle branch block,
299	cardiomegaly and interstitial opacities), there was no difference in in-hospital mortality or in
300	the number of patients still hospitalized at 30 days post-admission. Additionally, there was no
301	difference in ejection fraction in CRS patients compared to AHF patients with normal renal
301 302	difference in ejection fraction in CRS patients compared to AHF patients with normal renal function.
302	function.
302 303	function. Recent publications suggest that appropriate, fast-acting decongesting therapies, as
302 303 304	function. Recent publications suggest that appropriate, fast-acting decongesting therapies, as recommended by international guidelines, improve the prognosis for AHF patients as long as
302 303 304 305	function. Recent publications suggest that appropriate, fast-acting decongesting therapies, as recommended by international guidelines, improve the prognosis for AHF patients as long as such therapies are introduced early, even if renal impairment develops at the same time [8].
302 303 304 305 306	function. Recent publications suggest that appropriate, fast-acting decongesting therapies, as recommended by international guidelines, improve the prognosis for AHF patients as long as such therapies are introduced early, even if renal impairment develops at the same time [8]. Furthermore, it appears that renal impairment in AHF patients does not have an adverse
 302 303 304 305 306 307 	function. Recent publications suggest that appropriate, fast-acting decongesting therapies, as recommended by international guidelines, improve the prognosis for AHF patients as long as such therapies are introduced early, even if renal impairment develops at the same time [8]. Furthermore, it appears that renal impairment in AHF patients does not have an adverse impact on patient prognosis provided that the congestion is improved. Renal function should
 302 303 304 305 306 307 308 	function. Recent publications suggest that appropriate, fast-acting decongesting therapies, as recommended by international guidelines, improve the prognosis for AHF patients as long as such therapies are introduced early, even if renal impairment develops at the same time [8]. Furthermore, it appears that renal impairment in AHF patients does not have an adverse impact on patient prognosis provided that the congestion is improved. Renal function should be assessed according to the level of patient congestion, and so tools for the assessment of
 302 303 304 305 306 307 308 309 	function. Recent publications suggest that appropriate, fast-acting decongesting therapies, as recommended by international guidelines, improve the prognosis for AHF patients as long as such therapies are introduced early, even if renal impairment develops at the same time [8]. Furthermore, it appears that renal impairment in AHF patients does not have an adverse impact on patient prognosis provided that the congestion is improved. Renal function should be assessed according to the level of patient congestion, and so tools for the assessment of congestion, such as the BNP or proBNP biomarkers [43], lung ultrasound (LUS) B-lines (38),
 302 303 304 305 306 307 308 309 310 	function. Recent publications suggest that appropriate, fast-acting decongesting therapies, as recommended by international guidelines, improve the prognosis for AHF patients as long as such therapies are introduced early, even if renal impairment develops at the same time [8]. Furthermore, it appears that renal impairment in AHF patients does not have an adverse impact on patient prognosis provided that the congestion is improved. Renal function should be assessed according to the level of patient congestion, and so tools for the assessment of congestion, such as the BNP or proBNP biomarkers [43], lung ultrasound (LUS) B-lines (38), or the assessment of the dimensions and compliance of the inferior vena cava are vital.

Page 19 of 43

BMJ Open

	313	and hematocrit, have been proposed as surrogate markers [45]. Furthermore, formulae have
	314	been developed to indirectly estimate plasma volume using hemoglobin and/or hematocrit
h	315	data [46 47]. Novel biomarkers such as urinary angiotensinogen [48], neutrophil gelatinase-
	316	associated lipocalin [49 50], kidney injury molecule-1 [51], interleukin-18 [52 53], N-acetyl-
1 2	317	β -d-glucosaminidase [54], cystatine C [55 56] or a combination of some or all of these could
3 4	318	also be used to improve the diagnosis of acute kidney injury, with the caveat that the use of
2 3 4 5 5 7 8 9 9 0 1 2 3 4 5 5 5 7 8 9 0 1	319	such biomarkers can be inconsistent as described earlier. The assessment of diuresis and
7 8	320	natriuresis, which reflect both glomerular and tubular function, could offer a strategy to
9) 1	321	achieve decongestion [54 57 58]. Ferreira et al [59] and Palazzuoli et al [60] showed that the
2 3	322	lack of a diuretic response is a more important prognostic factor than the use of loop diuretics.
4 5	323	This suggests a new diagnostic challenge, i.e. to assess the patient's response to diuretics [61-
5 7	324	64]. However, despite some proposals to define diuretic resistance (e.g. persistent congestion
8 9	325	despite adequate and escalating doses of diuretic with >80 mg furosemide/day, amount of
D 1	326	sodium excreted as a percentage of filtered load <0.2%, failure to excrete \geq 90 mmol of
2 3 4 5 6 7	327	sodium within 72 hours of a 160 mg oral furosemide dose given twice daily) and the means of
+ 5 5	328	evaluation (e.g. weight loss per unit of 40 mg furosemide [or equivalent], net fluid loss/mg of
7 3	329	loop diuretic [40 mg of furosemide or equivalent] during hospitalization, natriuretic response
9	330	to furosemide) [65], there is currently no consensus for commonly accepted standards.
1 2 3	331	Additionally, it is important that any alteration of GFR should be interpreted in the context of
	332	the deterioration of the clinical situation.
4 5 6 7	333	Another alternative therapy in CRS is the use of mineralocorticoid antagonists. These have
/ 8 9		
8 9 0 1	334	been associated with an improvement in both congestion [66 67] and mortality in HF patients
	335	[68 69], although the ATHENA-HF trial results are less conclusive [70]. Combined therapies
2 3 4 5 6 7	336	have also been evaluated, including hypotonic saline serum in combination with diuretic
	337	therapy to improve diuresis [71 72] and mannitol in combination with furosemide [65],
8		

1		19
2 3	338	although their benefit in diuretic-resistant patients is not confirmed. The addition of
4 5	339	metozalone to furosemide could be of interest because of its capacity to produce diuresis even
6 7 8	340	in patients with low GFR [73 74]. In a meta-analysis, Wang and al showed that tolvaptan, an
8 9 10	341	oral vasopressin V ₂ -receptor antagonist, may also represent an alternative therapy in WRF
11 12	342	[75]. Several studies have shown that tolvaptan can decrease WRF in patients treated with
13 14	343	furosemide [76 77]. Finally, venous ultrafiltration allows controlled hydrosodic depletion by
15 16	344	subtracting isotonic fluid, compared to diuretics that allow the subtraction of hypotonic fluid.
17 18	345	Other studies suggest that the effectiveness of ultrafiltration is associated with a reduction in
19 20	346	inflammatory cytokines [78]. These and other approaches in patients with cardiac
21 22 23	347	insufficiency and resistance to diuretics have recently been reviewed [65].
23 24		
25 26	348	The CRS analysis using data from the DeFSSICA survey has some limitations. First, only two
27 28	349	groups have been analyzed (i.e. patients with or without renal dysfunction), whereas chronic
29 30	350	kidney disease is characterized by 5 stages [5]. However, as noted earlier, this is a
31 32	351	mechanistic classification and in the present analysis the use of the CrCl threshold of 60
33 34	352	mL/min, which is commonly used to define renal dysfunction [2 37 79-81], is considered to
35 36 37	353	be satisfactory, especially since the small number of patients would not allow a thorough
37 38 39	354	analysis for five sub-categories. However, the pathophysiology of WRF in AHF is complex
40 41	355	[82] and using a spot measurement of serum creatinine to classify CRS has limitations. This
42 43	356	approach does not allow the separation of patients with acute and chronic CRS: in the present
44 45	357	study, 35.8% of patients included in the CRS group had a history of chronic renal failure and
46 47	358	so may not have suffered any acute change in renal function, whereas patients with acute
48 49	359	changes in serum creatinine compared to their own baseline but not fulfilling the <60 mL/min
50 51 52	360	criterion would not have been included in the CRS group. That said, the presence of renal
53 54	361	failure on admission remains strongly associated with a poor prognosis irrespective of the
55 56	362	anterior renal status and despite the lack of WRF in the first 5 days [83]. While the choice of a
57 58		

59

60

Page 21 of 43

BMJ Open

363	CrCl threshold of 30 mL/min could have led to a greater chance of obtaining a significant
364	difference between groups in terms of outcome, we based our analysis on the 60 mL/min cut-
365	off since it is more widely used. Second, since the data used are observational, it was not
366	possible to impose any randomization or blinding, and the number of patients in each group
367	was not balanced. Third, GFR assessments were performed by local laboratories for each
368	center, rather than standardized at a single center, and repeated measures of GFR could have
369	improved their accuracy and comparability. The use of different formulae to evaluate CrCl in
370	a chronic disease state and an acute context without knowledge of the baseline value reflects
371	the real-life situation. While potentially problematic, with the possibility of some incorrect
372	classification of CKD, numerous previous studies of the impact of renal failure in AHF have
373	used a similar approach [2 37 79]. Finally, it was not possible to sub-classify different types
374	of CRS in this analysis since Kidney Disease Improving Global Outcomes (KDIGO) data
375	were not collected, although as described earlier the small number of patients would not have
376	allowed a thorough analysis for each sub-category.

377 Conclusion

These real-life data suggested that CRS patients have the same outcome as AHF patients without renal dysfunction when the treatment of the former group is modeled on that for the latter group. This finding should not limit the use of loop diuretics and/or vasodilators as long as the patient presents congestion as assessed using biomarkers and ultrasound. The use of diuretic treatment should be based on a more rapid diagnosis of congestion and evaluation of an inadequate response to diuretics, allowing the rapid and appropriate implementation of alternative therapies if necessary.

	386	Funding
	387	This work was supported by Novartis France, but the Sponsor was not involved in the study
	388	protocol, methods, or choice of centers.
:	389	Competing interests
	390	CEK and has received grants from Novartis (other than this work), Daiichy Sankyo, and
	391	Boehringer Ingleheim.
	392	NP reports has acted as a paid consultant for Vygon SA.
	393	SC reports personal fees from Novartis (other than this work).
	394	LF is an employee of RESCUe Network.
	395	DdR, AB, SMZ, ME, DS, EBC, SL, PH, AG, KT and TC have no competing interests.
	396	Authors' contributions
	397	SMZ, NP, SC, ME, DS, EBC, SL, PH, TC, and CEK conceived the study, designed the trial,
	398	and obtained research funding. TC and CEK supervised the conduct of the trial and data
	399	collection. NP, SC, DS and TC undertook recruitment of participating centers and patients. LF
	400	managed the data, including quality control, provided statistical advice and analyzed the data.
	401	DdR, LF, AB, AG, KT, TC and CEK drafted the manuscript, and all authors contributed
	402	substantially to its revision. All authors reviewed and approved the final version of the
	403	manuscript and are accountable for its content.
	404	Consent for publication
	405	Not applicable since no individual patient is identified.

BMJ Open

406 Data	sharing	statement
-----------------	---------	-----------

The database supporting the results presented in this article can be shared on reasonablerequest.

409 Acknowledgements

410 The authors thank the emergency physicians and cardiologists and patients who participated

411 in this survey at the following centers: CHU Toulouse, CHU Rouen, CHU Clermont Ferrand,

412 CHU Nancy, CHR Metz-Thionville-Hôpital de Mercy, Hôpital Lariboisière-Paris, CHR

413 Annecy Genevois, CHU Lyon-Hôp, Edouard Herriot, CHRU de Lille, Chu De Caen, CHU

414 Nice-Hôpital Saint-Roch, CHU de Grenoble, Hôpital Bicêtre-Paris, Hôpital St Louis Paris,

415 CH I Meulan, CH d'Avignon, CH Jacques Lacarin–Vichy, CH d'Aix En Provence, CH

416 Fleyriat –Bourg En Bresse, CH Bourgoin Jallieu, CHU de Saint Etienne, CH du Forez

417 Montbrison-Feurs, CH de Firminy, CH Villefranche-Sur-Saône, CHU De Brest, CH Henri

418 Mondor, CH de Vienne.

419 The authors also thank the RESCUe Network for the practical implementation of this survey

420 and statistical analysis and Novartis France for its financial support.

421 Dr Andrew Lane (Lane Medical Writing), funded by the RESCUe network, provided

422 professional medical writing assistance in the preparation and development of the manuscript

423 in accordance with the European Medical Writers Association guidelines and Good

424 Publication Practice.

References

427 1. Sayago-Silva I, Garcia-Lopez F, Segovia-Cubero J. Epidemiology of heart failure in Spain
428 over the last 20 years. Rev Esp Cardiol (Engl Ed) 2013;66(8):649-56 doi:
429 10.1016/j.rec.2013.03.012.

2. Ferreira JP, Girerd N, Pellicori P, et al. Renal function estimation and Cockroft-Gault formulas for predicting cardiovascular mortality in population-based, cardiovascular risk, heart failure and post-myocardial infarction cohorts: The Heart 'OMics' in AGEing (HOMAGE) and the high-risk myocardial infarction database initiatives. BMC Med 2016;14(1):181 doi: 10.1186/s12916-016-0731-2.

- 3. Hillege HL, Girbes AR, de Kam PJ, et al. Renal function, neurohormonal activation, and
 survival in patients with chronic heart failure. Circulation 2000;102(2):203-10.
- 437 4. Damman K, Valente MA, Voors AA, et al. Renal impairment, worsening renal function,
 438 and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J
 439 2014;35(7):455-69 doi: 10.1093/eurheartj/eht386.
- 440 5. Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol
 441 2008;52(19):1527-39 doi: 10.1016/j.jacc.2008.07.051.
- 6. Ronco C, House AA, Haapio M. Cardiorenal syndrome: refining the definition of a
 complex symbiosis gone wrong. Intensive Care Med 2008;34(5):957-62 doi:
 10.1007/s00134-008-1017-8.
- 7. Dries DL, Exner DV, Domanski MJ, et al. The prognostic implications of renal
 insufficiency in asymptomatic and symptomatic patients with left ventricular systolic
 dysfunction. J Am Coll Cardiol 2000;35(3):681-9.

BMJ Open

448	8. Hanberg JS, Tang WHW, Wilson FP, et al. An exploratory analysis of the competing
449	effects of aggressive decongestion and high-dose loop diuretic therapy in the DOSE
450	trial. Int J Cardiol 2017; 241 :277-82 doi: 10.1016/j.ijcard.2017.03.114.
451	9. Testani JM, Ter Maaten JM. Decongestion in Acute Heart Failure: Does the End Justify the
452	Means? JACC Heart Fail 2016;4(7):589-90 doi: 10.1016/j.jchf.2016.03.024.
453	10. Chouihed T, Manzo-Silberman S, Peschanski N, et al. Management of suspected acute
454	heart failure dyspnea in the emergency department: results from the French
455	prospective multicenter DeFSSICA survey. Scand J Trauma Resusc Emerg Med
456	2016; 24 (1):112 doi: 10.1186/s13049-016-0300-x.
457	11. National Institute of Diabetes and Digestive and Kidney Diseases. Estimating glomerular
458	filtration rate (GFR) 2015. <u>https://www.niddk.nih.gov/health-information/health-</u>
459	communication-programs/nkdep/lab-evaluation/gfr/estimating/Pages/estimating.aspx.
460	Accessed 21 June 2018.
461	12. Botev R, Mallie JP, Couchoud C, et al. Estimating glomerular filtration rate: Cockcroft-
462	Gault and Modification of Diet in Renal Disease formulas compared to renal inulin
463	clearance. Clin J Am Soc Nephrol 2009;4(5):899-906 doi: 10.2215/CJN.05371008.
464	13. Ancelle T. Statistique Epidémiologique. 3rd ed. Paris: Maloine, 2011.
465	14. Logeart D, Isnard R, Resche-Rigon M, et al. Current aspects of the spectrum of acute
466	heart failure syndromes in a real-life setting: the OFICA study. Eur J Heart Fail
467	2013;15(4):465-76 doi: 10.1093/eurjhf/hfs189.

468 15. Oliva F, Mortara A, Cacciatore G, et al. Acute heart failure patient profiles, management
469 and in-hospital outcome: results of the Italian Registry on Heart Failure Outcome. Eur
470 J Heart Fail 2012;14(11):1208-17 doi: 10.1093/eurjhf/hfs117.

- 471 16. Tavazzi L, Maggioni AP, Lucci D, et al. Nationwide survey on acute heart failure in
 472 cardiology ward services in Italy. Eur Heart J 2006;27(10):1207-15 doi:
 473 10.1093/eurheartj/ehi845.
- 474 17. Straburzynska-Migaj E, Kaluzna-Oleksy M, Maggioni AP, et al. Patients with heart
 475 failure and concomitant chronic obstructive pulmonary disease participating in the
 476 Heart Failure Pilot Survey (ESC-HF Pilot) Polish population. Arch Med Sci
 477 2015;11(4):743-50 doi: 10.5114/aoms.2014.47878.
- 478 18. Conde-Martel A, Formiga F, Perez-Bocanegra C, et al. Clinical characteristics and one479 year survival in heart failure patients more than 85 years of age compared with
 480 younger. Eur J Intern Med 2013;24(4):339-45 doi: 10.1016/j.ejim.2013.01.005.
- 481 19. Llorens P, Escoda R, Miró O, et al. Characteristics and clinical course of patients with
 482 acute heart failure and the therapeutic measures applied in Spanish emergency
 483 departments: based on the EAHFE registry (Epidemiology of Acute Heart Failure in
 484 Emergency Departments). Emergencias 2015;27:11-22.
- 20. Chang H-Y, Wang C-C, Wu Y-W, et al. One-Year Outcomes of Acute Decompensated
 Systolic Heart Failure in Taiwan: Lessons from TSOC-HFrEF Registry Acta
 Cardiologica Sinica 2017;33(2):127-38
- 488 21. Abraham WT, Fonarow GC, Albert NM, et al. Predictors of in-hospital mortality in
 489 patients hospitalized for heart failure: insights from the Organized Program to Initiate

BMJ Open

490 Li	fesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J
491 Aı	m Coll Cardiol 2008; 52 (5):347-56 doi: 10.1016/j.jacc.2008.04.028.
492 22. Adam	s KF, Jr., Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients
493 ho	spitalized for heart failure in the United States: rationale, design, and preliminary
494 ob	servations from the first 100,000 cases in the Acute Decompensated Heart Failure
495 Na	ational Registry (ADHERE). Am Heart J 2005;149(2):209-16 doi:
496 10	.1016/j.ahj.2004.08.005.
497 23. Dierc	ks DB, Fonarow GC, Kirk JD, et al. Risk stratification in women enrolled in the
498 Ao	cute Decompensated Heart Failure National Registry Emergency Module
499 (A	DHERE-EM). Acad Emerg Med 2008;15(2):151-8 doi: 10.1111/j.1553-
500 27	12.2008.00030.x.
501 24. Clelar	nd JG, Swedberg K, Follath F, et al. The EuroHeart Failure survey programme a
502 su	rvey on the quality of care among patients with heart failure in Europe. Part 1:
503 pa	tient characteristics and diagnosis. Eur Heart J 2003; 24 (5):442-63.
504 25. Niem	inen MS, Brutsaert D, Dickstein K, et al. EuroHeart Failure Survey II (EHFS II): a
505 su	rvey on hospitalized acute heart failure patients: description of population. Eur
506 He	eart J 2006; 27 (22):2725-36 doi: 10.1093/eurheartj/ehl193.
507 26. Folla	th F, Yilmaz MB, Delgado JF, et al. Clinical presentation, management and
508 ou	tcomes in the Acute Heart Failure Global Survey of Standard Treatment (ALARM-
509 HI	F). Intensive Care Med 2011; 37 (4):619-26 doi: 10.1007/s00134-010-2113-0.
510 27. Molite	oris BA, Levin A, Warnock DG, et al. Improving outcomes of acute kidney injury:
511 rej	port of an initiative. Nat Clin Pract Nephrol 2007;3(8):439-42 doi:
512 10	.1038/ncpneph0551.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

513	28. Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J
514	Am Soc Nephrol 2009; 20 (3):672-9 doi: 10.1681/ASN.2008070669.
515	29. Breidthardt T, Sabti Z, Ziller R, et al. Diagnostic and prognostic value of cystatin C in
516	acute heart failure. Clin Biochem 2017;50(18):1007-13 doi:
517	10.1016/j.clinbiochem.2017.07.016.
518	30. Breidthardt T, Socrates T, Drexler B, et al. Plasma neutrophil gelatinase-associated
519	lipocalin for the prediction of acute kidney injury in acute heart failure. Crit Care
520	2012; 16 (1):R2 doi: 10.1186/cc10600.
521	31. Maisel AS, Wettersten N, van Veldhuisen DJ, et al. Neutrophil Gelatinase-Associated
522	Lipocalin for Acute Kidney Injury During Acute Heart Failure Hospitalizations: The
523	AKINESIS Study. J Am Coll Cardiol 2016;68(13):1420-31 doi:
524	10.1016/j.jacc.2016.06.055.
525	32. Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI
526	by implementing the KDIGO guidelines in high risk patients identified by biomarkers:
527	the PrevAKI randomized controlled trial. Intensive Care Med 2017;43(11):1551-61
528	doi: 10.1007/s00134-016-4670-3.
529	33. Tuegel C, Bansal N. Heart failure in patients with kidney disease. Heart 2017 doi:
530	10.1136/heartjnl-2016-310794 .
531	34. Anwaruddin S, Lloyd-Jones DM, Baggish A, et al. Renal function, congestive heart
532	failure, and amino-terminal pro-brain natriuretic peptide measurement: results from
533	the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study. J
534	Am Coll Cardiol 2006;47(1):91-7 doi: 10.1016/j.jacc.2005.08.051.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 43

BMJ Open

4 5 536 labo 6	NW, Wu AH, Jaffe AS, et al. National Academy of Clinical Biochemistry ratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic ide or N-terminal proB-type natriuretic peptide for etiologies other than acut mary syndromes and heart failure. Clin Chem 2007; 53 (12):2086-96 doi
5 536 labo 6	ide or N-terminal proB-type natriuretic peptide for etiologies other than acut
8	mary syndromes and heart failure. Clin Chem 2007;53(12):2086-96 doi
•	
11	373/clinchem.2007.095679.
13 14 540 36. Lamb E	J, Vickery S, Price CP. Amino-terminal pro-brain natriuretic peptide to diagnos
17	gestive heart failure in patients with impaired kidney function. J Am Coll Cardio
20	6;48(5):1060-1; author reply 61 doi: 10.1016/j.jacc.2006.06.019.
21 22 543 37. Vickery 23	S, Price CP, John RI, et al. B-type natriuretic peptide (BNP) and amino-termina
	3NP in patients with CKD: relationship to renal function and left ventricula
26 545 hype 27	ertrophy. Am J Kidney Dis 2005; 46 (4):610-20 doi: 10.1053/j.ajkd.2005.06.017.
28 29 546 38. Peacocl 30	k WF, Emerman C, Costanzo MR, et al. Early vasoactive drugs improve hear
32	ure outcomes. Congest Heart Fail 2009;15(6):256-64 doi: 10.1111/j.1751
33 34 548 7133 35	3.2009.00112.x.
36 37 549 39. Damma 38	n K, Navis G, Voors AA, et al. Worsening renal function and prognosis in hear
	are: systematic review and meta-analysis. J Card Fail 2007;13(8):599-608 doi
	016/j.cardfail.2007.04.008.
	ter FA, Ezekowitz J, Tonelli M, Armstrong PW. Renal insufficiency and hear
16	are: prognostic and therapeutic implications from a prospective cohort study
48	ulation 2004;109(8):1004-9 doi: 10.1161/01.CIR.0000116764.53225.A9.
51 52 555 41. Abebe 1	TB, Gebreyohannes EA, Tefera YG, Abegaz TM. Patients with HFpEF and HFrEI
	e different clinical characteristics but similar prognosis: a retrospective cohor
55 56 557 stud 57 58 59	y. BMC Cardiovasc Disord 2016; 16 (1):232 doi: 10.1186/s12872-016-0418-9.

558	42. Borlaug BA, Redfield MM. Diastolic and systolic heart failure are distinct phenotypes
559	within the heart failure spectrum. Circulation 2011;123(18):2006-13; discussion 14
560	doi: 10.1161/CIRCULATIONAHA.110.954388.
561	43. Gargani L, Frassi F, Soldati G, et al. Ultrasound lung comets for the differential diagnosis
562	of acute cardiogenic dyspnoea: a comparison with natriuretic peptides. Eur J Heart
563	Fail 2008; 10 (1):70-7 doi: 10.1016/j.ejheart.2007.10.009.
564	44. Ahmad T, Testani JM. Haemoconcentration as a treatment goal in heart failure: ready for
565	prime time? Eur J Heart Fail 2017; 19 (2):237-40 doi: 10.1002/ejhf.715.
566	45. Girerd N, Seronde MF, Coiro S, et al. Integrative Assessment of Congestion in Heart
567	Failure Throughout the Patient Journey. JACC Heart Fail 2018;6(4):273-85 doi:
568	10.1016/j.jchf.2017.09.023.
569	46. Mentz RJ, Kjeldsen K, Rossi GP, et al. Decongestion in acute heart failure. Eur J Heart
570	Fail 2014; 16 (5):471-82 doi: 10.1002/ejhf.74.
571	47. Duarte K, Monnez JM, Albuisson E, et al. Prognostic Value of Estimated Plasma Volume
572	in Heart Failure. JACC Heart Fail 2015;3(11):886-93 doi: 10.1016/j.jchf.2015.06.014.
573	48. Yang X, Chen C, Tian J, et al. Urinary Angiotensinogen Level Predicts AKI in Acute
574	Decompensated Heart Failure: A Prospective, Two-Stage Study. J Am Soc Nephrol
575	2015; 26 (8):2032-41 doi: 10.1681/ASN.2014040408.
576	49. Elsharawy S, Raslan L, Morsy S, et al. Plasma neutrophil gelatinase-associated lipocalin
577	as a marker for the prediction of worsening renal function in children hospitalized for
578	acute heart failure. Saudi J Kidney Dis Transpl 2016;27(1):49-54 doi: 10.4103/1319-
579	2442.174071.

BMJ Open

580	50. Ito M, Doi K, Takahashi M, et al. Plasma neutrophil gelatinase-associated lipocalin
581	predicts major adverse cardiovascular events after cardiac care unit discharge. J
582	Cardiol 2016;67(2):184-91 doi: 10.1016/j.jjcc.2015.05.010.
583	51. Medic B, Rovcanin B, Basta Jovanovic G, et al. Kidney Injury Molecule-1 and
584	Cardiovascular Diseases: From Basic Science to Clinical Practice. Biomed Res Int
585	2015; 2015 :854070 doi: 10.1155/2015/854070.
586	52. Les biomarqueurs en médécine d'urgence [French]. 1 ed. Paris: Springer-Verlag, 2012.
587	53. Taub PR, Borden KC, Fard A, Maisel A. Role of biomarkers in the diagnosis and
588	prognosis of acute kidney injury in patients with cardiorenal syndrome. Expert Rev
589	Cardiovasc Ther 2012; 10 (5):657-67 doi: 10.1586/erc.12.26.
590	54. Verbrugge FH, Dupont M, Steels P, et al. The kidney in congestive heart failure: 'are
591	natriuresis, sodium, and diuretics really the good, the bad and the ugly?'. Eur J Heart
592	Fail 2014; 16 (2):133-42 doi: 10.1002/ejhf.35.
593	55. Lassus JP, Harjola VP, Peuhkurinen K, et al. Cystatin C, NT-proBNP, and inflammatory
594	markers in acute heart failure: insights into the cardiorenal syndrome. Biomarkers
595	2011; 16 (4):302-10 doi: 10.3109/1354750X.2011.555822.
596	56. Legrand M, De Berardinis B, Gaggin HK, et al. Evidence of uncoupling between renal
597	dysfunction and injury in cardiorenal syndrome: insights from the BIONICS study.
598	PloS one 2014;9(11):e112313 doi: 10.1371/journal.pone.0112313.
599	57. Metra M, Davison B, Bettari L, et al. Is worsening renal function an ominous prognostic
600	sign in patients with acute heart failure? The role of congestion and its interaction with

601	renal function. Circ Heart Fail 2012;5(1):54-62 doi:
602	10.1161/CIRCHEARTFAILURE.111.963413.
603	58. Mullens W, Verbrugge F, Nijst P, Tang W. Renal sodium avidity in heart failure: from
604	pathophysiology to treatment strategies. European Heart Journal 2017 doi:
605	10.1093/eurheartj/ehx035.
606	59. Ferreira JP, Girerd N, Bettencourt Medeiros P, et al. Lack of diuretic efficiency (but not
607	low diuresis) early in an acutely decompensated heart failure episode is associated
608	with increased 180-day mortality. Cardiorenal Med 2017;7(2):137-49 doi:
609	10.1159/000455903.
610	60. Palazzuoli A, Testani JM, Ruocco G, et al. Different diuretic dose and response in acute
611	decompensated heart failure: Clinical characteristics and prognostic significance. Int J
612	Cardiol 2016; 224 :213-19 doi: 10.1016/j.ijcard.2016.09.005.
613	61. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J
614	2015; 36 (23):1437-44 doi: 10.1093/eurheartj/ehv010.
615	62. Hoorn EJ, Ellison DH. Diuretic Resistance. Am J Kidney Dis 2017;69(1):136-42 doi:
616	10.1053/j.ajkd.2016.08.027.
617	63. Ray EC, Boyd-Shiwarski CR, Kleyman TR. Why Diuretics fail failing hearts. J Am Soc
618	Nephrol 2017 doi: 10.1681/ASN.2017070797.
619	64. Valente MA, Voors AA, Damman K, et al. Diuretic response in acute heart failure:
620	clinical characteristics and prognostic significance. Eur Heart J 2014;35(19):1284-93
621	doi: 10.1093/eurheartj/ehu065.
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

je 33 of 43	BMJ Open
	32
622	65. ter Maaten JM, Valente MA, Damman K, et al. Diuretic response in acute heart failure-
623	pathophysiology, evaluation, and therapy. Nat Rev Cardiol 2015;12(3):184-92 doi:
624	10.1038/nrcardio.2014.215.
625	66. Bansal S, Lindenfeld J, Schrier RW. Sodium retention in heart failure and cirrhosis:
626	potential role of natriuretic doses of mineralocorticoid antagonist? Circ Heart Fail
627	2009; 2 (4):370-6 doi: 10.1161/CIRCHEARTFAILURE.108.821199.
628	67. Hensen J, Abraham WT, Durr JA, Schrier RW. Aldosterone in congestive heart failure:
629	analysis of determinants and role in sodium retention. Am J Nephrol 1991;11(6):441-
630	6.
631	68. The RALES investigators. Effectiveness of spironolactone added to an angiotensin-
632	converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart
633	failure (the Randomized Aldactone Evaluation Study [RALES]). Am J Cardiol
634	1996; 78 (8):902-7.
635	69. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and
636	mortality in patients with severe heart failure. Randomized Aldactone Evaluation
637	Study Investigators. The New England journal of medicine 1999;341(10):709-17 doi:
638	10.1056/NEJM199909023411001.
639	70. Butler J, Anstrom KJ, Felker GM, et al. Efficacy and safety of spironolactone in acute
640	heart failure: The ATHENA-HF Randomized Clinical Trial. JAMA Cardiol 2017 doi:
641	10.1001/jamacardio.2017.2198.
642	71. Licata G, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and small-
643	volume hypertonic saline solution infusion in comparison with a high dose of

644	furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart
645	J 2003; 145 (3):459-66 doi: 10.1067/mhj.2003.166.
646	72. Paterna S, Di Pasquale P, Parrinello G, et al. Changes in brain natriuretic peptide levels
647	and bioelectrical impedance measurements after treatment with high-dose furosemide
648	and hypertonic saline solution versus high-dose furosemide alone in refractory
649	congestive heart failure: a double-blind study. J Am Coll Cardiol 2005;45(12):1997-
650	2003 doi: 10.1016/j.jacc.2005.01.059.
651	73. Ng TM, Konopka E, Hyderi AF, et al. Comparison of bumetanide- and metolazone-based
652	diuretic regimens to furosemide in acute heart failure. J Cardiovasc Pharmacol Ther
653	2013; 18 (4):345-53 doi: 10.1177/1074248413482755.
654	74. Tilstone WJ, Dargie H, Dargie EN, et al. Pharmacokinetics of metolazone in normal
655	subjects and in patients with cardiac or renal failure. Clin Pharmacol Ther
656	1974;16(2):322-9.
657	75. Wang C, Xiong B, Cai L. Effects of Tolvaptan in patients with acute heart failure: a
658	systematic review and meta-analysis. BMC Cardiovasc Disord 2017;17(1):164 doi:
659	10.1186/s12872-017-0598-у.
660	76. Jujo K, Saito K, Ishida I, et al. Randomized pilot trial comparing tolvaptan with
661	furosemide on renal and neurohumoral effects in acute heart failure. ESC Heart Fail
662	2016;3(3):177-88 doi: 10.1002/ehf2.12088.
663	77. Kimura K, Momose T, Hasegawa T, et al. Early administration of tolvaptan preserves
664	renal function in elderly patients with acute decompensated heart failure. J Cardiol
665	2016;67(5):399-405 doi: 10.1016/j.jjcc.2015.09.020.

BMJ Open

66	6 78. Torina AG, Silveira-Filho LM, Vilarinho KA, et al. Use of modified ultrafiltration in
66	adults undergoing coronary artery bypass grafting is associated with inflammatory
668	8 modulation and less postoperative blood loss: a randomized and controlled study. J
669	9 Thorac Cardiovasc Surg 2012; 144 (3):663-70 doi: 10.1016/j.jtcvs.2012.04.012.
670	79. Chew DP, Astley C, Molloy D, et al. Morbidity, mortality and economic burden of renal
67:	1 impairment in cardiac intensive care. Intern Med J 2006; 36 (3):185-92 doi:
672	2 10.1111/j.1445-5994.2006.01012.x.
673	80. Schaub JA, Coca SG, Moledina DG, et al. Amino-Terminal Pro-B-Type Natriuretic
674	4 Peptide for Diagnosis and Prognosis in Patients With Renal Dysfunction: A
67	5 Systematic Review and Meta-Analysis. JACC Heart Fail 2015;3(12):977-89 doi:
67	6 10.1016/j.jchf.2015.07.014.
67	81. Tsutamoto T, Kawahara C, Yamaji M, et al. Relationship between renal function and
678	8 serum cardiac troponin T in patients with chronic heart failure. Eur J Heart Fail
679	9 2009; 11 (7):653-8 doi: 10.1093/eurjhf/hfp072.
680	82. Aronson D, Abassi Z, Allon E, Burger AJ. Fluid loss, venous congestion, and worsening
68:	renal function in acute decompensated heart failure. Eur J Heart Fail 2013;15(6):637-
682	2 43 doi: 10.1093/eurjhf/hft036.
683	83. Shirakabe A, Hata N, Kobayashi N, et al. Worsening renal function definition is
684	4 insufficient for evaluating acute renal failure in acute heart failure. ESC Heart Fail
68	5 2018; 5 (3):322-31 doi: 10.1002/ehf2.12264.
680	6
68	7
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Tables

Table 1 Baseline characteristics of patients with confirmed acute heart failure (AHF)

syndrome

	All AHF			
	patients	Group 1	Group 2	
	(N=507)	(n=335)	(n=172)	p-value
Age, y	83 [77;88]	84 [78;89]	82 [75;88]	0.09
Men	220 (43.39%)	144 (42.99%)	76 (44.19%)	0.87
Comorbidities				
- Hypertension	353 (69.63%)	234 (69.85%)	119 (69.19%)	0.79
- Chronic HF	271 (53.45%)	189 (56.42%)	82 (47.67%)	< 0.05
- Atrial fibrillation	223 (43.98%)	151 (45.07%)	72 (41.86%)	0.43
- Coronary heart disease	150 (29.59%)	98 (29.25%)	52 (30.23%)	1.00
- Diabetes type I	14 (2.76%)	12 (3.58%)	2 (1.16%)	0.26
- Diabetes type II	132 (26.04%)	93 (27.76%)	39 (22.67%)	0.20
- Chronic renal failure	114 (22.49%)	108 (32.24%)	6 (3.49%)	< 0.01
- Chronic respiratory failure	87 (17.16%)	60 (17.91%)	27 (15.7%)	0.46
- Known valvular disease	95 (18.74%)	70 (20.9%)	25 (14.53%)	0.07
Priori medications				
- Furosemide	295 (58.19%)	204 (60.9%)	91 (52.91%)	< 0.05
- ACEI/ARB	225 (44.38%)	153 (45.67%)	72 (41.86%)	0.30
- β- blocker	214 (42.21%)	147 (43.88%)	67 (38.95%)	0.20
- Anticoagulant	221 (43.59%)	151 (45.07%)	70 (40.7%)	0.24
- Aspirin	155 (30.57%)	110 (32.84%)	45 (26.16%)	0.08
- Other antiplatelet	56 (11.05%)	37 (11.04%)	19 (11.05%)	0.73
- Oral antidiabetic	66 (13.02%)	47 (14.03%)	19 (11.05%)	0.22
- Insulin	68 (13.41%)	52 (15.52%)	16 (9.3%)	0.03
- Amiodarone	56 (11.05%)	48 (14.33%)	8 (4.65%)	< 0.01
- Aldosterone antagonist	38 (7.5%)	26 (7.76%)	12 (6.98%)	0.48
- Digoxin	38 (7.5%)	18 (5.37%)	20 (11.63%)	0.10
- Thiazidine	32 (6.31%)	21 (6.27%)	11 (6.4%)	0.70
- None	28 (5.52%)	14 (4.18%)	14 (8.14%)	0.38
- Unknown	13 (2.56%)	7 (2.09%)	6 (3.49%)	1.00
Prior hospitalization for HF				
during past year				
- 0	287 (56.61%)	180 (53.73%)	107 (62.21%)	0.14
- 1	130 (25.64%)	83 (24.78%)	47 (27.33%)	0.86
2	62 (12.23%)	52 (15.52%)	10 (5.81%)	< 0.01
Followed by a cardiologist	348 (68.64%	242 (72.24%)	106 (61.63%)	0.02
Residence				
- At home	423 (83.43%)	287 (85.67%)	136 (79.07%)	0.06
- Retirement institution	74 (14.6%)	43 (12.84%)	31 (18.02%)	0.18
- Other institution	8 (1.58%)	4 (1.19%)	4 (2.33%)	0.75

60

					36
	Self-sufficient	258 (50.89%)	162 (48.36%)	96 (55.81%)	0.19
	Home assistance				
	- Housekeeper	151 (29.78%)	111 (33.13%)	40 (23.26%)	0.02
	- Family support	121 (23.87%)	87 (25.97%)	34 (19.77%)	0.10
	- Nurse	134 (26.43%)	98 (29.25%)	36 (20.93%)	0.04
	- Known cognitive	83 (16.37%)	49 (14.63%)	34 (19.77%)	0.26
	impairment				
04	- Bedridden	45 (8.88%)	25 (7.46%)	20 (11.63%)	0.28
91	Data are median (IQR) age or nun				
92	Group 1: patients with CRS; Grou	p 2: patients with norma	al renal function		
93	AHF, acute heart failure; ADEI, a	ngiotensin-converting er	nzyme inhibitor; ARI	B, angiotensin II rece	ptor blocker;
594	HF, heart failure				
695					

Table 2 Hospitalization route and clinical status of patients with confirmed acute heart failure

697 (AHF) syndrome

	All AHF			
	patients	Group 1	Group 2	
	(N = 507)	(n = 335)	(n = 172)	p-valu
Means of transport				
- Personal	232 (45.76%)	157 (46.87%)	75 (43.6%)	0.50
- Ambulance	89 (17.55%)	56 (16.72%)	33 (19.19%)	0.63
- Firemen	55 (10.85%)	34 (10.15%)	21 (12.21%)	0.65
- MICU	40 (7.89%)	29 (8.66%)	11 (6.4%)	0.41
- Inter-hospital transfer	6 (1.18%)	5 (1.49%)	1 (0.58%)	0.48
Clinical signs				
- Warm extremities	390 (76.92%)	257 (76.72%)	133 (77.33%)	0.23
- Cold extremities	61 (12.03%)	45 (13.43%)	16 (9.3%)	0.97
- Signs of right heart	216 (42.6%)	144 (42.99%)	72 (41.86%)	0.69
failure				
- Inspiratory retraction	146 (28.8%)	107 (31.94%)	39 (22.67%)	0.02
- Inability to speak	42 (8.28%)	25 (7.46%)	17 (9.88%)	0.54
First recorded vital signs			ายการแก่งของการการเป็นการการการแก่งการให้การการการการการการการการการการการการการก	
- Heart failure, beats/min	85 [71;102]	85 [72;102]	85 [72;104.25]	0.49
- SBP, mmHg	140 [121;160]	140 [121;160]	140 [124;162]	0.11
- DBP, mmHg	76 [65;90]	75 [63.5;89]	78 [67.75;92.25]	0.03
- SBP <100 mmHg	34 (6.71%)	27 (8.06%)	7 (4.07%)	0.13
- Respiratory rate,	25 [20;30]	26 [20;30]	24 [20;29]	0.16
breaths/min				
- Pulse oximetry, %	94 [90;96.25]	94 [90;97]	94 [89;96]	0.72
- GCS <15	48 (9.47%)	31 (9.25%)	17 (9.88%)	0.94
- Temperature >37°C	13 (2.56%)	12 (3.58%)	1 (0.58%)	0.37
Killip status				
- 1	128 (25.25%)	76 (22.69%)	52 (30.23%)	0.26
- 2	269 (53.06%)	181 (54.03%)	88 (51.16%)	0.30
- 3	84 (16.57%)	60 (17.91%)	24 (13.95%)	0.11
- Signs of shock	15 (2.96%)	8 (2.39%)	7 (4.07%)	0.89
Data are median (IQR) beats/minute,	median (IQR) mmHg			0R) %, or
number (%) of patients				
number (%) of patients Group 1: patients with CRS; Group 2:	: patients with norma	l renal function		
	•		Scale; HF, heart failure	; MICU,
Group 1: patients with CRS; Group 2: AHF, acute heart failure; DBP, diasto	lic blood pressure; G		Scale; HF, heart failure	; MICU,
Group 1: patients with CRS; Group 2:	lic blood pressure; G		Scale; HF, heart failure	; MICU,

Table 3 Biological and diagnosis tests of patients with confirmed acute heart failure (AHF)

705 syndrome

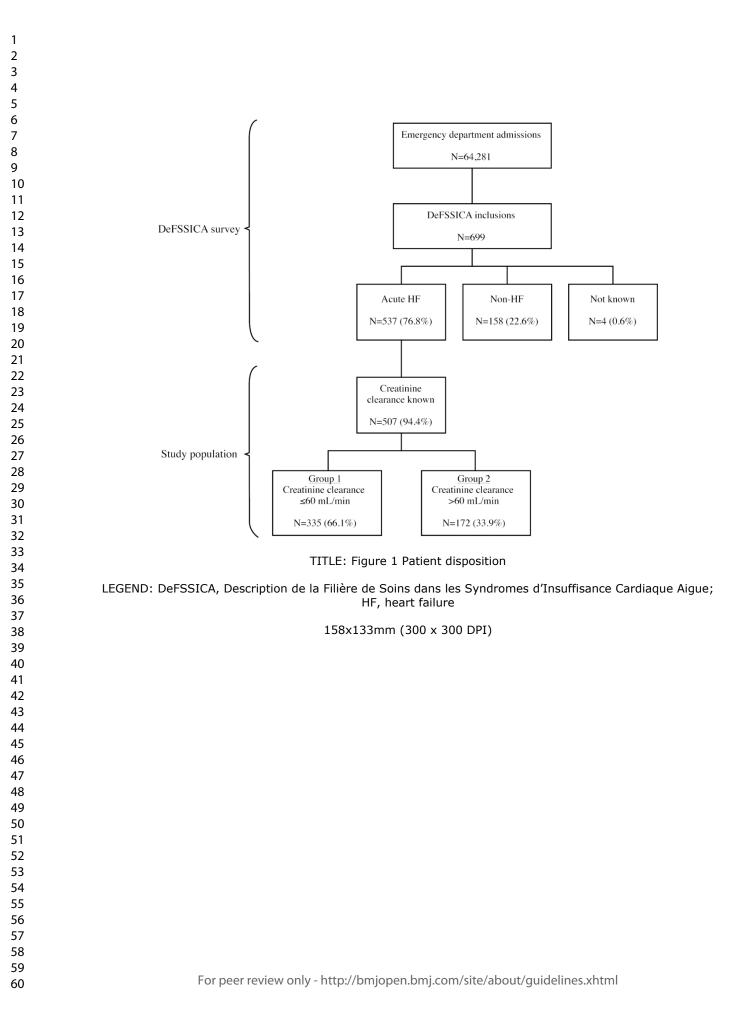
	All AHF patients	Group 1	Group 2	p-valu
	(N=507)	(n=335)	(n=172)	p-van
Biological analysis				
- Performed	507 (100%)	335 (100%)	172 (100%)	
- Sodium, mmol/L	138 [135;141]	138 [135;141]	139 [135;141]	0.40
- Potassium, mmol/L	4 [4;5]	4 [4;5]	4 [4;5]	0.89
- Creatinine clearance, mL/min	50 [35;69.05]	40 [29;49.9]	78.5 [67;91]	< 0.0
- Creatinine clearance <30 mL/min	89 (17.55%)	89 (26.57%)	0 (0%)	< 0.0
- Hemoglobin, g/dL	13 [11;14]	12 [11;13]	13 [13;14]	0.06
- Troponin positive	271 (53.45%)	195 (58.21%)	76 (44.19%)	< 0.0
- BNP, ng/L	991	1157.5	534 [291;1292]	< 0.0
- DIVI, $\operatorname{IIg/L}$	[507.5;2443.5]	[569.25;2680.5]		-0.0
- Pro-BNP, ng/L	4025	5120	2513	< 0.0
	[1729;8863]	[2520;12399.75]	[1146.5;5376.5]	~0.0
ECG				
- Performed	500 (98.61%)	329 (98.20%)	171 (99.41%)	
- Sinusal	220 (44%)	145 (43.28%)	75 (43.6%)	0.92
- Atrial fibrillation	213 (42.01)	139 (41.49%)	74 (43.02%)	1.00
- Driven	44 (8.8%)	33 (9.85%)	11 (6.4%)	0.19
- AVB	21 (4.14%)	14 (4.18%)	7 (4.07%)	0.86
- LBBB	86 (17.2%)	64 (19.1%)	22 (12.79%)	<0.0
- RBBB	59 (11.8%)	34 (10.15%)	25 (14.53%)	0.43
- Repolarization disorder	101 (20.2%)	73 (21.79%)	28 (16.28%)	0.09
Chest X-ray				
- Performed	481 (94.87%)	318 (94.92%)	163 (94.76%)	
- Normal	24 (4.73%)	11 (3.28%)	13 (7.56%)	0.20
- Cardiomegaly	235 (48.86%)	171 (51.04%)	64 (37.21%)	0.01
- Interstitial opacities	284 (59.04%)	202 (60.3%)	82 (47.67%)	0.02
- Alveolar opacities	108 (22.45%)	64 (19.1%)	44 (25.58%)	0.05
Data are median (IQR) mmol/L,	median (IQR) mL/min, 1	median (IQR) g/dL, me	dian (IQR) ng/L, or nur	nber (%)
of patients				
Group 1: patients with CRS; Gro	oup 2: patients with norm	al renal function		
AHF, acute heart failure; AVB, a	atrioventricular block; Bl	NP, brain natriuretic pe	ptide; ECG, electrocard	iogram;
HF, heart failure; IVC, inferior v	ena cava; LBBB, left bu	ndle branch block; LVI	EF, left ventricular eject	ion
fraction; RBBB, right bundle bra	nch block; RV, right ver	tricle; US, ultrasound		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	All AHF patients	Group 1	Group 2	
	(N=507)	(n=335)	(n=172)	p-valu
Furosemide	376 (74.16%)	252 (75.22%)	124 (72.09%)	0.26
Oxygen	337 (66.47%)	225 (67.16%)	112 (65.12%)	0.43
Nitrates	92 (18.15%)	71 (21.19%)	21 (12.21%)	0.01
Anticoagulant	37 (7.3%)	22 (6.57%)	15 (8.72%)	1.00
CPAP	8 (1.58%)	6 (1.79%)	2 (1.16%)	0.24
NIV	45 (8.88%)	30 (8.96%)	15 (8.72%)	0.58
Antiarrythmics	23 (4.54%)	15 (4.48%)	8 (4.65%)	0.60
Ionotropic agents	3 (0.59%)	3 (0.9%)	0 (0%)	0.11
Tracheal intubation	1 (0.2%)	1 (0.3%)	0 (0%)	0.20
None	32 (6.31%)	17 (5.07%)	15 (8.72%)	0.58

713 Table 4 Emergency treatment of patients with confirmed acute heart failure (AHF) syndrome

715 Group 1: patients with CRS; Group 2: patients with normal renal function


AHF, acute heart failure; CPAP, continuous positive airway pressure; NIV, non-invasive ventilation

	All AHF patients	Group 1	Group 2	
		<i>,</i>		p-valu
	(N=507)	(n=335)	(n=172)	
Precipitating factors				
- Unknown	214 (42.21%)	138 (41.19%)	76 (44.19%)	0.82
- Infection	128 (25.25%)	84 (25.07%)	44 (25.58%)	0.89
- Rhythm disorder	77 (15.19%)	47 (14.03%)	30 (17.44%)	0.67
- Hypertension	54 (10.65%)	39 (11.64%)	15 (8.72%)	0.19
- Non-adherence to treatment	30 (5.92%)	17 (5.07%)	13 (7.56%)	0.92
- Acute coronary syndrome	21 (4.14%)	15 (4.48%)	6 (3.49%)	0.32
- Eating disorder	20 (3.94%)	14 (4.18%)	6 (3.49%)	0.39
- Diabetes decompensation	10 (1.97%)	10 (2.99%)	0 (0%)	0.01
Discharge destination				
- Cardiology	142 (28.01%)	100 (29.85%)	42 (24.42%)	0.33
- Geriatric medicine	61 (12.03%)	34 (10.15%)	27 (15.7%)	0.06
- Other medical unit	99 (19.53%)	67 (20%)	32 (18.6%)	0.98
- CICU	62 (12.23%)	42 (12.54%)	20 (11.63%)	1.00
- Resuscitation unit	16 (3.16%)	11 (3.28%)	5 (2.91%)	0.98
- ED hospitalization unit	74 (14.6%)	48 (14.33%)	26 (15.12%)	0.72
- Back home	26 (5.13%)	14 (4.18%)	12 (6.98%)	0.14
- Other	24 (4.73%)	18 (5.37%)	6 (3.49%)	0.78
Destination considered appropriate	382 (75.35%)	246 (73.43%)	136 (79.07%)	0.13
Outcome				
- In-hospital mortality	30 (5.92%)	24 (7.16%)	6 (3.49%)	0.97
- Still hospitalized at 30 days	32 (6.31%)	20 (5.97%)	12 (6.98%)	1.00
Length of stay, days	7 (4;13)	8 (4;13)	6 (3;12)	0.03

Table 5 Outcomes of patients with confirmed acute heart failure (AHF) syndrome

719 Group 1: patients with CRS; Group 2: patients with normal renal function

720 AHF, acute heart failure

 BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

TITLE: Impact of renal dysfunction on the management and outcome of acute heart failure: results from the French prospective, multicenter, DeFSSICA survey

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7-8
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
		Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8-9
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	NA
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	NA
		(d) If applicable, explain how loss to follow-up was addressed	NA
		(e) Describe any sensitivity analyses	NA

Page 44 (of 43
-----------	-------

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	10 and Figure 1
Farticipants	15		10 and righter
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	10
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10-11
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	10-13
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-17
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	18-19
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	20
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Impact of renal dysfunction on the management and outcome of acute heart failure: results from the French prospective, multicenter, DeFSSICA survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-022776.R2
Article Type:	Research
Date Submitted by the Author:	08-Oct-2018
Complete List of Authors:	dos Reis, Dominique; Val de Grâce Medical School, Ministère de la Défense Fraticelli, Laurie; Centre Hospitalier de Vienne Lucien Hussel, RESCUe Network Bassand, Adrien; CHRU Nancy, Emergency Department; CHRU Nancy, CIC-P Manzo-Silberman, Stéphane; Hopital Lariboisiere, Department of Cardiology; INSERM UMR-S-942 Peschanski, Nicolas; Centre Hospitalier Eure-Seine, Emergency Department Charpentier, Sandrine; Hopital de Rangueil, Emergency Department; Universite Toulouse III Paul Sabatier Elbaz, Meyer; Hopital de Rangueil, Department of Cardiology Savary, Dominique; Annecy-Genevois, Emergency Department and Intensive Care Unit Bonnefoy-Cudraz, Eric; Höpital Cardiologique de Lyon, Department of Cardiology Laribi, Said; Centre Hospitalier Regional Universitaire de Tours, Emergency Department; INSERM UMR-S-942, Université Paris-Diderot, Sorbonne Henry, Patrick; Hopital Lariboisiere, Department of Cardiology; INSERM UMR-S-942, Université Paris-Diderot, Sorbonne Guerraoui, Abdallah; Groupement Hospitalier Edouard Herriot, Emergency Department; Universite Claude Bernard Lyon 1 Tazarourte, Karim; University Hospital, Hospices Civils, Lyon, Emergency Medicine; University Lyon 1, Health Services and Performance Research Laboratory, EA 7425 Chouihed, Tahar; CHRU Nancy, SAMU-SMUR-SAU; Institut Lorrain du Coeur et des Vaisseaux El Khoury, Carlos; Centre Hospitalier de Vienne Lucien Hussel, Emergency Department and RESCUE Network
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Cardiovascular medicine, Renal medicine
Keywords:	acute heart failure, AHF, cardio-renal syndrome, CRS, real-life, renal dysfunction

1	
2 3	
4	
5	· · · · · · · · · · · · · · · · · · ·
6 7	SCHOLAR ONE [™]
8	Manuscripts
9	Manascripts
10 11	
12	
13	
14	
15 16	
17	
18	
19 20	
20	
22	
23	
24 25	
26	
27	
28 29	
30	
31	
32 33	
34	
35	
36	
37 38	
39	
40	
41 42	
43	
44	
45 46	
47	
48	
49 50	
50 51	
52	
53	
54 55	
56	
57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

1

1	Impact of renal dysfunction on the management and outcome of acute heart failure: results
2	from the French prospective, multicenter, DeFSSICA survey
3	Dominique dos Reis, MD ¹ , Laurie Fraticelli PhD ² , Adrien Bassand, MD ³ , Stéphane Manzo-
4	Silberman, MD, PhD ⁴ , Nicolas Peschanski, MD, PhD ⁵ , Sandrine Charpentier, MD, PhD ⁶ ,
5	Meyer Elbaz, MD, PhD7, Dominique Savary, MD8, Eric Bonnefoy-Cudraz, MD, PhD9, Said
6	Laribi, MD, PhD ¹⁰ , Patrick Henry, MD, PhD ¹¹ , Abdallah Guerraoui, MD ¹² , Karim Tazarourte,
7	MD, PhD ¹³ , Tahar Chouihed, MD ¹⁴ , Carlos El Khoury, MD, PhD ¹⁵
8	¹ Val de Grâce Medical School, Ministère de la Défense, Paris, France (<u>d.dosreis@live.fr</u>);
9	² RESCUe Network, Lucien Hussel Hospital, Vienne, France (<u>l.fraticelli@resuval.fr</u>);
10	³ SAMU-SMUR-SAU Nancy, Hôpital Central, CHRU Nancy, France
11	(adrienbassand@gmail.com); ⁴ Lariboisière Hospital, Department of Cardiology, Paris, France
12	and INSERM UMR-S 942, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
13	(stephane.manzosilberman@aphp.fr); 5Emergency Department, SAMU 27, Eure Seine
14	Evreux Hospital, France (<u>bansbari@gmail.com</u>); ⁶ Emergency Department, Rangueil
15	University Hospital, Toulouse, France; INSERM, U1027, Toulouse, France; Université
16	Toulouse III – Paul Sabatier, Toulouse, France (<u>charpentier.s@chu-toulouse.fr</u>); ⁷ Department
17	of Cardiology, Rangueil Hospital, Toulouse, France (<u>elbaz.m@chu-toulouse.fr</u>); ⁸ Emergency
18	Department and Intensive Care Unit, Annecy-Genevois, Metz-Tessy, France
19	(savaryd@wanadoo.fr); 9Department of Cardiology, Hôpital Cardiologique de Lyon, Lyon,
20	France (<u>eric.bonnefoy-cudraz@chu-lyon.fr</u>); ¹⁰ Emergency Medicine Department, University
21	Hospital of Tours; INSERM UMR-S 942, Université Paris-Diderot, Sorbonne Paris Cité,
22	Paris, France (s.laribi@chu-tours.fr); ¹¹ Lariboisière Hospital, Department of Cardiology,
23	Paris, France; INSERM UMR-S 942, Université Paris-Diderot, Sorbonne Paris Cité, Paris,
24	France (patrick.henry@aphp.fr); ¹² Calydial Dialysis Department, Lucien Hussel Hospital,

25 Vienne, France (<u>abdallah.guerraoui@calydial.org</u>); ¹³Emergency Department, Edouard

Page 3 of 46

BMJ Open

26	Herriot Hospital, Lyon, France; Univ. Lyon, Claude Bernard Lyon 1 University, HESPER EA
27	7425, Lyon, France (karim.tazarourte@chu-lyon.fr); 14SAMU-SMUR-SAU Nancy, Hôpital
28	Central, CHRU Nancy, France; Centre d'Investigation Clinique Plurithématique 1433, Institut
29	Lorrain du Cœur et des Vaisseaux, Vandoeuvre-les-Nancy France; INSERM U1116,
30	Université de Lorraine, Nancy, France (t.chouihed@gmail.com); ¹⁵ Emergency Department
31	and RESCUe Network, Lucien Hussel Hospital, Vienne, France; Univ. Lyon, Claude Bernard
32	Lyon 1 University, HESPER EA 7425, Lyon, France (c.elkhoury@resuval.fr)
33	Corresponding author:
34	Carlos El Khoury, MD, PhD
35	Emergency Department and RESCUe Network, Lucien Hussel Hospital, Vienne, France;
36	Univ. Lyon, Claude Bernard Lyon 1 University, HESPER EA 7425, Lyon, France
37	Tél. +33 (0) 4 7431 3257; Mob. +33 (0) 6 2410 4024; email <u>c.elkhoury@resuval.fr</u>
38	Target journal & format: BMJ Open - Research Articles format (counts: abstract 300 words
39	[max 300]; 6 keywords; body 3476 words (max 4000); 79 references; 1 figure, 5 tables).
40	

Abstract (300 words [max 300])

42 Objectives: Cardio-renal syndrome (CRS) is the combination of acute heart failure syndrome
43 (AHF) and renal dysfunction (creatinine clearance [CrCl] ≤60 mL/min). Real-life data were
44 used to compare the management and outcome of AHF with and without renal dysfunction.

Design: Prospective, multi-center.

Setting: Twenty-six academic, community, and regional hospitals in France.

47 Participants: 507 patients with AHF were assessed in two groups according to renal
48 function: Group 1 (CRS patients [CrCl ≤60 mL/min]: N=335) and Group 2 (AHF patients
49 with normal renal function [CrCl >60 mL/min]: N=172).

Results: Differences were observed (Group 1 versus Group 2) at admission for the incidence of chronic heart failure (56.42% versus 47.67%), use of furosemide (60.9% versus 52.91%), insulin (15.52% versus 9.3%), and amiodarone (14.33% versus 4.65%); additionally, more patients in Group 1 carried a defibrillator (4.78% versus 0%), had \geq 2 hospitalizations in the last year (15.52% versus 5.81%), and were under the care of a cardiologist (72.24% versus 61.63%). Clinical signs were broadly similar in each group. Brain-type natriuretic peptide (BNP) and BNP prohormone were higher in Group 1 than Group 2 (1157.5 versus 534 ng/L and 5120 versus 2513 ng/mL), and more patients in Group 1 were positive for troponin (58.2% versus 44.19%), had cardiomegaly (51.04% versus 37.21%), and interstitial opacities (60.3% versus 47.67%). The only difference in emergency treatment was the use of nitrates, (higher in Group 1 [21.9% versus 12.21%]). In-hospital mortality and the percentage of patients still hospitalized after 30 days was similar between groups, but median stay was longer in Group 1 (8 days versus 6 days).

2 3 4	63	Conclusions: Renal impairment in AHF should not limit the use of loop diuretics and/or
5 6	64	vasodilators, but early assessment of pulmonary congestion and close monitoring of the
7 8 9	65	efficacy of conventional therapies is encouraged to allow rapid and appropriate
10 11	66	implementation of alternative therapies if necessary.
12 13 14 15	67	
16 17 18 19	68	
20 21	69	
22 23 24	70	Keywords: acute heart failure, AHF, cardio-renal syndrome, CRS, real-life, renal dysfunction
25 26 27 28 20	71	Keywords: acute heart failure, AHF, cardio-renal syndrome, CRS, real-life, renal dysfunction
29 30 31 32		
33 34 35 36		
37 38		
39 40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		

1			5
1 2 3 4 5	72	Str	rengths and limitations of this study
6 7	73	•	A large-scale, prospective, real-life study for the management and outcome of patients
8 9	74		with cardio-renal syndrome compared to acute heart failure patients without renal
10 11 12	75		dysfunction.
13 14	76	•	Only two groups were included (i.e. patients with or without kidney dysfunction), rather
15 16	77		than for each stage of chronic kidney disease although the creatinine clearance cut-off (60
17 18 19	78		mL/min) is commonly used.
20 21	79	٠	Glomerular filtration rate was calculated using three different methods.
22 23	80	•	Glomerular filtration rate estimations were performed by local laboratories for each
24 25 26	81		center (i.e. a real-life situation).
27 28	82	٠	There was no clearance monitoring after hospital discharge.
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	83		

BMJ Open

84 Background

Heart failure (HF) has an incidence of approximately 2% in adults in developed countries [1] and mainly affects elderly patients, who may have multiple comorbidities. One such comorbidity, impaired renal function, has been shown to be a stronger predictor of mortality than impaired cardiac function [2 3] and can be present in 50% of patients treated for acute HF (AHF) [4]. The prognostic importance of the association of renal dysfunction (creatinine clearance [CrCl] ≤60 mL/min) and AHF (cardio-renal syndrome [CRS]) has only been demonstrated recently. This represents a complex pathophysiological condition that has been classified into 5 stages [5 6]. It is worth noting that this is a mechanistic classification and the patients' clinical management must consider the full clinical presentation.

Even moderate degrees of renal insufficiency are independently associated with an increased risk of mortality from any cause in patients with HF [7]. As such, CRS can lead to hesitancy among some clinicians to implement appropriate treatments for HF, such as diuretics, due to the effect that these may have to worsen the renal insufficiency. However, additional prospective research is needed and current recommendations are to maintain such treatments in CRS patients [8 9] although the emergency physician should make an appropriate risk risk:benefit assessment for each patient.

In this context, a sub-analysis was conducted using real-life data from the DeFSSICA study
(Description de la Filière de Soins dans les Syndromes d'Insuffisance Cardiaque Aigue), a
large-scale, prospective study that was conducted in patients with suspected dyspnea of
cardiac origin in emergency departments (EDs) throughout France [10]. The aim of this subanalysis was to compare the management and outcome of CRS patients to AHF patients
without renal dysfunction in France using novel real-life data, based on the hypothesis that

- 107 CRS and AHF patients would have the same outcome if the management of CRS was based
- Je on that for AHF patients without renal dysfunction.

1		8
2 3 4 5	109	Methods
6 7 8 9 10 11 12 13 14 15 16 17	110	Study design
	111	This was a prospective, multi-center study in patients presenting with suspected heart failure
	112	dyspnea in 26 EDs in academic, community, and regional hospitals (the DeFSSICA study) for
	113	which the rationale and design are reported elsewhere [10]. The study received approval from
	114	the National Commission for Liberties and Data Protection (Commission Nationale de
18 19 20	115	l'Informatique et des Libertés) (number DR-2014-543) and the Advisory Committee on the
20 21 22	116	Treatment of Information in the field of Health Research (Comité Consultatif sur le
23 24	117	Traitement de l'Information en matière de Recherche dans le Domaine de la Santé) (number
25 26	118	14-291). Written information regarding the objectives of the survey was provided to all
27 28 29 30 31 32 33	119	patients prior to their inclusion according to French law. Each participating physician
	120	presented the study to the patient and/or the patient's family. The patient and/or the patient's
	121	family could choose for the patient to withdraw from the study at any time. The study did not
34 35 36	122	affect the patient-physician relationship or the patient's care and follow-up.
37 38 39 40	123	Patient involvement
41 42	124	The research question was based on the prognostic importance of CRS and a need for real-life
43 44 45	125	data on the management and outcome of CRS patients. Patients were not involved in the
46 47	126	design, recruitment, and conduct of the study, and there is no plan to disseminate the results
48 49	127	specifically to the patients who provided data used in this analysis.
50 51 52 53	128	Selection of participants
54 55 56	129	In the DeFSSICA survey, patients >18 years of age with dyspnea compatible with acute HF,
57 58	130	defined as dyspnea associated with peripheral edema and/or pulmonary crackles and/or
59 60	131	excessive weight gain and/or use of furosemide, were eligible for inclusion after ED

admission and prior to chest X-ray and laboratory tests. Patient enrollment occurred between
16 June 2014 and 7 July 2014.

In this analysis, only patients with known CrCl were included and were divided into those
with CrCl ≤60 mL/min, i.e. renal dysfunction (Group 1) and those with CrCl >60 mL/min, i.e.
normal renal function (Group 2). Glomerular filtration rate (GFR) was calculated using either
the Cockroft-Gault (9 centers), Modification of Diet in Renal Disease (MDRD) Study (12
centers), or Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations (14
centers) (8 centers used two methods and 18 centers used one method) [11 12].

Study assessments

Patients' baseline characteristics, medical history, social factors, in-hospital diagnostic tests and treatment, destination after ED discharge, in-hospital mortality and length of stay were recorded by emergency physicians in a case report form, which was structured according to the progress of care. Cardiac sonographic evaluations were performed at the discretion of the emergency physician. Abnormal chest X-ray was defined by the presence of cardiomegaly, and/or alveolar edema, and/or interstitial opacity, and/or pleural effusion. The choice of treatment was at the emergency physician's discretion, and according to his/her usual practice. Final diagnosis of AHF was made by the emergency physician using a combination of a clinical history, abnormal chest X-ray, elevated brain-type natriuretic peptide (BNP) or BNP prohormone (proBNP), and echocardiogrpahic signs.

Although it was not possible to impose any randomization or blinding since this was an
observational study, any potential bias in the study assessments was minimized by the
provision of standard instructions to all participating physicians.

154	Data were entered into a secure database located at the Réseau Cardiologie Urgence
155	(RESCUe) (Cardiovascular Emergency Network) Coordination Center.
156	Statistical analysis
157	Medians and interquartile ranges (IQR) are provided for continuous variables, and numbers
158	and percentages for qualitative variables. Comparative analyses were performed using the $\chi 2$
159	or Fisher's test for binary variables and the Wilcoxon test for analysis of variance for
160	continuous variables [13]. The 5% level was used to identify differences between groups that
161	were of statistical significance (p<0.05). Statistical evaluations were performed using R
162	Statistical Software (Version 3.4.1).
163	Statistical Software (Version 3.4.1).
	155 156 157 158 159 160 161 162

2 3 4	164	Results
5 6 7 8 9 10 11 12 13	165	Patient disposition and prevalence of CRS
	166	A total of 64,281 ED consultations took place during the survey period and 699 patients with
	167	dyspnea of cardiac origin were included in DEFSSICA study. Of these, 537 patients were
14 15	168	identified as having AHF, of whom only those with known CrCl (N=507) were included in
16 17 18 19	169	this analysis.
20 21	170	Patients in Group 1 (N=335 [66.1%]) had renal dysfunction (CrCl \leq 60 mL/min) and
22 23	171	comprised the population with CRS. In this group, 99 patients (29.6%) had severe renal
24 25	172	dysfunction (Stage 4 or 5: CrCl: <30 mL/min) and 120 (35.8%) had a known history of
26 27 28	173	chronic renal failure. All patients in Group 2 (N=172 [33.9%]) had normal renal function
28 29 30 31	174	(CrCl >60 mL/min).
32 33 34	175	Patient disposition is presented in Figure 1.
34 35 36 37 38	176	Baseline characteristics
39 40	177	The baseline characteristics of patients in Group 1 and Group 2 are shown in Table 1. There
41 42	178	was no difference between Group 1 and Group 2 in age (median [IQR]: 84 [88-79] years and
43 44 45	179	82 [75-88] years; p=0.09) or sex distribution (42.99% male in Group 1 and 44.19% male in
43 46 47 48	180	Group 2; p=0.87).
49 50	181	As well as the higher incidence of chronic renal failure in Group 1, patients with CRS were
51 52	182	more likely to have chronic HF (56.42% in Group 1 versus 47.67% in Group 2; p<0.05).
53 54 55	183	There was no difference in the incidence of any other comorbidity between groups. Patients in
55 56 57	184	Group 1 were more likely than patients in Group 2 to receive furosemide (60.9% versus
58 59 60	185	52.91%; p<0.05), insulin (15.52% versus 9.3%; p=0.03) and amiodarone (14.33% versus

BMJ Open

4.65%; p<0.01) but there were no other differences between groups for medications. Additionally, patients in Group 1 were more likely to have been hospitalized for HF at least twice during the last year (15.52% versus 8.81%; p<0.01), and to be under the care of a cardiologist (72.24% versus 61.63%; p=0.02). The incidence of patients carrying a defibrillator and of pacemakers (single, dual, or triple) are not presented since the sample sizes were small (N=16 and N=17, N=36, and N=6, respectively) and so the data were not considered sufficiently robust. Patients in Group 1 were more likely to have a housekeeper (31.13% versus 23.26%; p=0.02) and nurse (29.25% versus 20.93%; p=0.04) but there was no difference between groups regarding family support, known cognitive impairment, or the incidence of being bedridden.

Hospitalization and clinical status

Although there were few statistically significant differences between groups in hospitalization
and clinical status parameters (Table 2) there was a consistent trend towards more congestion
in Group 1, including higher levels of dyspnea, more pulmonary infiltrates on chest X-ray,
higher BNP and proBNP (Table 3 and below).

There were no significant differences between groups in their means of transport to the ED (most commonly by personal means [45.76% overall]), Killip status (most patients in each group had a Killip status of 2 [53.06% overall], and signs of cardiogenic shock (2.96% overall).

205 Early management and diagnosis

At admission, blood samples from all patients underwent biological analysis (Table 3). As
well as the differences between groups for CrCl, significant differences were observed for
BNP, which was 2.2-fold higher in Group 1 than Group 2 (1157.5 ng/L versus 534 ng/L;

1		
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	209	p<0.01), and proBNP, which was 2.0-fold higher in Group 1 than Group 2 (5120 ng/L versus
	210	2513 ng/L; p<0.01). Additionally, troponin was more likely to be positive in patients in Group
	211	1 than Group 2 (58.21% versus 44.19%; p<0.01). There were no differences between groups
	212	for sodium, potassium, or hemoglobin.
	213	Most patients underwent under an electrocardiogram (98.61% overall) chest X-ray (94.87%
	214	overall). Patients in Group 1 were more likely than those in Group 2 to have left bundle
	215	branch block (19.1% versus 12.79%; p<0.05), cardiomegaly (51.04% versus 37.21%;
	216	p=0.01), and interstitial opacities (60.3% versus 47.67%; p=0.02).
	217	Echography was only performed for 82 patients and so the data were not considered
23 26 27	218	sufficiently robust for inclusion in the analysis.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	219	Emergency treatments
	220	Patients in Group 1 were more likely than Group 2 to receive emergency treatment of nitrates
	221	(21.19% versus 12.21%; p<0.01), but there were no group differences in other emergency
	222	measures (furosemide, oxygen, anticoagulant, continuous positive airway pressure, non-
	223	invasive ventilation, anti-arrythmics, ionotropic agents, tracheal intubation) (Table 4). Overall
	224	6.31% of patients received no emergency treatment, with no difference between groups.
	225	Outcomes
	226	Precipitating factors were not determined in 42.21% of cases overall, with no overall
	227	difference between groups (Table 5). The most common determined precipitating factors were
	228	infection (25.25% overall), arrythmia (15.19% overall), and hypertension (10.65% overall).
	229	Diabetes decompensation was considered to be the precipitating factor for AHF in 2.99% of
57 58	230	patients in Group 1 but none in Group 2 (p=0.01). There were no other group differences in
59 60	231	precipitating factors.

1		
2 3 4	232	There was no difference between groups in discharge destination (which was most often
5 6 7 8 9	233	cardiology [28.01% overall]), and the discharge destination was deemed appropriate for a
	234	similar number of patients in each group (75.35% overall).
10 11 12	235	Neither in-hospital mortality (5.92% overall) nor the percentage of patients still hospitalized
13 14	236	at 30 days (6.31% overall) were significantly different between Group 1 and Group 2.
15 16	237	However, the median length of stay was 2 days longer in Group 1 than in Group 2 (8 days
17 18 19	238	versus 6 days; p=0.03) (Table 5).
20 21 22	239	versus 6 days; p=0.03) (Table 5).
22 23 24		
25 26		
20 27 28		
29		
30 31		
32 33		
34 35		
36 37		
38 39		
40		
41 42		
43 44		
45 46		
47		
48 49		
50 51		
52 53		
54		
55 56		
57 58		
59 60		
00		

Discussion

The DeFSSICA study was a large-scale, prospective, real-life study conducted following admission of AHF patients to EDs throughout France. As such, the data are primarily applicable to the French population, although wider extrapolation is possible due to coherences with similar studies in other geographical regions. The overall DeFSSICA study data are presented elsewhere [10] and the present sub-analysis reports real-life data from sub-groups of AHF patients with or without concomitant renal dysfunction, based on a CrCl threshold of 60 mL/min. The results show that AHF admissions to EDs are often associated with renal impairment, with almost two-thirds of AHF admissions having CrCl ≤60 mL/min. This prevalence is comparable to published data from France [14], Italy [15, 16], Poland [17], Spain [18 19], Taiwan [20], and the USA [21-23], as well as from pan-European [24 25] and wider international studies [26]. In these studies [14-26], the prevalence of renal impairment on admission of AHF patients ranged from 54.5% to 64%, including 12.4 to 27.4% of patients with severe renal insufficiency. Patients with a history of chronic renal failure ranged from 21.4% to 32.5%, which is also comparable to the findings of the DeFSSICA survey. However, it should be noted that impaired cardiac function leads to reduced renal perfusion, which could be in addition to an underlying chronic renal insufficiency. Additionally, increased abdominal pressure at admission that can result from ascites can lead to renal vein compression and reduced GFR at admission, which could also result in elevated serum creatinine. It is likely, therefore, that a proportion of acute kidney injury diagnosed at admission based on serum creatinine could be due to temporary changes in perfusion pressures rather than kidney damage per se; these functional reductions in GFR would be expected to recover once normal hemodynamic function is restored. While it is therefore important to consider the use of biomarkers to provide a more precise assessment of kidney function than serum creatinine [27 28] it is also important to note that the evidence supporting

Page 17 of 46

BMJ Open

the preferential use of novel biomarkers rather than serum creatinine to detect acute kidneyinjury can be inconsistent and remains an area for further research [29-32].

The overall baseline characteristics, clinical status, biological and diagnostic tests, emergency treatment, and outcome of the patients included in this sub-analysis was similar to the overall population in the DeFSSICA study; however, some differences were observed between AHF patients with and without renal dysfunction, including a trend towards more congestion in patients with CRS. As would be expected due to reduced kidney excretion [33], and as described elsewhere [34-37], BNP and pro-BNP levels were higher in patients with CRS than in AHF patients with normal renal function and the percentage of troponin positive patients was also higher in the CRS group. These biomarkers probably reflect the congestion status and remain formally recommended for the management of AHF patients, especially for their prognostic value. The appropriate use of loop diuretics and/or vasodilators [38] in the CRS group, as well as in the AHF group without renal dysfunction, may explain in part the similar intra-hospital mortality rate in each group and the similar proportion of AHF patients with and without renal dysfunction who were still in hospital 30 days after ED admission. Importantly, therefore, the prognosis of CRS patients was not significantly different using loop diuretics and/or nitrates to those without renal dysfunction. As such, it appears that the correct congestive assessment is vital in this complex clinical situation with concomitant failures in two organs.

Recent publications suggest that appropriate, fast-acting decongesting therapies, as
recommended by international guidelines, improve the prognosis for AHF patients as long as
such therapies are introduced early, even if renal impairment develops at the same time [8].
Furthermore, it appears that renal impairment in AHF patients does not have an adverse
impact on patient prognosis provided that the congestion is improved. Renal function should
be assessed according to the level of patient congestion, and so tools for the assessment of

congestion, such as the BNP or proBNP biomarkers [39], lung ultrasound (LUS) B-lines (38), or the assessment of the dimensions and compliance of the inferior vena cava are vital. Additionally, hemoconcentration monitoring can be useful for monitoring congestion and significantly improves the short-term outcome of AHF patients [40]and several routinely assessed biological parameters, e.g. serum protein, albumin, hemoglobin, and hematocrit, have been proposed as surrogate markers [41]. Furthermore, formulae have been developed to indirectly estimate plasma volume using hemoglobin and/or hematocrit data [42 43]. Further research is needed to establish the ability of novel biomarkers such as urinary angiotensinogen [44], neutrophil gelatinase-associated lipocalin [45 46], kidney injury molecule-1 [47], interleukin-18 [48 49], N-acetyl-B-d-glucosaminidase [50], cystatine C [51 52] or a combination of some or all of these could also be used to improve clinical decision making and therapy. The assessment of diuresis and natriuresis, which reflect both glomerular and tubular function, could offer a strategy to achieve decongestion [50 53 54]. Ferreira et al [55] and Palazzuoli et al [56] showed that the lack of a diuretic response is a more important prognostic factor than the use of loop diuretics. This suggests a new diagnostic challenge, i.e. to assess the patient's response to diuretics [57-60]. However, despite some proposals to define diuretic resistance (e.g. persistent congestion despite adequate and escalating doses of diuretic with >80 mg furosemide/day, amount of sodium excreted as a percentage of filtered load <0.2%, failure to excrete \geq 90 mmol of sodium within 72 hours of a 160 mg oral furosemide dose given twice daily) and the means of evaluation (e.g. weight loss per unit of 40 mg furosemide [or equivalent], net fluid loss/mg of loop diuretic [40 mg of furosemide or equivalent] during hospitalization, natriuretic response to furosemide) [61], there is currently no consensus for commonly accepted standards. Additionally, it is important that any alteration of GFR should be interpreted in the context of the deterioration of the clinical situation.

Page 19 of 46

BMJ Open

1		18			
2 3 4 5 6 7 8	315	Another alternative therapy in CRS is the use of mineralocorticoid antagonists. These have			
	316	been associated with an improvement in both congestion [62 63] and mortality in HF patients			
	317	[64 65], although the ATHENA-HF trial results are less conclusive [66]. Combined therapies			
9 10 11	318	have also been evaluated, including hypotonic saline serum in combination with diuretic			
12 13	319	therapy to improve diuresis [67 68] and mannitol in combination with furosemide [61],			
14 15	320	although their benefit in diuretic-resistant patients is not confirmed. The addition of			
16 17 18	321	metozalone to furosemide could be of interest because of its capacity to produce diuresis even			
18 19 20	322	in patients with low GFR [69 70]. In a meta-analysis, Wang and al showed that tolvaptan, an			
21 22	323	oral vasopressin V_2 -receptor antagonist, may also represent an alternative therapy in WRF			
23 24	324	[71]. Several studies have shown that tolvaptan can decrease WRF in patients treated with			
25 26 27	325	furosemide [72 73]. Finally, venous ultrafiltration allows controlled hydrosodic depletion by			
27 28 29 30 31 32 33 34 35 36	326	subtracting isotonic fluid, compared to diuretics that allow the subtraction of hypotonic fluid.			
	327	Other studies suggest that the effectiveness of ultrafiltration is associated with a reduction in			
	328	inflammatory cytokines [74]. These and other approaches in patients with cardiac			
	329	insufficiency and resistance to diuretics have recently been reviewed [61].			
37					
38 39 40 41 42	330	The CRS analysis using data from the DeFSSICA survey has some limitations. First, only two			
	331	groups have been analyzed (i.e. patients with or without renal dysfunction), whereas chronic			
43 44	332	kidney disease is characterized by 5 stages [5]. However, as noted earlier, this is a			
45 46	333	mechanistic classification and in the present analysis the use of the CrCl threshold of 60			
47 48 40	334	mL/min, which is commonly used to define renal dysfunction [2 37 75-77], is considered to			
49 50 51 52 53 54 55	335	be satisfactory, especially since the small number of patients would not allow a thorough			
	336	analysis for five sub-categories. However, the pathophysiology of WRF in AHF is complex			
	337	[78] and using a spot measurement of serum creatinine to classify CRS has limitations. This			
56 57 58	338	approach does not allow the separation of patients with acute and chronic CRS: in the present			
58 59 60	339	study, 35.8% of patients included in the CRS group had a history of chronic renal failure and			

so may not have suffered any acute change in renal function, whereas patients with acute changes in serum creatinine compared to their own baseline but not fulfilling the <60 mL/min criterion would not have been included in the CRS group. That said, the presence of renal failure on admission remains strongly associated with a poor prognosis irrespective of the anterior renal status and despite the lack of WRF in the first 5 days [79]. While the choice of a CrCl threshold of 30 mL/min could have led to a greater chance of obtaining a significant difference between groups in terms of outcome, we based our analysis on the 60 mL/min cut-off since it is more widely used. Second, since the data used are observational, it was not possible to impose any randomization or blinding, and the number of patients in each group was not balanced. Third, GFR assessments were performed by local laboratories for each center, rather than standardized at a single center, and repeated measures of GFR could have improved their accuracy and comparability. The use of different formulae to evaluate CrCl in a chronic disease state and an acute context without knowledge of the baseline value reflects the real-life situation. While potentially problematic, with the possibility of some incorrect classification of CKD, numerous previous studies of the impact of renal failure in AHF have used a similar approach [2 37 75]. Finally, it was not possible to sub-classify different types of CRS in this analysis since Kidney Disease Improving Global Outcomes (KDIGO) data were not collected, although as described earlier the small number of patients would not have allowed a thorough analysis for each sub-category.

359 Conclusion

These real-life data suggested that CRS patients have the same outcome as AHF patients without renal dysfunction when the treatment of the former group is modeled on that for the latter group. This finding should not limit the use of loop diuretics and/or vasodilators as long as the patient presents congestion as assessed using biomarkers and ultrasound. The use of diuretic treatment should be based on a more rapid diagnosis of congestion and evaluation of

1		
2 3	365	an inadequate response to diuretics, allowing the rapid and appropriate implementation of
4	505	an indequate response to diarches, anowing the rapid and appropriate implementation of
5 6	366	alternative therapies if necessary.
7		
8 9		
) 10		
11		
12 13		
14		
15 16		
17		
18		
19 20		
21		
22 23		
23 24		
25		
26 27		
28		
29 30		
31		
32 33		
33 34		
35		
36 37		
38		
39 40		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
50 51		
52		
53 54		
55		
56		
57 58		
59		
60		

Funding This work was supported by Novartis France, but the Sponsor was not involved in the study protocol, methods, or choice of centers. **Competing interests** CEK and has received grants from Novartis (other than this work), Daiichy Sankyo, and Boehringer Ingleheim. NP reports has acted as a paid consultant for Vygon SA. SC reports personal fees from Novartis (other than this work). LF is an employee of RESCUe Network. DdR, AB, SMZ, ME, DS, EBC, SL, PH, AG, KT and TC have no competing interests. **Authors' contributions** SMS, NP, SC, ME, DS, EBC, SL, PH, TC, and CEK conceived the study, designed the trial, and obtained research funding. TC and CEK supervised the conduct of the trial and data collection. NP, SC, DS and TC undertook recruitment of participating centers and patients. LF managed the data, including quality control, provided statistical advice and analyzed the data. DdR, LF, AB, AG, KT, TC and CEK drafted the manuscript, and all authors contributed substantially to its revision. All authors reviewed and approved the final version of the manuscript and are accountable for its content. **Consent for publication**

Not applicable since no individual patient is identified.

BMJ Open

Data sharing statement

The database supporting the results presented in this article can be shared on reasonable request.

Acknowledgements

The authors thank the emergency physicians and cardiologists and patients who participated in this survey at the following centers: CHU Toulouse, CHU Rouen, CHU Clermont Ferrand, CHU Nancy, CHR Metz-Thionville-Hôpital de Mercy, Hôpital Lariboisière-Paris, CHR Annecy Genevois, CHU Lyon-Hôp, Edouard Herriot, CHRU de Lille, Chu De Caen, CHU Nice-Hôpital Saint-Roch, CHU de Grenoble, Hôpital Bicêtre-Paris, Hôpital St Louis Paris, CH I Meulan, CH d'Avignon, CH Jacques Lacarin–Vichy, CH d'Aix En Provence, CH Fleyriat -Bourg En Bresse, CH Bourgoin Jallieu, CHU de Saint Etienne, CH du Forez Montbrison-Feurs, CH de Firminy, CH Villefranche-Sur-Saône, CHU De Brest, CH Henri Mondor, CH de Vienne. The authors also thank the RESCUe Network for the practical implementation of this survey and statistical analysis and Novartis France for its financial support. Dr Andrew Lane (Lane Medical Writing), funded by the RESCUe network, provided professional medical writing assistance in the preparation and development of the manuscript in accordance with the European Medical Writers Association guidelines and Good Publication Practice.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

References

1. Sayago-Silva I, Garcia-Lopez F, Segovia-Cubero J. Epidemiology of heart failure in Spain over the last 20 years. Rev Esp Cardiol (Engl Ed) 2013;66(8):649-56 doi: 10.1016/j.rec.2013.03.012.

2. Ferreira JP, Girerd N, Pellicori P, et al. Renal function estimation and Cockroft-Gault formulas for predicting cardiovascular mortality in population-based, cardiovascular risk, heart failure and post-myocardial infarction cohorts: The Heart 'OMics' in AGEing (HOMAGE) and the high-risk myocardial infarction database initiatives. BMC Med 2016;14(1):181 doi: 10.1186/s12916-016-0731-2.

3. Hillege HL, Girbes AR, de Kam PJ, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation 2000;102(2):203-10.

4. Damman K, Valente MA, Voors AA, et al. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J 2014;35(7):455-69 doi: 10.1093/eurheartj/eht386.

421 5. Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome. J Am Coll Cardiol 422 2008;**52**(19):1527-39 doi: 10.1016/j.jacc.2008.07.051.

6. Ronco C, House AA, Haapio M. Cardiorenal syndrome: refining the definition of a complex symbiosis gone wrong. Intensive Care Med 2008;34(5):957-62 doi: 10.1007/s00134008-1017-8.

7. Dries DL, Exner DV, Domanski MJ, et al. The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J Am Coll Cardiol 2000;35(3):681-9.

1		21		
2 3 4	429	8. Hanberg JS, Tang WHW, Wilson FP, et al. An exploratory analysis of the competing effects		
5 6	430	of aggressive decongestion and high-dose loop diuretic therapy in the DOSE trial. Int J		
7 8	431	Cardiol 2017;241:277-82 doi: 10.1016/j.ijcard.2017.03.114[published Online First:		
9 10 11 12	432	Epub Date] .		
12 13 14	433	9. Testani JM, Ter Maaten JM. Decongestion in Acute Heart Failure: Does the End Justify the		
15 16	434	Means? JACC Heart Fail 2016;4(7):589-90 doi: 10.1016/j.jchf.2016.03.024[published		
17 18 19	435	Online First: Epub Date] .		
20				
20 21 22	436	10. Chouihed T, Manzo-Silberman S, Peschanski N, et al. Management of suspected acute heart		
23 24	437	failure dyspnea in the emergency department: results from the French prospective		
25 26 27	438	multicenter DeFSSICA survey. Scand J Trauma Resusc Emerg Med 2016;24(1):112		
28 29 30	439	doi: 10.1186/s13049-016-0300-x[published Online First: Epub Date] .		
31 32	440	11. Diseases NIoDaDK. Estimating glomerular filtration rate (GFR). Secondary Estimating		
33 34 35 36 37	441	glomerular filtration rate (GFR) 2015. <u>https://www.niddk.nih.gov/health-</u>		
	442	information/health-communication-programs/nkdep/lab-		
38 39 40	443	evaluation/gfr/estimating/Pages/estimating.aspx.		
41 42	444	12. Botev R, Mallie JP, Couchoud C, et al. Estimating glomerular filtration rate: Cockcroft-		
43 44 45	445	Gault and Modification of Diet in Renal Disease formulas compared to renal inulin		
46 47	446	clearance. Clin J Am Soc Nephrol 2009;4(5):899-906 doi:		
48 49 50	447	10.2215/CJN.05371008[published Online First: Epub Date] .		
51 52 53	448	13. Ancelle T. Statistique Epidémiologique. 3rd ed. Paris: Maloine, 2011.		
54 55 56	449	14. Logeart D, Isnard R, Resche-Rigon M, et al. Current aspects of the spectrum of acute heart		
57 58	450	failure syndromes in a real-life setting: the OFICA study. Eur J Heart Fail		
59 60	451	2013;15(4):465-76 doi: 10.1093/eurjhf/hfs189[published Online First: Epub Date] .		

1 2			
2 3 4	452	15. Oliva F, Mortara A, Cacciatore G, et al. Acute heart failure patient profiles, management	
5 6	453	and in-hospital outcome: results of the Italian Registry on Heart Failure Outcome. Eur	
7 8 9	454	J Heart Fail 2012;14(11):1208-17 doi: 10.1093/eurjhf/hfs117.	
10 11 12	455	16. Tavazzi L, Maggioni AP, Lucci D, et al. Nationwide survey on acute heart failure in	
13 14	456	cardiology ward services in Italy. Eur Heart J 2006;27(10):1207-15 doi:	
15 16	457	10.1093/eurheartj/ehi845.	
17			
18 19 20	458	17. Straburzynska-Migaj E, Kaluzna-Oleksy M, Maggioni AP, et al. Patients with heart failure	
21 22	459	and concomitant chronic obstructive pulmonary disease participating in the Heart	
23 24	460	Failure Pilot Survey (ESC-HF Pilot) - Polish population. Arch Med Sci 2015;11(4):743-	
25 26 27	461	50 doi: 10.5114/aoms.2014.47878.	
27			
29 30	462	18. Conde-Martel A, Formiga F, Perez-Bocanegra C, et al. Clinical characteristics and one-year	
31 32	463	survival in heart failure patients more than 85 years of age compared with younger. Eur	
33 34 35	464	J Intern Med 2013; 24 (4):339-45 doi: 10.1016/j.ejim.2013.01.005.	
36 37 38	465	19. Llorens P, Escoda R, Miró O, et al. Characteristics and clinical course of patients with acute	
39 40	heart failure and the therapeutic measures applied in Spanish emergency departments:		
 41 42 467 based on the EAHFE registry (Epidemiology of Acute Heart Failure in 43 44 468 Departments). Emergencias 2015;27:11-22. 			
49 50	470	systolic heart failure in Taiwan: lessons from TSOC-HFrEF Registry Acta Cardiologica	
51 52 53	471	Sinica 2017; 33 (2):127-38.	
54 55 56	472	21. Abraham WT, Fonarow GC, Albert NM, et al. Predictors of in-hospital mortality in patients	
57 58	473	hospitalized for heart failure: insights from the Organized Program to Initiate Lifesaving	
59 60	474	Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J Am Coll	

1		20			
2 3	475	Cardiol 2008; 52 (5):347-56 doi: 10.1016/j.jacc.2008.04.028[published Online First:			
4 5	476				
6 7	470	Epub Date] .			
8 9 10	477	22. Adams KF, Jr., Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients			
11 12	478	hospitalized for heart failure in the United States: rationale, design, and preliminary			
13 14	479	observations from the first 100,000 cases in the Acute Decompensated Heart Failure			
15 16	480	National Registry (ADHERE). Am Heart J 2005;149(2):209-16 doi:			
17 18 19	481	10.1016/j.ahj.2004.08.005[published Online First: Epub Date] .			
20					
21 22	482	23. Diercks DB, Fonarow GC, Kirk JD, et al. Risk stratification in women enrolled in the Acute			
23 24 25	483	Decompensated Heart Failure National Registry Emergency Module (ADHERE-EM).			
25 26 27	484	Acad Emerg Med 2008;15(2):151-8 doi: 10.1111/j.1553-2712.2008.00030.x[published			
28 29 30	485	Online First: Epub Date] .			
31 32	486	Cleland JG, Swedberg K, Follath F, et al. The EuroHeart Failure survey programme a			
33 34 35	487	survey on the quality of care among patients with heart failure in Europe. Part 1: patient			
36 37 38	488	characteristics and diagnosis. Eur Heart J 2003;24(5):442-63			
39 40	489	25. Nieminen MS, Brutsaert D, Dickstein K, et al. EuroHeart Failure Survey II (EHFS II): a			
41 42 43	490	survey on hospitalized acute heart failure patients: description of population. Eur Heart			
44 45	491	J 2006;27(22):2725-36 doi: 10.1093/eurheartj/ehl193[published Online First: Epub			
46 47 48	492	Date] .			
49 50 51	493	26. Follath F, Yilmaz MB, Delgado JF, et al. Clinical presentation, management and outcomes			
52 53	494	in the Acute Heart Failure Global Survey of Standard Treatment (ALARM-HF).			
54 55	495	Intensive Care Med 2011;37(4):619-26 doi: 10.1007/s00134-010-2113-0[published			
56 57 58 59 60	496	Online First: Epub Date] .			

2 3 4	497	27. Molitoris BA, Levin A, Warnock DG, et al. Improving outcomes of acute kidney injury:		
5 6	498	report of an initiative. Nat Clin Pract Nephrol 2007;3(8):439-42 doi:		
7 8 9	499	10.1038/ncpneph0551.		
10 11 12 13 14 15 16 17	500	28. Waikar SS, Bonventre JV. Creatinine kinetics and the definition of acute kidney injury. J		
	501	Am Soc Nephrol 2009; 20 (3):672-9 doi: 10.1681/ASN.2008070669.		
	502	29. Breidthardt T, Sabti Z, Ziller R, et al. Diagnostic and prognostic value of cystatin C in acute		
18 19 20	503	heart failure. Clin Biochem 2017;50(18):1007-13 doi:		
21 22 23	504	10.1016/j.clinbiochem.2017.07.016.		
23 24 25 26 27 28	505	30. Breidthardt T, Socrates T, Drexler B, et al. Plasma neutrophil gelatinase-associated lipocalin		
	506	for the prediction of acute kidney injury in acute heart failure. Crit Care 2012;16(1):R2		
29 30 31	507	doi: 10.1186/cc10600.		
32 33 34 35 36 37 38	508	31. Maisel AS, Wettersten N, van Veldhuisen DJ, et al. Neutrophil Gelatinase-Associated		
	509	Lipocalin for Acute Kidney Injury During Acute Heart Failure Hospitalizations: The		
	510	AKINESIS Study. J Am Coll Cardiol 2016;68(13):1420-31 doi:		
39 40 41	511	10.1016/j.jacc.2016.06.055.		
42 43 44	512	32. Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI		
44 45 46	513	by implementing the KDIGO guidelines in high risk patients identified by biomarkers:		
47 48	514	the PrevAKI randomized controlled trial. Intensive Care Med 2017;43(11):1551-61 doi:		
49 50 51	515	10.1007/s00134-016-4670-3.		
52 53	516	33. Tuegel C, Bansal N. Heart failure in patients with kidney disease. Heart 2017 doi:		
54 55 56 57 58 59 60	517	10.1136/heartjnl-2016-310794.		

60

BMJ Open

2 3	518 34. Anwaruddin S, Lloyd-Jones DM, Baggish A, et al. Renal function, congestive heart					
5 5 E10 and aming terminal pro-brain patriuratic populida mangurament: results fr						
6 7	and annito-terminal pro-oran nativitette peptide measurement. results nom in					
, 8 9	520	Investigation of Dyspnea in the Emergency Department (PRIDE) Study. J Am Coll				
10 11 12	521	Cardiol 2006;47(1):91-7 doi: 10.1016/j.jacc.2005.08.051.				
13 14	522	35. Nacb Writing Group, Wu AH, Jaffe AS, et al. National Academy of Clinical Biochemistry				
15 16 17	523	laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic				
17 18 19	524	peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute				
20 21	525	coronary syndromes and heart failure. Clin Chem 2007;53(12):2086-96 doi:				
22 23 24	526	10.1373/clinchem.2007.095679.				
25 26 27	527	36. Lamb EJ, Vickery S, Price CP. Amino-terminal pro-brain natriuretic peptide to diagnose				
28 29	528	congestive heart failure in patients with impaired kidney function. J Am Coll Cardiol				
30 31 32	529	2006;48(5):1060-1; author reply 61 doi: 10.1016/j.jacc.2006.06.019.				
33 34 25	530	37. Vickery S, Price CP, John RI, et al. B-type natriuretic peptide (BNP) and amino-terminal				
35 36 37	531	proBNP in patients with CKD: relationship to renal function and left ventricular				
38 39 40	532	hypertrophy. Am J Kidney Dis 2005; 46 (4):610-20 doi: 10.1053/j.ajkd.2005.06.017.				
41 42	533	38. Peacock WF, Emerman C, Costanzo MR, et al. Early vasoactive drugs improve heart failure				
43 44 45	534	outcomes. Congest Heart Fail 2009;15(6):256-64 doi: 10.1111/j.1751-				
46 47 48	535	7133.2009.00112.x.				
49 50 51	536	39. Gargani L, Frassi F, Soldati G, et al. Ultrasound lung comets for the differential diagnosis				
52 53	537	of acute cardiogenic dyspnoea: a comparison with natriuretic peptides. Eur J Heart Fail				
53 54 55 56 57 58 59	538	2008; 10 (1):70-7 doi: 10.1016/j.ejheart.2007.10.009.				

1					
2 3 4	539	40. Breidthardt T, Weidmann ZM, Twerenbold R, et al. Impact of haemoconcentration during			
5 6	540	acute heart failure therapy on mortality and its relationship with worsening renal			
7 8 9	541	function. Eur J Heart Fail 2017;19(2):226-36 doi: 10.1002/ejhf.667.			
10 11 12	542	41. Girerd N, Seronde MF, Coiro S, et al. Integrative assessment of congestion in heart failure			
13 14	543	throughout the patient journey. JACC Heart Fail 2018;6(4):273-85 doi:			
15 16 17	544	10.1016/j.jchf.2017.09.023.			
18 19 20	545	42. Mentz RJ, Kjeldsen K, Rossi GP, et al. Decongestion in acute heart failure. Eur J Heart Fail			
21 22 23	546	2014; 16 (5):471-82 doi: 10.1002/ejhf.74.			
²⁴ ₂₅ 547 43. Duarte K, Monnez JM, Albuisson E, et al. Prognostic value of estimated plasm					
26 27 28 29	548	heart failure. JACC Heart Fail 2015;3(11):886-93 doi: 10.1016/j.jchf.2015.06.014.			
30 31	549	44. Yang X, Chen C, Tian J, et al. Urinary angiotensinogen level predicts AKI in acute			
32 33	550	decompensated heart failure: a prospective, two-stage study. J Am Soc Nephrol			
34 35 36	551	2015; 26 (8):2032-41 doi: 10.1681/ASN.2014040408.			
37 38 39	552	45. Elsharawy S, Raslan L, Morsy S, et al. Plasma neutrophil gelatinase-associated lipocalin as			
40 41	553	a marker for the prediction of worsening renal function in children hospitalized for acute			
42 43	554	heart failure. Saudi J Kidney Dis Transpl 2016;27(1):49-54 doi: 10.4103/1319-			
44 45 46 47	555	2442.174071.			
48 49	556	46. Ito M, Doi K, Takahashi M, et al. Plasma neutrophil gelatinase-associated lipocalin predicts			
50 51	557	major adverse cardiovascular events after cardiac care unit discharge. J Cardiol			
52 53 54 55 56 57 58 59 60	558	2016; 67 (2):184-91 doi: 10.1016/j.jjcc.2015.05.010.			

Page 31 of 46

BMJ Open

1						
2 3 4	559	47. Medic B, Rovcanin B, Basta Jovanovic G, et al. Kidney Injury Molecule-1 and				
5 6	560	cardiovascular diseases: from basic science to clinical practice. Biomed Res Int				
7 8 9	561	2015; 2015 :854070 doi: 10.1155/2015/854070.				
10 11 12 13	562	48. Les biomarqueurs en médécine d'urgence [French]. 1 ed. Paris: Springer-Verlag, 2012.				
14 15	563	49. Taub PR, Borden KC, Fard A, et al. Role of biomarkers in the diagnosis and prognosis of				
16 17	564	acute kidney injury in patients with cardiorenal syndrome. Expert Rev Cardiovasc Ther				
18 19 20	565	2012; 10 (5):657-67 doi: 10.1586/erc.12.26.				
21 22 23	566	50. Verbrugge FH, Dupont M, Steels P, et al. The kidney in congestive heart failure: 'are				
24 25	567	natriuresis, sodium, and diuretics really the good, the bad and the ugly?'. Eur J Heart				
26 27 28	568	Fail 2014;16(2):133-42 doi: 10.1002/ejhf.35.				
29 30 31	569	51. Lassus JP, Harjola VP, Peuhkurinen K, et al. Cystatin C, NT-proBNP, and inflammatory				
32 33	570	markers in acute heart failure: insights into the cardiorenal syndrome. Biomarkers				
³⁴ 35 571 2011; 16 (4):302-10 doi: 10.3109/1354750X.2011.555822.						
37 38 39	572 52. Legrand M, De Berardinis B, Gaggin HK, et al. Evidence of uncoupling between re-					
40 41	573	573 dysfunction and injury in cardiorenal syndrome: insights from the BIONICS study. Ple				
42 43 574 one 2014;9(11):e112313 doi: 10.1371/journal.pone.0112313.						
45 46 47	575	53. Metra M, Davison B, Bettari L, et al. Is worsening renal function an ominous prognostic				
48 49	576	sign in patients with acute heart failure? The role of congestion and its interaction with				
50 51	577	renal function. Circ Heart Fail 2012;5(1):54-62 doi:				
52 53 54 55 56 57 58 59 60	578	10.1161/CIRCHEARTFAILURE.111.963413.				

2					
3 4	579	54. Mullens W, Verbrugge F, Nijst P, et al. Renal sodium avidity in heart failure: from			
5 6	580	pathophysiology to treatment strategies. European Heart Journal 2017 doi:			
7 8 9	581	10.1093/eurheartj/ehx035.			
10 11 12	582	55. Ferreira JP, Girerd N, Bettencourt Medeiros P, et al. Lack of diuretic efficiency (but not low			
13 14	583	diuresis) early in an acutely decompensated heart failure episode is associated with			
15 16 17	584	increased 180-day mortality. Cardiorenal Med 2017;7(2):137-49 doi:			
18 19 20	585	10.1159/000455903.			
21 22	586	56. Palazzuoli A, Testani JM, Ruocco G, et al. Different diuretic dose and response in acute			
23 24	587	decompensated heart failure: clinical characteristics and prognostic significance. Int J			
25 26 588 Cardiol 2016; 224 :213-19 doi: 10.1016/j.ijcard.2016.09.005.					
 28 29 589 57. Damman K, Testani JM. The kidney in heart failure: an update. En 31 32 590 2015;36(23):1437-44 doi: 10.1093/eurheartj/ehv010. 					
					34 35 36
37 38 39	592	10.1053/j.ajkd.2016.08.027.			
40 41	593	59. Ray EC, Boyd-Shiwarski CR, Kleyman TR. Why diuretics fail failing hearts. J Am Soc			
42 43 44	594	Nephrol 2017 doi: 10.1681/ASN.2017070797.			
45 46 47	595	60. Valente MA, Voors AA, Damman K, et al. Diuretic response in acute heart failure: clinical			
48 49	596	characteristics and prognostic significance. Eur Heart J 2014;35(19):1284-93 doi:			
50 51 52	597	10.1093/eurheartj/ehu065.			
53 54 55	598	61. ter Maaten JM, Valente MA, Damman K, et al. Diuretic response in acute heart failure-			
55 56 57	599	pathophysiology, evaluation, and therapy. Nat Rev Cardiol 2015;12(3):184-92 doi:			
58 59 60	600	10.1038/nrcardio.2014.215.			

BMJ Open

2 3 4	601	62. Bansal S, Lindenfeld J, Schrier RW. Sodium retention in heart failure and cirrhosis:		
5 6	602	potential role of natriuretic doses of mineralocorticoid antagonist? Circ Heart Fail		
7 8 9	603	2009; 2 (4):370-6 doi: 10.1161/CIRCHEARTFAILURE.108.821199.		
10 11 12	604	63. Hensen J, Abraham WT, Durr JA, et al. Aldosterone in congestive heart failure: analysis of		
13 14	605	determinants and role in sodium retention. Am J Nephrol 1991;11(6):441-6		
15 16 17	606	64. The RALES investigators. Effectiveness of spironolactone added to an angiotensin-		
18 19 20	607	converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart		
20 21 22	608	failure (the Randomized Aldactone Evaluation Study [RALES]). Am J Cardiol		
23 24 25	609	1996; 78 (8):902-7.		
26 27 28	610	65. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality		
29 30	611	in patients with severe heart failure. Randomized Aldactone Evaluation Study		
31 32	612	Investigators. New Engl J Med 1999; 341 (10):709-17 doi:		
33 34 35	613	10.1056/NEJM199909023411001.		
 36 37 614 66. Butler J, Anstrom KJ, Felker GM, et al. Efficacy and safety of spironolactom 38 				
39 40	failure: the ATHENA-HF Randomized Clinical Trial. JAMA Cardiol 2017 doi:			
41 42 43	616	10.1001/jamacardio.2017.2198.		
44 45 46	617 67. Licata G, Di Pasquale P, Parrinello G, et al. Effects of high-dose furosemide and sn			
47 48	618	volume hypertonic saline solution infusion in comparison with a high dose of		
49 50	619	furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart		
51 52 53	620	J 2003; 145 (3):459-66 doi: 10.1067/mhj.2003.166.		
54 55 56	68. Paterna S, Di Pasquale P, Parrinello G, et al. Changes in brain natriuretic peptide levels and			
57 58	622	bioelectrical impedance measurements after treatment with high-dose furosemide and		
59 60	623	hypertonic saline solution versus high-dose furosemide alone in refractory congestive		

10.1016/j.jacc.2005.01.059.

heart failure: a double-blind study. J Am Coll Cardiol 2005;45(12):1997-2003 doi:

1		
2 3 4	624	
5 6 7	625	
8 9	626	69.]
10 11 12	627	
13 14	628	
15 16 17	629	70.
18 19 20	630	
20 21 22	631	
23 24 25	632	71.
26 27 20	633	
28 29 30	634	
31 32 33	635	72. J
34 35	636	
36 37 38	637	
39 40 41	638	73.1
42 43	639	
44 45 46	640	
47 48 49	641	74.
50 51	642	
52 53 54	643	
54 55 56 57	644	
58 59 60		

69. Ng TM, Konopka E, Hyderi AF, et al. Comparison of bumetanide- and metolazone-based
diuretic regimens to furosemide in acute heart failure. J Cardiovasc Pharmacol Ther
2013; 18 (4):345-53 doi: 10.1177/1074248413482755.
70. Tilstone WJ, Dargie H, Dargie EN, et al. Pharmacokinetics of metolazone in normal
subjects and in patients with cardiac or renal failure. Clin Pharmacol Ther
1974;16(2):322-9.
71. Wang C, Xiong B, Cai L. Effects of Tolvaptan in patients with acute heart failure: a
systematic review and meta-analysis. BMC Cardiovasc Disord 2017;17(1):164 doi:
10.1186/s12872-017-0598-y.
72. Jujo K, Saito K, Ishida I, et al. Randomized pilot trial comparing tolvaptan with furosemide
on renal and neurohumoral effects in acute heart failure. ESC Heart Fail 2016;3(3):177-
88 doi: 10.1002/ehf2.12088.
73. Kimura K, Momose T, Hasegawa T, et al. Early administration of tolvaptan preserves renal
function in elderly patients with acute decompensated heart failure. J Cardiol
2016; 67 (5):399-405 doi: 10.1016/j.jjcc.2015.09.020.
74. Torina AG, Silveira-Filho LM, Vilarinho KA, et al. Use of modified ultrafiltration in adults
undergoing coronary artery bypass grafting is associated with inflammatory modulation
and less postoperative blood loss: a randomized and controlled study. J Thorac
Cardiovasc Surg 2012;144(3):663-70 doi: 10.1016/j.jtcvs.2012.04.012.

BMJ Open

7	1	
1	4	

2		
3 4	645	75. Chew DP, Astley C, Molloy D, et al. Morbidity, mortality and economic burden of renal
5 6	646	impairment in cardiac intensive care. Intern Med J 2006;36(3):185-92 doi:
7 8 9	647	10.1111/j.1445-5994.2006.01012.x.
10 11	648	76. Schaub JA, Coca SG, Moledina DG, et al. Amino-terminal pro-B-type natriuretic peptide
12 13	649	for diagnosis and prognosis in patients with renal dysfunction: a systematic review and
14 15		meta-analysis. JACC Heart Fail 2015; 3 (12):977-89 doi: 10.1016/j.jchf.2015.07.014.
16 17 18	650	ineta-analysis. JACC Healt Fail 2013, 3 (12).977-89 doi: 10.1010/j.jchi.2013.07.014.
18 19 20	651	77. Tsutamoto T, Kawahara C, Yamaji M, et al. Relationship between renal function and serum
21 22	652	cardiac troponin T in patients with chronic heart failure. Eur J Heart Fail
23 24 25	653	2009; 11 (7):653-8 doi: 10.1093/eurjhf/hfp072.
26 27 28	654	78. Aronson D, Abassi Z, Allon E, et al. Fluid loss, venous congestion, and worsening renal
20 29 30	655	function in acute decompensated heart failure. Eur J Heart Fail 2013;15(6):637-43 doi:
31 32 33	656	10.1093/eurjhf/hft036.
34 35 26	657	79. Shirakabe A, Hata N, Kobayashi N, et al. Worsening renal function definition is insufficient
36 37 38	658	for evaluating acute renal failure in acute heart failure. ESC Heart Fail 2018;5(3):322-
39 40 41	659	31 doi: 10.1002/ehf2.12264.
42 43 44 45	660	
46 47		
48		
49		
50 51		
51 52		
53		
54		
55		
56 57		
57 58		
59		
60		

661 Tables

Table 1 Baseline characteristics of patients with confirmed acute heart failure (AHF)

663 syndrome

	All AHF		C 2	
	patients	Group 1	Group 2	
	(N=507)	(n=335)	(n=172)	p-value
Age, y	83 [77;88]	84 [78;89]	82 [75;88]	0.09
Men	220 (43.39%)	144 (42.99%)	76 (44.19%)	0.87
Comorbidities				
- Hypertension	353 (69.63%)	234 (69.85%)	119 (69.19%)	0.79
- Chronic HF	271 (53.45%)	189 (56.42%)	82 (47.67%)	< 0.05
- Atrial fibrillation	223 (43.98%)	151 (45.07%)	72 (41.86%)	0.43
- Coronary heart disease	150 (29.59%)	98 (29.25%)	52 (30.23%)	1.00
- Diabetes type I	14 (2.76%)	12 (3.58%)	2 (1.16%)	0.26
- Diabetes type II	132 (26.04%)	93 (27.76%)	39 (22.67%)	0.20
- Chronic renal failure	114 (22.49%)	108 (32.24%)	6 (3.49%)	< 0.01
- Chronic respiratory failure	87 (17.16%)	60 (17.91%)	27 (15.7%)	0.46
- Known valvular disease	95 (18.74 <mark>%</mark>)	70 (20.9%)	25 (14.53%)	0.07
Priori medications				
- Furosemide	295 (58.19%)	204 (60.9%)	91 (52.91%)	< 0.05
- ACEI/ARB	225 (44.38%)	153 (45.67%)	72 (41.86%)	0.30
- β- blocker	214 (42.21%)	147 (43.88%)	67 (38.95%)	0.20
- Anticoagulant	221 (43.59%)	151 (45.07%)	70 (40.7%)	0.24
- Aspirin	155 (30.57%)	110 (32.84%)	45 (26.16%)	0.08
- Other antiplatelet	56 (11.05%)	37 (11.04%)	19 (11.05%)	0.73
- Oral antidiabetic	66 (13.02%)	47 (14.03%)	19 (11.05%)	0.22
- Insulin	68 (13.41%)	52 (15.52%)	16 (9.3%)	0.03
- Amiodarone	56 (11.05%)	48 (14.33%)	8 (4.65%)	< 0.01
- Aldosterone antagonist	38 (7.5%)	26 (7.76%)	12 (6.98%)	0.48
- Digoxin	38 (7.5%)	18 (5.37%)	20 (11.63%)	0.10
- Thiazidine	32 (6.31%)	21 (6.27%)	11 (6.4%)	0.70
- None	28 (5.52%)	14 (4.18%)	14 (8.14%)	0.38
- Unknown	13 (2.56%)	7 (2.09%)	6 (3.49%)	1.00
Prior hospitalization for HF				
during past year				
- 0	287 (56.61%)	180 (53.73%)	107 (62.21%)	0.14
- 1	130 (25.64%)	83 (24.78%)	47 (27.33%)	0.86
- >2	62 (12.23%)	52 (15.52%)	10 (5.81%)	< 0.01
Followed by a cardiologist	348 (68.64%	242 (72.24%)	106 (61.63%)	0.02

1						50
2						
3		- At home	423 (83.43%)	287 (85.67%)	136 (79.07%)	0.06
4 5		- Retirement institution	74 (14.6%)	43 (12.84%)	31 (18.02%)	0.18
6		- Other institution	8 (1.58%)	4 (1.19%)	4 (2.33%)	0.75
7		Self-sufficient	258 (50.89%)	162 (48.36%)	96 (55.81%)	0.19
8		Home assistance				
9 10		- Housekeeper	151 (29.78%)	111 (33.13%)	40 (23.26%)	0.02
11		- Family support	121 (23.87%)	87 (25.97%)	34 (19.77%)	0.10
12 13		- Nurse	134 (26.43%)	98 (29.25%)	36 (20.93%)	0.04
13 14 15		- Known cognitive impairment	83 (16.37%)	49 (14.63%)	34 (19.77%)	0.26
16		- Bedridden	45 (8.88%)	25 (7.46%)	20 (11.63%)	0.28
17	664	Data are median (IQR) age or number	(%) of patients			
18						
19 20	665	Group 1: patients with CRS; Group 2:	patients with norma	l renal function		
20	666	AHF, acute heart failure; ADEI, angio	tensin-converting er	nzyme inhibitor; AR	B, angiotensin II rece	ptor blocker;

AHF, acute heart failure; ADEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker;

HF, heart failure

Table 2 Hospitalization route and clinical status of patients with confirmed acute heart failure

670 (AHF) syndrome

	All AHF			
	patients	Group 1	Group 2	
	(N = 507)	(n = 335)	(n = 172)	p-valu
Means of transport				
- Personal	232 (45.76%)	157 (46.87%)	75 (43.6%)	0.50
- Ambulance	89 (17.55%)	56 (16.72%)	33 (19.19%)	0.63
- Firemen	55 (10.85%)	34 (10.15%)	21 (12.21%)	0.65
- MICU	40 (7.89%)	29 (8.66%)	11 (6.4%)	0.41
- Inter-hospital transfer	6 (1.18%)	5 (1.49%)	1 (0.58%)	0.48
Clinical signs				
- Warm extremities	390 (76.92%)	257 (76.72%)	133 (77.33%)	0.23
- Cold extremities	61 (12.03%)	45 (13.43%)	16 (9.3%)	0.97
- Signs of right heart	216 (42.6%)	144 (42.99%)	72 (41.86%)	0.69
failure				
- Inspiratory retraction	146 (28.8%)	107 (31.94%)	39 (22.67%)	0.02
- Inability to speak	42 (8.28%)	25 (7.46%)	17 (9.88%)	0.54
First recorded vital signs				
- Heart failure, beats/min	85 [71;102]	85 [72;102]	85 [72;104.25]	0.49
	140	140	140 [124;162]	0.11
- SBP, mmHg	[121;160]	[121;160]		
- DBP, mmHg	76 [65;90]	75 [63.5;89]	78 [67.75;92.25]	0.03
- SBP <100 mmHg	34 (6.71%)	27 (8.06%)	7 (4.07%)	0.13
- Respiratory rate,	25 [20;30]	26 [20;30]	24 [20;29]	0.16
breaths/min				
- Pulse oximetry, %	94 [90;96.25]	94 [90;97]	94 [89;96]	0.72
- GCS <15	48 (9.47%)	31 (9.25%)	17 (9.88%)	0.94
- Temperature >37°C	13 (2.56%)	12 (3.58%)	1 (0.58%)	0.37
Killip status				
- 1	128 (25.25%)	76 (22.69%)	52 (30.23%)	0.26
- 2	269 (53.06%)	181 (54.03%)	88 (51.16%)	0.30
- 3	84 (16.57%)	60 (17.91%)	24 (13.95%)	0.11
- Signs of shock	15 (2.96%)	8 (2.39%)	7 (4.07%)	0.89

671 Data are median (IQR) beats/minute, median (IQR) mmHg, median (IQR) breaths/minute, median (IQR) %, or

52 672 number (%) of patients53

54 673 Group 1: patients with CRS; Group 2: patients with normal renal function

AHF, acute heart failure; DBP, diastolic blood pressure; GCS, Glasgow Coma Scale; HF, heart failure; MICU,

5758 675 mobile intensive care unit; SBP, systolic blood pressure

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\22\\31\\4\\15\\16\\17\\18\\9\\20\\21\\22\\32\\4\\25\\26\\27\\28\\29\\30\\31\\32\\33\\4\\35\\36\\37\\38\\9\\40\\1\\42\\43\\44\\5\\46\\47\end{array}$	676			
44 45 46				

Table 3 Biological and diagnosis tests of patients with confirmed acute heart failure (AHF)

678 syndrome

		All AHF patients	Group 1	Group 2	
		(N=507)	(n=335)	(n=172)	p-valu
Biological and	nalysis				
- Perform	ned	507 (100%)	335 (100%)	172 (100%)	
- Sodium	, mmol/L	138 [135;141]	138 [135;141]	139 [135;141]	0.40
	um, mmol/L	4 [4;5]	4 [4;5]	4 [4;5]	0.89
- Creatin		50 [35;69.05]	40 [29;49.9]	78.5 [67;91]	< 0.01
- Creatin <30 mL	ine clearance /min	89 (17.55%)	89 (26.57%)	0 (0%)	< 0.01
- Hemog	lobin, g/dL	13 [11;14]	12 [11;13]	13 [13;14]	0.06
- Tropon	in positive	271 (53.45%)	195 (58.21%)	76 (44.19%)	< 0.01
- BNP, n		991 [507.5;2443.5]	1157.5 [569.25;2680.5]	534 [291;1292]	< 0.01
		4025	5120	2513	< 0.01
- Pro-BN	P, llg/L	[1729;8863]	[2520;12399.75]	[1146.5;5376.5]	0.01
ECG		500 (00 (10))		171 (00 410/)	
- Perform	ned	500 (98.61%)	329 (98.20%)	171 (99.41%)	0.00
- Sinusal		220 (44%)	145 (43.28%)	75 (43.6%)	0.92
- Atrial fi	ibrillation	213 (42.01)	139 (41.49%)	74 (43.02%)	1.00
- Driven		44 (8.8%)	33 (9.85%)	11 (6.4%)	0.19
- AVB		21 (4.14%)	14 (4.18%)	7 (4.07%)	0.86
- LBBB		86 (17.2%)	64 (19.1%)	22 (12.79%)	< 0.05
- RBBB		59 (11.8%)	34 (10.15%)	25 (14.53%)	0.43
- Repolar disorde	rization r	101 (20.2%)	73 (21.79%)	28 (16.28%)	0.09
Chest X-ray					
- Perform	ned	481 (94.87%)	318 (94.92%)	163 (94.76%)	
- Normal		24 (4.73%)	11 (3.28%)	13 (7.56%)	0.20
- Cardior		235 (48.86%)	171 (51.04%)	64 (37.21%)	0.01
	ial opacities	284 (59.04%)	202 (60.3%)	82 (47.67%)	0.02
	r opacities	108 (22.45%)	64 (19.1%)	44 (25.58%)	0.05

52 680 of patients

5354 681 Group 1: patients with CRS; Group 2: patients with normal renal function

AHF, acute heart failure; AVB, atrioventricular block; BNP, brain natriuretic peptide; ECG, electrocardiogram;

⁵⁷
⁶⁸³ HF, heart failure; IVC, inferior vena cava; LBBB, left bundle branch block; LVEF, left ventricular ejection

fraction; RBBB, right bundle branch block; RV, right ventricle; US, ultrasound

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	685			
20 21 22				

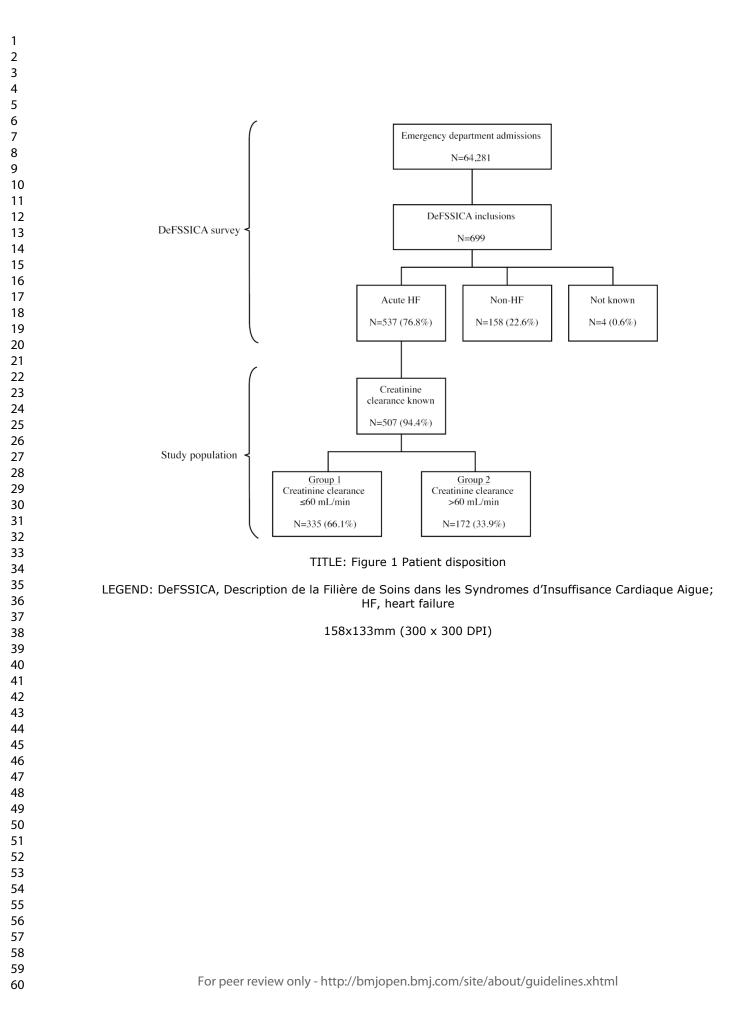
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		All AHF patients	Group 1	Group 2	
		(N=507)	(n=335)	(n=172)	p-value
	Furosemide	376 (74.16%)	252 (75.22%)	124 (72.09%)	0.26
	Oxygen	337 (66.47%)	225 (67.16%)	112 (65.12%)	0.43
	Nitrates	92 (18.15%)	71 (21.19%)	21 (12.21%)	0.01
	Anticoagulant	37 (7.3%)	22 (6.57%)	15 (8.72%)	1.00
	CPAP	8 (1.58%)	6 (1.79%)	2 (1.16%)	0.24
	NIV	45 (8.88%)	30 (8.96%)	15 (8.72%)	0.58
	Antiarrythmics	23 (4.54%)	15 (4.48%)	8 (4.65%)	0.60
	Ionotropic agents	3 (0.59%)	3 (0.9%)	0 (0%)	0.11
	Tracheal intubation	1 (0.2%)	1 (0.3%)	0 (0%)	0.20
	None	32 (6.31%)	17 (5.07%)	15 (8.72%)	0.58
687	Data are number (%) of patients		1, (0.0770)		0.00
688	Group 1: patients with CRS; Group	2: patients with normal re	enal function		
689	AHF, acute heart failure; CPAP, con			nvasive ventilation	

686 Table 4 Emergency treatment of patients with confirmed acute heart failure (AHF) syndrome

	All AHF patients	Group 1	Group 2	p-value
	(N=507)	(n=335)	(n=172)	P fuller
Precipitating factors		\$ <u></u>	, , , , , , , , , , , , , , , , , , , ,	
- Unknown	214 (42.21%)	138 (41.19%)	76 (44.19%)	0.82
- Infection	128 (25.25%)	84 (25.07%)	44 (25.58%)	0.89
- Rhythm disorder	77 (15.19%)	47 (14.03%)	30 (17.44%)	0.67
- Hypertension	54 (10.65%)	39 (11.64%)	15 (8.72%)	0.19
- Non-adherence to treatment	30 (5.92%)	17 (5.07%)	13 (7.56%)	0.92
- Acute coronary syndrome	21 (4.14%)	15 (4.48%)	6 (3.49%)	0.32
- Eating disorder	20 (3.94%)	14 (4.18%)	6 (3.49%)	0.39
- Diabetes decompensation	10 (1.97%)	10 (2.99%)	0 (0%)	0.01
Discharge destination				
- Cardiology	142 (28.01%)	100 (29.85%)	42 (24.42%)	0.33
- Geriatric medicine	61 (12.03%)	34 (10.15%)	27 (15.7%)	0.06
- Other medical unit	99 (19.53%)	67 (20%)	32 (18.6%)	0.98
- CICU	62 (12.23%)	42 (12.54%)	20 (11.63%)	1.00
- Resuscitation unit	16 (3.16%)	11 (3.28%)	5 (2.91%)	0.98
- ED hospitalization unit	74 (14.6%)	48 (14.33%)	26 (15.12%)	0.72
- Back home	26 (5.13%)	14 (4.18%)	12 (6.98%)	0.14
- Other	24 (4.73%)	18 (5.37%)	6 (3.49%)	0.78
Destination considered appropriate	382 (75.35%)	246 (73.43%)	136 (79.07%)	0.13
Outcome				
- In-hospital mortality	30 (5.92%)	24 (7.16%)	6 (3.49%)	0.97
 Still hospitalized at 30 days 	32 (6.31%)	20 (5.97%)	12 (6.98%)	1.00
Length of stay, days	7 (4;13)	8 (4;13) 🥿	6 (3;12)	0.03

Table 5 Outcomes of patients with confirmed acute heart failure (AHF) syndrome


691Data are number (%) of patients or median (IQR) days

692 Group 1: patients with CRS; Group 2: patients with normal renal function

693 AHF, acute heart failure

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4 5	695	Figure title and legend
6 7 8	696	Figure 1
9 10 11	697	Title: Patient disposition
12 13 14	698	Legend: DeFSSICA, Description de la Filière de Soins dans les Syndromes d'Insuffisance
15 16 17 18 19 20 22 22 22 22 22 22 22 22 22 22 22 22	699	Cardiaque Aigue; HF, heart failure
60		

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

TITLE: Impact of renal dysfunction on the management and outcome of acute heart failure: results from the French prospective, multicenter, DeFSSICA survey

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7-8
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	8-9
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	NA
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	NA
		(d) If applicable, explain how loss to follow-up was addressed	NA
		(e) Describe any sensitivity analyses	NA

 BMJ Open

Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	10 and Figure 1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	10
		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10-11
		(b) Indicate number of participants with missing data for each variable of interest	NA
		(c) Summarise follow-up time (eg, average and total amount)	NA
Outcome data	15*	Report numbers of outcome events or summary measures over time	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	10-13
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-17
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	18-19
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	14
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	20
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml