Supplementary Information 2: Benchmarking SingleR
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Benchmarking SingleR

In the case studies below we use the Seurat package to process the scRNA-seq data and perform the t-SNE
analysis. All visualizations are readily available through the SingleR web tool — http://comphealth.ucsf.edu/
SingleR. The web app allows viewing the data and interactive analysis.

Case study 1: GSE74923 — Kimmerling et al.!

Obtaining data

A data set that was created to test the C1 platform. 194 single-cell mouse cell lines were analyzed using C1:
89 L1210 cells, mouse lymphocytic leukemia cells, and 105 mouse CD8+ T-cells. 5 cells with less than 500
non-zero genes were omitted.

The data was downloaded from GEO and read to R using the following code:

counts.file = 'GSE74923_L1210_CD8_processed_data.txt'
# This file was probably proccessed with Excel as there are duplicate gene names
# (1-Mar, 2-Mar, etc.). They were removed manually.
annot.file = 'GSE74923_L1210_CD8_processed_data.txt_types.txt' # a table with two columns
# cell name and the original identity (CD8 or L1210)
singler = CreateSinglerSeuratObject(counts.file, annot.file, 'GSE74923',
variable.genes='de', regress.out='nUMI',


http://comphealth.ucsf.edu/SingleR
http://comphealth.ucsf.edu/SingleR
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE74923&format=file&file=GSE74923%5FL1210%5FCD8%5Fprocessed%5Fdata%2Etxt%2Egz

technology='Cl', species='Mouse',

citation='Kimmerling et al.', reduce.file.size = F,

normalize.gene.length = T)
save(singler,file='GSE74923.RData'))

SingleR analysis

First, we look at the t-SNE plot colored by the original identities:

# singler$singler[[1]] is the annotations obtained by using ImmGen dataset as reference.
# singler$singler[[2]] is based on the Mouse-RNAseq datasets.
load (file.path(path,'GSE74923.RData'))
out = SingleR.PlotTsne(singler$singler[[1]]$SingleR.single,
singler$meta.data$xy, do.label = FALSE, do.letters = F,
labels=singler$meta.data$orig.ident,label.size = 6,
dot.size = 3)

out$p
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We can then observe the classification by a heatmap of the aggregated scores using SingleR with reference to
Immgen. These scores are before fine-tuning. We can view this heatmap by the main cell types:

SingleR.DrawHeatmap(singler$singler[[1]]$SingleR.single.main, top.n = Inf,
clusters = singler$meta.data$orig.ident)
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Or by all cell types (presenting the top 30 cell types):
SingleR.DrawHeatmap(singler$singler[[1]]$SingleR.single, top.n = 30,
clusters = singler$meta.data$orig.ident)
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We can see that the L1210 cells were classified strongly to (mostly) 2 types of B-cell progenitors. We can see
that the CD8 cells were mostly correlated with a specific activation of effector CD8+ T-cells. Interestingly,
SingleR suggests that one L1210 cell is now more similar to fully differentiated B-cells than to a progenitor.

Another interesting application of this heatmap is the ability to cluster the cells, not by their gene expression
profile, but by their similarity to all cell types in the database:

K = SingleR.Cluster(singler$singler[[1]]$SingleR.single,num.clusts = 2)
kable(table(K$cl,singler$meta.data$orig.ident) ,row.names = T)

CD8 | L1210
1 0 86
2 103 0

Here it is not very interesting, but we will see later that this clustering capability may be useful, especially for
identifying new cell types. We use it in the manuscript and find an intermediate, uncharacterized macrophage
state.

Finally, we present the annotations in a t-SNE plot:

out = SingleR.PlotTsne(singler$singler[[1]]$SingleR.single,
singler$meta.data$xy,do.label=FALSE,
do.letters = T,labels = singler$singler[[1]1]$SingleR.single$labels,
label.size = 4, dot.size = 3)

out$p
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We can see that SingleR correctly annotated all the L1210 as types of B-cell, almost exclusively as B-cell
progenitors. On the other hand, all CDS8 cells were correctly annotated to CD8+ T-cells. It is important
to remember that there are 253 types that SingleR could have chosen from, but it correctly chose the most
relevant cell types. Interestingly, the tSNE plot incorrectly positioned cells in the wrong cluster, but SingleR
was not affected by this.

It is often useful to view the annotations in a table compared to the original identities:

kable(table(singler$singler[[1]]$SingleR.single$labels,singler$meta.data$orig.ident))



CD8 | L1210
B cells (B.T2) 0 1
B cells (B.T3) 0 1
B cells (preB.FrC) 0 68
B cells (proB.CLP) 0 1
B cells (proB.FrBC) 0 15
T cells (T.8EFF.OT1.48HR.LISOVA) 101 0
T cells (T.CD8.48H) 1 0
Ted (Tgd.mat.vg3) 1 0

SingleR score is correlated with the number of nonzero genes

The heatmap presented above may be misleading, since each column is normalized to a score between 0 and
1. Thus, a single cell may have low correlations with multiple cell types, and none of them are the accurate
cell type, but in the heatmap they will all be red. Without normalization the data looks like this:

SingleR.DrawHeatmap(singler$singler[[1]]$SingleR.single,top.n = 30,
normalize = F,clusters = singler$meta.data$orig.ident)
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We can see that there is a group of cells that have lower scores with all cell types. What causes these cells to

have low correlations?

df = data.frame(Max.Score=apply(singler$singler[[1]]1$SingleR.single$scores,1,max),
nGene=singler$seurat@meta.data$nGene,Orig.ident=singler$meta.data$orig.ident)

ggplot (df,aes(x=nGene,y=Max.Score,color=0rig.ident))+geom_point ()
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This plot of the number of non-zero genes (nGene) vs. the top SingleR score in a cell shows that the SingleR
score is dependent on nGene. However, as we have seen above SingleR was able to correctly annotate those
cells, despite the lower number of nGene. This is in contrast to the Seurat t-SNE plot, which misplaced those
cells as can be seen in the plot below, which colors the cells based on the Max.Score:

SingleR.PlotFeature(singler$singler[[1]]$SingleR.single,singler$seurat, 'MaxScore',dot.size=3)
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In the next case study we will examine SingleR’s ability to correctly annotate cells using a criterion of
correlation “outlierness” that is independent of nGene.



Case study 2: 10X datasets — Zheng et al.?

Obtaining data

Here we analyzed a unique human dataset of sorted immune cell types that were analyzed using the 10X
platform. We obtained this data from https://support.10xgenomics.com/single-cell-gene-expression /datasets,
and processed it with the SingleR pipeline. To reduce computation times and to make the analyses simpler,
we randomly selected 1000 cells with >200 non-zero genes from 10 cell populations, using the following code:

# path/10X/ contains a directory for each of the expriments, each with the three 10X files.

dirs = dir(pasteO(path,'/10X'),full.names=T)

tenx = Combine.Multiple.10X.Datasets(dirs,random.sample=1000,min.genes=200)

singler = CreateSinglerSeuratObject(tenx$sc.data, tenx$orig.ident, 'Zheng',
variable.genes='de',regress.out='nUMI',
technology='10X', species='Human',
citation='Zheng et al.', reduce.file.size = F,
normalize.gene.length = F)

save(singler,file='10x (Zheng) - 10000cells.RData'))

SingleR analysis

First, we plot the original identities:

Note: When there are more than a handful of cell types, its is hard to distinguish them by color. Shapes are
also hard to distinguish in small sizes. Thus, we use distinct letters for each cell type/color. However, since
the cells are small, this requires substantial zooming in. An alternative is to use our SingleR web tool or
running the code and plotting with ggplotly, which both allow to hover over the cells and see its label.

load (file.path(path, 'SingleR.Zheng.200g.RData'))

out = SingleR.PlotTsne(singler$singler[[1]1]$SingleR.single,
singler$meta.data$xy,do.label = F,
do.letters = T,labels = singler$meta.data$orig.ident,
dot.size = 1.3,alpha=0.5,label.size = 6)

out$p
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We can see that the tSNE plots allows to distinguish most cell types, but the CD4+ T-cell subsets are blurred
together.

We next look at the Seurat clustering:

out = SingleR.PlotTsne(singler$singler[[1]]$SingleR.single,
singler$meta.data$xy,do.label = T,
do.letters = F,labels=singler$seurat@ident,
dot.size = 1.3,label.size = 5,alpha=0.5)
out$p
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We can see that the clustering performs relatively well; however, regulatory T-cells are completely dissolved
in the memory T-cells cluster.

SingleR using Blueprint+ ENCODE (BE) as reference produced the following annotations before fine-tuning;:

# Note the use of the second iterm in the the singler$singler list to use
# the Blueprint+ENCODE reference. The first ttem is HPCA.
# use singler$singler[[i]]$about for meta-data on the reference.
SingleR.DrawHeatmap(singler$singler [[2]]$SingleR.single,top.n=25,

clusters = singler$meta.data$orig.ident)
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We can see that before fine-tuning, there is strong blurring between T-cells states, which cannot be distin-

guished.

However, with fine-tuning we obtain the following annotations:

out = SingleR.PlotTsne(singler$singler[[2]]$SingleR.single,
singler$meta.data$xy,do.label=FALSE,

do.letters =T,labels=singler$singler[[2]]$SingleR.single$labels,
dot.size = 1.3, font.size = 6)

out$p
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By observing the colors we can see that the CD4+ T-cell cluster can roughly be divided in to 4 states, from
naive CD4+ T-cells on the bottom (green), to central memory and effector memory CD4+ T-cells in the
middle (purple and orange) and Tregs in the top (pink), in accordance with the original identities. While it is
not perfect, it provides us a much more granular view of the cell states without the need to go over many
markers that might not be in the data at all and whose interpretation is often confusing; for example:

genes.use = c('CD3E','CD4','CD8A','CCR7', " 'CXCR5','SELL', 'IL7R', 'GNLY', 'FOXP3')

df

data.frame(x=singler$meta.data$xy[,1],
y=singler$meta.data$xyl[,2],
t(as.matrix(singler$seurat@datalgenes.use,])))
df = melt(df,id.vars = c('x','y"'))
ggplot (df,aes(x=x,y=y,color=value)) +
geom_point (size=0.3)+scale_color_gradient(low="gray", high="blue") +
facet_wrap(~variable,ncol=3) +theme_classic()+xlab('')+ylab('')+
theme (strip.background = element_blank())

11
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Effect of fine-tuning

To compare the results before and after fine-tuning we can look at the following plots (rows - original identities,
columns - SingleR labels):

singler$singler[[2]]$SingleR.single$labelsl =
gsub('Class-switched','CS',singler$singler[[2]]$SingleR.single$labelsl)
singler$singler[[2]]1$SingleR.single$labels =
gsub('Class-switched','CS',singler$singler[[2]]$SingleR.single$labels)
hsc = c('CLP','CMP','GMP', 'MEP', 'MPP')
singler$singler [[2]]$SingleR.single$labelsl[
singler$singler [[2]]$SingleR.single$labelsl %in% hsc] = 'HSC'
singler$singler [[2]]$SingleR.single$labels[
singler$singler[[2]]1$SingleR.single$labels %in% hsc] = 'HSC'

orderl = c('CD4+ T-cells','CD4+ Tcm','CD4+ Tem', 'Tregs','CD8+ T-cells',
'CD8+ Tem','CD8+ Tcm','NK cells', 'naive B-cells',
'Memory B-cells','CS memory B-cells', 'Monocytes','HSC')

order2 = c('CD4+ Tn','CD4+ Tm','CD4+ Th','Tregs','CD8+ Tn','CD8+ Tcyto',
'NK cells','B-cells', 'Monocytes', 'HSC')
a = table(singler$meta.data$orig.ident,singler$singler[[2]]$SingleR.single$labelsl)

a = alorder2,orderi]
corrplot(a/rowSums(a) ,is.corr=F,tl.col='black',title = 'Before fine-tuning',
mar=c(0,0,2,0))

12
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b = table(singler$meta.data$orig.ident,singler$singler[[2]]$SingleR.single$labels)

b = blorder2,orderi]

corrplot (b/rowSums(b) ,is.corr=F,tl.col='black',title = 'After fine-tuning',
mar=c(0,0,2,0))

After fine—tuning
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We can see that before fine-tuning many CD8+ T-cells were annotated as CD4+ (46.5% of CD8+ T-cells).
This phenomenon that cells showed highest correlation with CD4+ T-cells has also been reported at the
original Zheng et al. manuscript. After the fine-tuning this number is reduced to 19.25%. In addition,
naive CD8+ T-cells were not annotated as such before fine-tuning but have been correctly annotated after
fine-tuning.

{#CorrectLabeling}In summary, SingleR annotated 84.3% of the cells to main cell types in accordance with
the original identities, not far from the expected purity of the sorting:

13



ident = as.character(singler$meta.data$orig.ident)

ident [grepl('CD4',ident)]='CD4+ T-cells'
ident[ident=='Tregs']='CD4+ T-cells'

ident [grepl('CD8',ident)]='CD8+ T-cells'
kable(table(singler$singler[[2]]$SingleR.single.main$labels,ident))

B-cells | CD4+ T-cells | CD8+ T-cells | HSC | Monocytes | NK cells
B-cells 999 2 0 25 8 0
CD4+ T-cells 0 2743 127 1 1 0
CD8+ T-cells 1 1245 1868 3 15
DC 0 0 0 1 1 0
HSC 0 6 0| 850 1 2
Monocytes 0 2 0 119 981 1
NK cells 0 2 5 0 5 982

sum(ident==singler$singler[[2]]$SingleR.single.main$labels) /10000

## [1] 0.8423

Granular analysis of B-cells

Interestingly, SingleR suggests a more granular view of the B-cell cluster, splitting it to naive and memory
B-cells, which seems to agree with the t-SNE plot structure:

bcells = SingleR.Subset(singler,grepl('B-cells',
singler$singler [[2]]$SingleR.single$labels))
out = SingleR.PlotTsne(bcells$singler[[2]]1$SingleR.single,

bcells$meta.datasxy,
dot.size = 3,alpha=0.5)
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And by CD27 expression (a marker of memory B-cells):

df = data.frame(CD27=bcells$seurat@datal'CD27',],
Labels=bcells$singler[[2]]$SingleR.single$labels)
ggplot (df,aes(x=Labels,y=CD27,fill=Labels))+geom_violin(scale='width') +
theme (axis.text.x = element_text(angle = 45, hjust = 1))+xlab('')

_45

14
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Comparison to other reference classification methods

Kang et al., Nature Biotechnology® used sets of markers learned from scRNA-seq PBMCs (from Zheng et al.)
to annotate single-cells:

out = SingleR.PlotTsne(singler$singler[[2]]$SingleR.single,
singler$meta.data$xy,do.label=FALSE,
do.letters =T,labels=singler$other[, 'Kang'],
dot.size = 1.3, font.size = 6)

out$p
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We can see that this method has limited usability, as it cannot differentiate CD4+ and CD8+ T-cells. Note
that data generated with 10X was used to create the reference matrix in this method, and it was specifically
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https://www.nature.com/articles/nbt.4042

trained for immune subsets in blood.

A bulk reference-based method by Li et. al, Nature Genetics* used a reference-based approach, but without

fine-tuning:

library (RCA)

tpm_data = TPM(as.matrix(singler$seurat@data) ,human_lengths)

data_obj
data_obj
data_obj = cellNormalize(data_obj);

dataConstruct (tpm_data);

data_obj = dataTransform(data_obj,"logl0");
toupper (rownames (data_obj$fpkm_transformed))

rownames (data_obj$fpkm_transformed)

geneFilt(obj_in = data_obj);

data_obj = featureConstruct(data_obj,method = "GlobalPanel");

scores = data_obj$fpkm_for_clust

RCA.annot = rownames(scores) [apply(scores,2,which.max)]

n = table(RCA.annot)

RCA.annot [RCA.annot %iny% names(n) [n<5]] = 'Other (N<5)'
names (RCA.annot) = colnames(tpm_data)

singler$other = cbind(singler$other,RCA.annot)
colnames(singler$other) = c('Kang', 'RCA')

out = SingleR.PlotTsne(singler$singler[[2]]$SingleR.single,
singler$meta.data$xy,do.label=FALSE,
do.letters =T,labels=singler$other[, 'RCA'],

dot.size = 1.3, font.size

out$p
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Again, we can see that the reference is not able to distinguish CD44 and CD8+ T-cells without fine-tuning.
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https://www.nature.com/articles/ng.3818

Identifying rare events

SingleR also allows to detect rare events. For example, lets take a deeper look at the sorted monocytes:

monocytes = SingleR.Subset(singler,singler$meta.data$orig.ident=="'Monocytes")
out = SingleR.PlotTsne(monocytes$singler [[2]]$SingleR.single,
monocytes$meta.data$xy,do.label=F,
do.letters =T, dot.size = 2)

out$p
®
20 -
LN
o 3
A CD4+ Tem
N B CD8+ T—cells
L 10 - Cc DC
(% . ® Monocytes
+ & NK cells
® Plasma cells
O -
=20 0 20 40

tSNE 1

We can see that the t-SNE plot already suggests that there are 18 cells that are not part of the main cluster
(which means that the sorting purity was ~98%). SingleR detected those cells to be plasma cells (8 cells),
T-cells (2 cells), 3 NK cell and 1 DC. Is SingleR correct?

For presentation purposes we only plot 18 cells from the main cluster + the 18 other cells:

cells.use = c(sample(which(monocytes$singler[[2]]$SingleR.single$labels=="'Monocytes'),18),
which(monocytes$singler[[2]1]$SingleR.single$labels!="'Monocytes'))
SingleR.DrawHeatmap (monocytes$singler [[2]]$SingleR.single,top.n = 20,cells.use=cells.use)
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We can see that SingleR is quite convinced in its calls, giving low monocyte scores to those cells. Using
markers for rare cell types (at least in the monocytes sorted cells) is problematic, since marker-based analysis
is focused on clusters and not on single cells.

SingleR score is association with the number of non-zero genes

Here we used a threshold of 200 non-zero genes (nGenes). As in case study 1, there is a strong correlation
between nGenes and the max score per cell:

nGene=singler$seurat@meta.data$nGene
df = data.frame(Max.Score=apply(singler$singler[[1]]$SingleR.single$scores,1,max),
nGene=nGene,Orig.ident=singler$meta.data$orig.ident)
ggplot (df,aes(x=nGene,y=Max.Score,color=0rig.ident))+geom_point(size=0.2,alpha=0.5)+
guides(color = guide_legend(override.aes = list(size = 3)))
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The question is whether cells with low ‘max-score’ are less reliable. We see that for some degree this is true -
using the metric of ‘correct’ labeling of main cell types, we can see that with more nGenes the annotations
tend to be more accurate:

Correct.Ident = unlist(lapply(seq(from=200,to0=3000,by=50),
FUN=function(x) {
A=nGene>=x
sum(ident [A]l==singler$singler [[2]]$SingleR.single.main$labels[A]) /sum(A)}
))
df = data.frame(nGene=seq(from=200,t0=3000,by=50) ,Correct.Ident)
ggplot (df,aes(x=nGene,y=Correct.Ident))+geom_smooth(method = 'loess')
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We continue to explore the ability of SingleR to correctly annotate cells as a function of the number non-zero
genes in case study 3.
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Confidence of annotations

Can we determine a significance test for the confidence of the annotations?

A possible approach, according to the plot above, is to use a threshold on scores. However, we can see that
even low scores are mostly reliable. This is because the SingleR scores are associated with nGenes, but for
a give single-cell the annotation is relative for the cell types in the reference data. Thus we introduce a
significance test that tests whether the scores for the top cell types are different from the majority of low
scored cell types. We do that using a chi-squared outliers test for the top score, where the null hypothesis
is that it is not an outlier. This test does not provide confidence for the fine-tuned annotation, but can
suggest if a single-cell does not have sufficient information to be annotated. We can see the t-SNE plot with
-log10(p-value):

SingleR.PlotFeature(singler$singler [[2]]$SingleR.single,singler$seurat,

plot.feature = -loglO(singler$singler[[2]]$SingleR.single.main$pval))
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This plot suggests that for one of the HSC clusters the confidence is greater than the other, but also confidence
in the NK cells and B-cells annotations:

df = data.frame(nGene=singler$seurat@meta.data$nGene,
pval=-loglO(singler$singler[[2]]1$SingleR.single.main$pval),
Identity=singler$meta.data$orig.ident)

ggplot (df,aes(x=Identity,y=pval,color=Identity))+geom_boxplot()+
ylab('-loglO(p-value) ') +theme(axis.text.x = element_text(angle = 45, hjust = 1))
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Importantly, we can see that this test is not dependent on nGenes:
ggplot (df,aes(x=nGene,y=pval,color=Identity))+geom_point(size=0.3)+
guides(color = guide_legend(override.aes = list(size = 3)))+
ylab('-logl0(p-value) ')
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Case study 3: Simulating number of non-zero genes

The number of drop-outs in cells is highly variable and may have strong impact on the ability to correctly
annotate cells. Here we further explore this issue by simulating varying number of non-zero genes (nGenes)

in cells with known identity.
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From the sorted 10X dataset presented in case study 2 (excluding CD4+ helper T-cells, which are represtend

by the CD4+ memory T-cells), we randomly chose 10 cells with at least 1000 nGenes that were correcly
annotated by SingleR (after fine-tuning).

From the non-zero genes in each cell we chose 1000 genes to be non-zero and the rest were switched to 0;
thus all cells have exactly 1000 non-zero genes. We counted correct inferences by SingleR, before and after
fine-tuning. We then iteratively remove 50 genes, ran SingleR, and counted again the number of correct
annotations. We repeated this process 10 times, randomly choosing different genes to remove. The code for
this analysis is available in the Github repository.

We plot the percent of correct annotations as a function of nGenes (standard error is shown):
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We can see a gradual decline in the accuracy of SingleR as a function of nGenes. This is more evident in the fine-
tuned annotations (blue line), which shows the importance of fine-tuning to differentiate closely related cell
types, even when there are more genes available. At 500 genes we observe 90%, and the decline is more evident
with less genes, supporting our choice to use >500 nGenes in our analysis of mouse lung injury.

The lines per cell types show that as expected, with fewer genes it is harder to differentiate closely related

cell types (T-cell subsets in this data):
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Single R web tool

The SingleR web tool contains >50 publicly available scRNA-seq datasets. All data has been reprocessed
with the tools described above, and the web tool allows the user immediate access to analyze the data and
perform further investigations on published single cell data. In addition, we invite users to upload their own
scRNA-seq data, which will be analyzed on our servers and sent back to the user. The processed
SingleR object can then be uploaded and further analyzed on the website (privately-only the user with the
object is able to view it). Please visit http://comphealth.ucsf.edu/SingleR for more information.
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