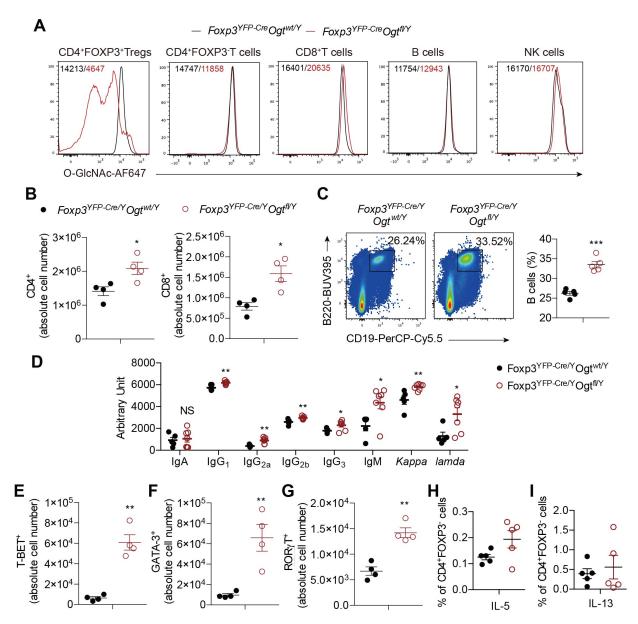
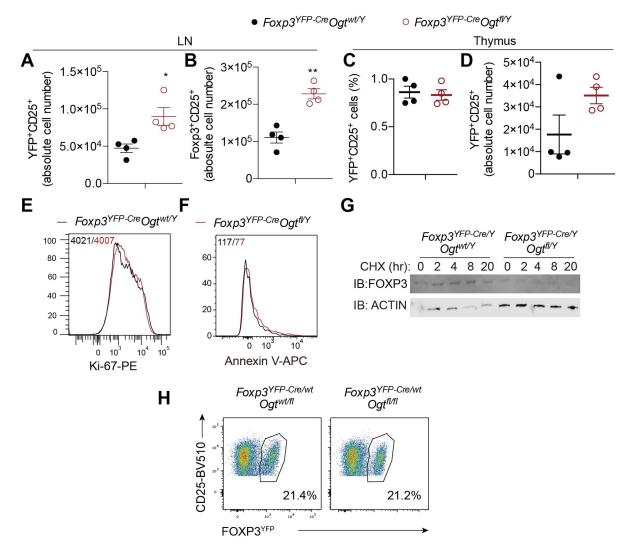
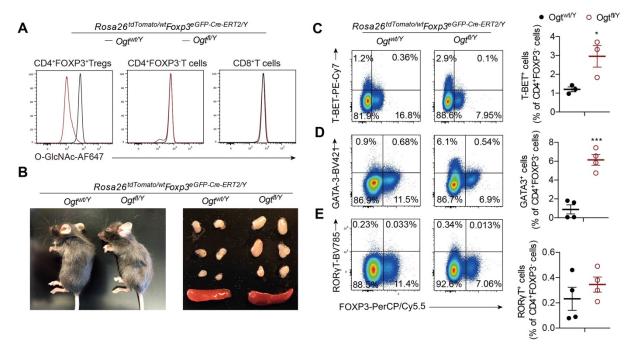
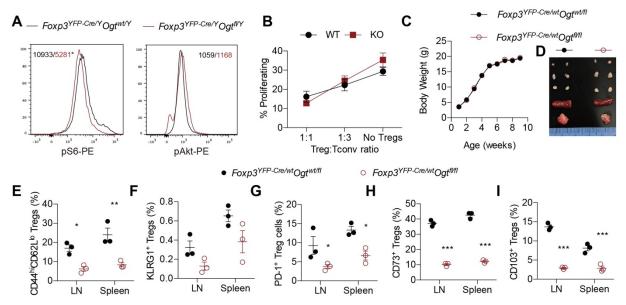
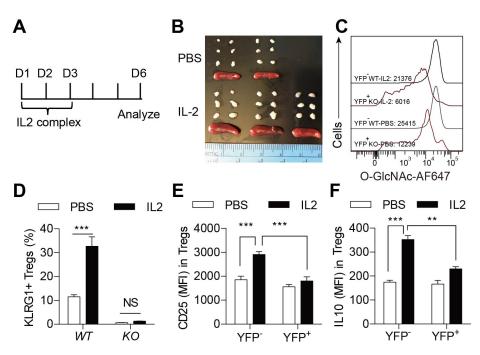

Liu et al.

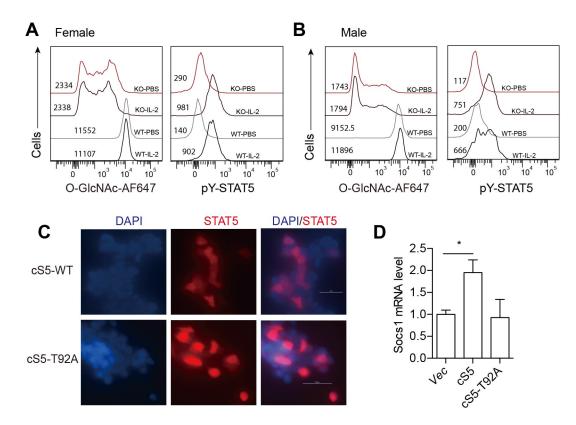

The lineage stability and suppressive program of regulatory T cells require protein O-GIcNAcylation

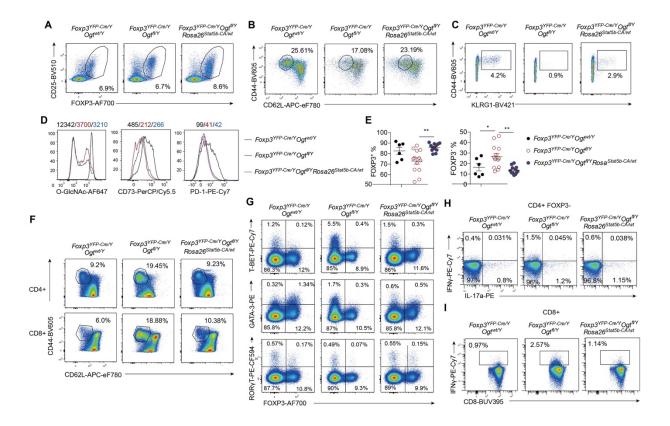

Supplementary Fig. 1 (A, B) CD4⁺CD25⁻ naïve T cells isolated from the LNs and spleen of wildtype mice were activated for 5-day with anti-CD3/CD28 beads in the presence of TGF- β to generate iTreg cells ex vivo. mRNA levels of *Ogt* (A, n = 3) and global protein O-GlcNAcylation (B) were measured. (C) Expression of FOXP3 protein in HEK 293 cells co-transfected with OGT or OGA and STUB1 or USP7. Data are shown as mean ± s.e.m. *, p<0.05 by unpaired student's t-test.

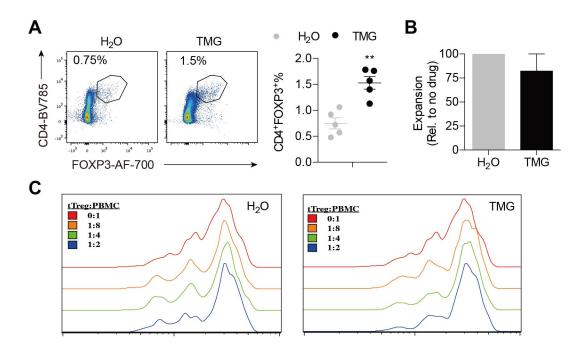

Supplementary Fig. 2 (A-C) Isolated Treg cells from *Ubc-CreER Ogt*^{#/Y} mice were treated for 3day 4-OHT ex vivo. Ethanol was used as a control. MFI of O-GlcNAcylation (A) and FOXP3 (B) among CD4⁺FOXP3⁺ Treg cells. Representative flow cytometry of CD4⁺FOXP3⁺ Treg cells were shown in (C). (D) MFI of O-GlcNAcylation in CD4⁺FOXP3⁺ Treg cells from *Ubc-CreER⁺Ogt*^{#/Y} mice that were treated with ethanol or 4-OHT, n = 4. (E) Representative flow cytometry and quantification of the frequencies of CD4⁺CD25⁺ Treg cells from *Ubc-CreER⁺Ogt*^{#/Y} mice that were treated with ethanol or 4-OHT, n = 4. (F) Forkhead responsive element (FHRE)-luciferase assay in HEK 293 cells transfected with FOXP3 or FOXP3-5A in the presence/absence of OGT. pIS1-Rluc was co-transfected to control transfection efficiency. OGT-induced activation of FOXP3 suppressive activity on FHRE was plotted (n = 6). Data are shown as mean ± s.e.m. *, p<0.05, ***, p<0.001 by unpaired student's t-test.

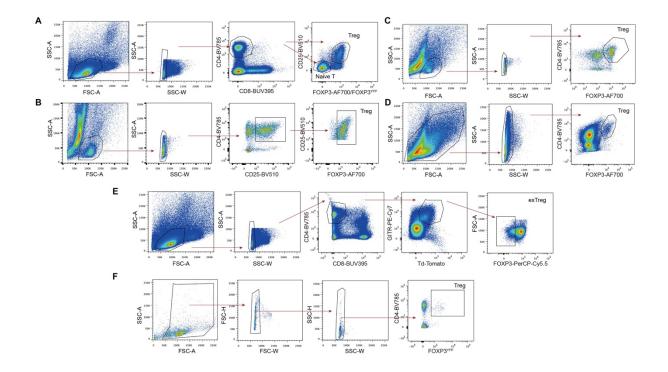

Supplementary Fig. 3 (A) MFI of O-GlcNAcylation in indicated cell populations from $Foxp3^{YFP-Cre/Y}Ogt^{wt/Y}$ and $Foxp3^{YFP-Cre/Y}Ogt^{fl/Y}$ mice. (B) Total number of CD4⁺ and CD8⁺ T cells in the LNs from 2-week-old $Foxp3^{YFP-Cre/Y}Ogt^{wt/Y}$ and $Foxp3^{YFP-Cre/Y}Ogt^{fl/Y}$ mice, n = 4 each group. (C) Representative flow cytometry plot and quantification of the frequencies showing CD19⁺B220⁺ B cells among single cells in the LNs of 2-week-old $Foxp3^{YFP-Cre/Y}Ogt^{wt/Y}$ and $Foxp3^{YFP-Cre/Y}Ogt^{fl/Y}$ mice (n = 5). (D) Levels of IgA, IgG1, IgG2a, IgG2b, IgG3, IgM, *Kappa* and *lamda* in sera of $Foxp3^{YFP-Cre/Y}Ogt^{wt/Y}$ (n = 5) and $Foxp3^{YFP-Cre/Y}Ogt^{fl/Y}$ (n = 7) mice. (E-G) Total numbers of T-BET⁺ (E), GATA-3⁺ (F) and RORYT⁺ (G) cells among CD4⁺ T cells in the LNs from 2-week-old $Foxp3^{YFP-Cre/Y}Ogt^{wt/Y}$ and $Foxp3^{YFP-Cre/Y}Ogt^{fl/Y}$ mice, n=4 each group. (H, I) Frequencies of IL-5⁺ (H) and IL-13⁺ (I) cells in CD4⁺FOXP3⁻T cells stimulated with PMA/lonomycin in the LNs of 2-week-old $Foxp3^{YFP-Cre/Y}Ogt^{wt/Y}$ and $Foxp3^{YFP-Cre/Y}Ogt^{fl/Y}$ mice, n = 5. Data are shown as mean ± s.e.m. *, p<0.05; **, p<0.01; ***, p<0.001 by unpaired student's *t*-test.

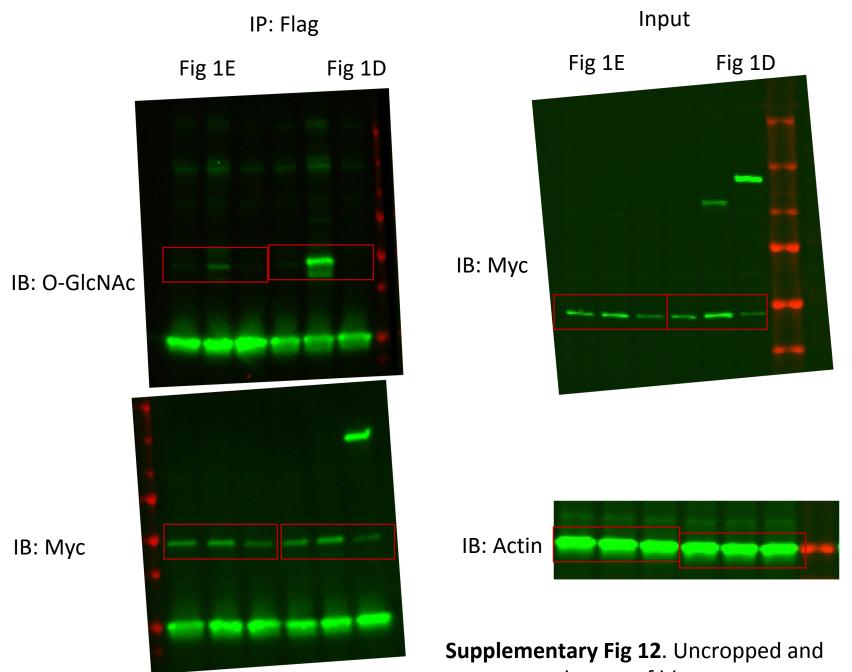

Supplementary Fig. 4 (A, B) Total numbers of YFP⁺CD25⁺ (A) and FOXP3⁺CD25⁺ (B) Treg cells among CD4⁺ T cells in the LNs from 2-week-old $Foxp3^{YFP-Cre/Y} Ogt^{wt/Y}$ and $Foxp3^{YFP-Cre/Y} Ogt^{fl/Y}$ mice, n = 4 each group. (C, D) Frequency (C) and total number (D) of YFP⁺CD25⁺ Treg cells among CD4⁺ T cells in the thymus from 2-week-old $Foxp3^{YFP-Cre/Y} Ogt^{wt/Y}$ and $Foxp3^{YFP-Cre/Y} Ogt^{fl/Y}$ mice, n = 4 each group. (E, F) MFI of Ki-67 (E) and Annexin V (F) among YFP⁺CD25⁺ Treg cells in the LNs from 2-week-old $Foxp3^{YFP-Cre/Y} Ogt^{wt/Y}$ and $Foxp3^{YFP-Cre/Y} Ogt^{fl/Y}$ mice. (G) FOXP3 stability in Treg cells isolated from $Foxp3^{YFP-Cre/Y} Ogt^{wt/Y}$ and $Foxp3^{YFP-Cre/Y} Ogt^{fl/Y}$ mice was determined by CHX treatment. (H) Frequencies of YFP⁺ Treg cells in the LNs from $Foxp3^{YFP-Cre/Y} Ogt^{fl/H}$ female mice. Data are shown as mean ± s.e.m. *, p<0.05; **, p<0.01 by unpaired student's *t*-test.


Supplementary Fig. 5 (A) MFI of O-GlcNAcylation in indicated cell populations from $Foxp3^{eGFP-Cre-ERT2/Y} Ogt^{wt/Y} Rosa26^{tdTomato/wt}$ and $Foxp3^{eGFP-Cre-ERT2/Y} Ogt^{fl/Y} Rosa26^{tdTomato/wt}$ male mice. (B) Representative images of 6-week-old $Foxp3^{eGFP-Cre-ERT2/Y} Ogt^{wt/Y} Rosa26^{tdTomato/wt}$ and $Foxp3^{eGFP-Cre-ERT2/Y} Ogt^{wt/Y} Rosa26^{tdTomato/$

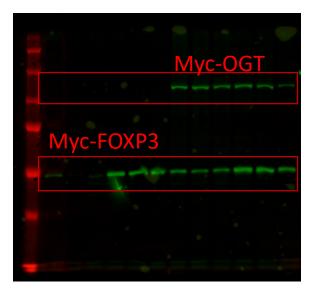

Supplementary Fig. 6 (A) MFI of pS6 and pS473-AKT among CD4⁺FOXP3⁺ Treg cells in LNs of 2-week-old $Foxp3^{YFP-Cre/Y}Ogt^{wUY}$ and $Foxp3^{YFP-Cre/Y}Ogt^{fUY}$ mice. (B) Suppression activity of OGT-sufficient and OGT-deficient Treg cells, the percentages of T conventional cell proliferation were measured by flow cytometry. (C, D) Body weight (C, n = 12) and representative images of peripheral LNs, spleen and thymus (D) of $Foxp3^{YFP-Cre/wt}Ogt^{wt/fl}$ and $Foxp3^{YFP-Cre/wt}Ogt^{fl/fl}$ female mice. (E-I) Frequencies of indicated cell populations among YFP⁺ Treg cells in the LNs and spleen from $Foxp3^{YFP-Cre/wt}Ogt^{wt/fl}$ and $Foxp3^{YFP-Cre/wt}Ogt^{fl/fl}$ female mice, n = 3 each group. Data are shown as mean ± s.e.m. *, p<0.05; **, p<0.01; ***, p<0.001 by unpaired student's t-test.


Supplementary Fig. 7 (A) Mice were injected with PBS or the IL-2 immune complex for 3 consecutive days and Treg cells were analyzed at day 6. (B, C) Representative images of peripheral LNs and Spleen(B) and MFI of O-GlcNAcylation among YFP⁻OGT-sufficient or YFP⁺OGT-deficient Treg cells (CD4⁺CD25⁺GITR⁺) (C) from *Foxp3*^{YFP-Cre/wt} *Ogf*^{#/#} female mice injected with PBS or IL2 complex. (D) Frequencies of CD44⁺KLRG1⁺ cells among CD4⁺CD25⁺FOXP3⁺ Treg cells in LNs and spleen from 2-week-old control and *Foxp3*^{YFP-Cre/Y} *Ogf*^{#/#} male mice injected with PBS or the IL-2 complex, n = 3. (E, F) MFI of CD25 (E) and IL10 (F) among YFP⁻OGT-sufficient or YFP⁺OGT-deficient Treg cells (CD4⁺CD25⁺GITR⁺) from *Foxp3*^{YFP-Cre/wt} *Ogf*^{#/#} female mice injected with PBS or IL2 complex, n = 2-5. Data are shown as mean ± s.e.m. **, p<0.01; ***, p<0.001 by two-way ANOVA.


Supplementary Fig. 8 (A, B) MFI of O-GIcNAcylation and pY-STAT5 among YFP⁺CD25⁺ Treg cells in the LNs from *Foxp3*^{YFP-Cre/wt} *Ogt*^{wt/fl} and *Foxp3*^{YFP-Cre/wt} *Ogt*^{fl/fl} female mice (A) and *Foxp3*^{YFP-Cre/Y} *Ogt*^{wt/Y} and *Foxp3*^{YFP-Cre/Y} *Ogt*^{fl/fl} female mice (B) stimulated with IL-2 in vitro, PBS incubation was used as control. (C) Representative images of STAT5 nuclear translocation in HEK 293 cells transfected with cS5 or cS5-T92A. (D) mRNA levels of *Socs1* in OGT-deficient Treg cells after retrovirus infection as indicated, n = 3. Data are shown as mean ± s.e.m. *, p<0.05 by one-way ANOVA.


Supplementary Fig. 9 (A) Flow cytometry of FOXP3⁺CD25⁺ Treg cells among CD4⁺ T cells in the LNs from *Foxp3^{YFP-Cre/Y} Ogt^{wt/Y}*, *Foxp3^{YFP-Cre/Y} Ogt^{fl/Y}* and *Foxp3^{YFP-Cre/Y}Ogt^{fl/Y}Rosa26^{Stat5b-CA/wt}* mice. (B, C) Flow cytometry of CD44^{hi}CD62L^{lo} eTreg cells (B) and CD44⁺KLRG1⁺ eTreg cells (C) among FOXP3⁺CD25⁺ Treg cells in the LNs from *Foxp3^{YFP-Cre/Y} Ogt^{wt/Y}*, *Foxp3^{YFP-Cre/Y} Ogt^{fl/Y}* and *Foxp3^{YFP-Cre/Y} Ogt^{fl/Y}* and *Foxp3^{YFP-Cre/Y} Ogt^{fl/Y}* and *Foxp3^{YFP-Cre/Y} Ogt^{fl/Y}* Rosa26^{Stat5b-CA/wt} mice. (D) MFI of O-GlcNAcylation, CD73 and PD-1 among FOXP3⁺CD25⁺ Treg cells. (E) Frequencies of FOXP3⁺ and FOXP3⁻ cells among CD4⁺CD25⁺YFP⁺ Treg cells in the LNs, at least n = 6 each group. (F) Flow cytometry of CD44^{hi}CD62L^{lo} cells among CD4⁺ and CD8⁺ T cells in the LNs. (G) Flow cytometry of T-BET⁺, GATA3⁺ and RORγT⁺ population among CD4⁺FOXP3⁻ cells in the LNs. (H, I) Flow cytometry of IFNγ-expressing cells among CD4⁺FOXP3⁻ (H) and CD8⁺ T cells (I) in the LNs. Data are shown as mean ± s.e.m. *, p<0.05; **, p<0.01 by one-way ANOVA.

Supplementary Fig. 10 (A) Flow cytometry and quantification of the frequencies of mouse $CD4^{+}FOXP3^{+}$ Treg cells treated with TMG, H₂O treatment was used as a control, n = 5 each group. (B) Frequencies of human tTreg cells expansion treated with or without TMG for 7 days, n=3. (C) Representative plots showing the cell proliferation of $CD8^{+}$ cells labeled with CFSE. Data are shown as mean ± s.e.m. **, p<0.01 by unpaired student's t-test.


Supplementary Fig. 11 (A) Gating strategy to sort naïve T cells (CD4⁺CD25⁻FOXP⁻) and Treg cells (CD4⁺CD25⁺FOXP3⁺) from unpurified lymphocytes presented on Fig. 3 & Fig. 7. (B) Gating strategy to sort Treg cells (CD4⁺CD25⁺FOXP3⁺) from wildtype mice treated with/without CD3/CD28 beads for in vitro purification and expansion presented on Fig. 1C. (C) Gating strategy to sort Treg cells (CD4⁺FOXP3⁺) from *Ubc-CreER⁺Ogt^{fl/Y}* and control mice treated with 4-OHT for in vitro purification and expansion presented on Fig. 2A-D or wildtype mice treated with/without TMG for in vitro purification and expansion presented on Fig. 8A-C. (D) Gating strategy to sort Treg cells (CD4⁺FOXP3⁺) from naïve T cells (CD4⁺CD25⁻) infected with retroviruses for in vitro purification and expansion presented on Fig. 2G, H. (E) Gating strategy to sort ex-Treg cells (Td-tomato⁺GITR⁺FOXP3⁻) from *Foxp3^{eGFP-Cre-ERT2/Y Ogt^{wt/Y} Rosa26^{tdTomato/wt}* mice fed tamoxifen food presented in Fig. 4G-I. (F) Gating strategy to sort Treg cells (CD4⁺FOXP3⁻) for RNA-seq presented in Fig. 6A.}

unprocessed scans of blots

Fig 1F

1st day for Myc incubation

2nd day same membrane for Actin incubation

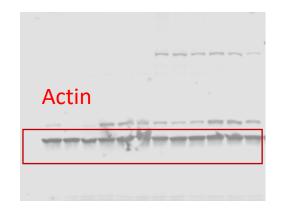
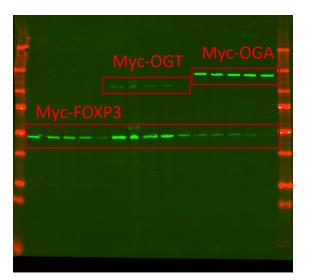
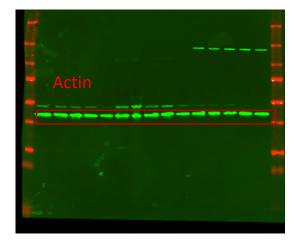
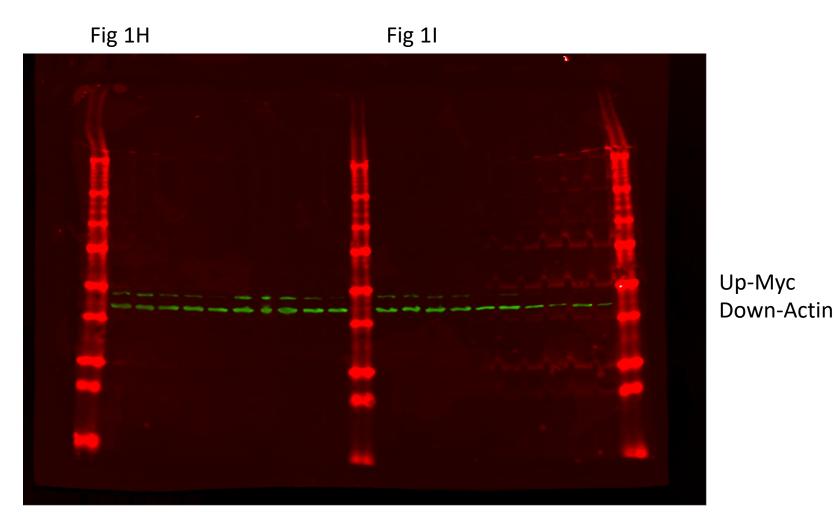
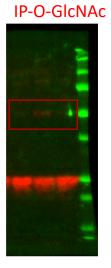
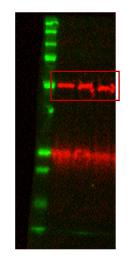
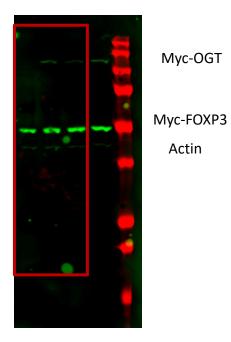




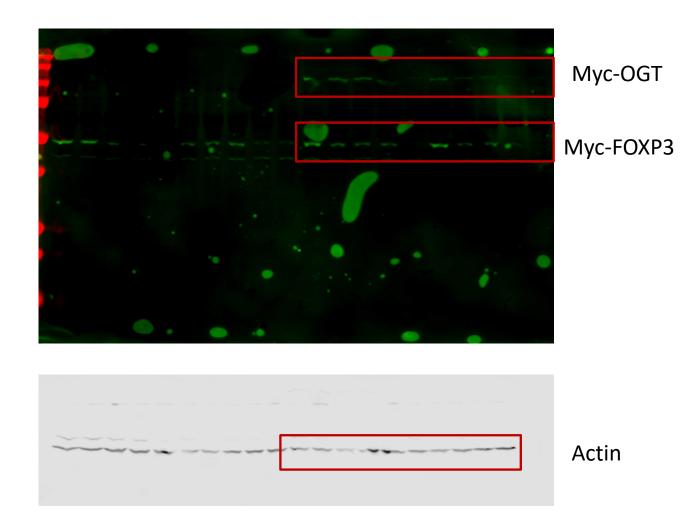
Fig 1G

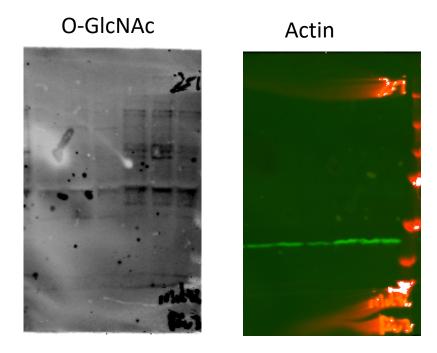
 $\mathbf{1}^{st}$ day for Myc incubation

2nd day same membrane for Actin incubation

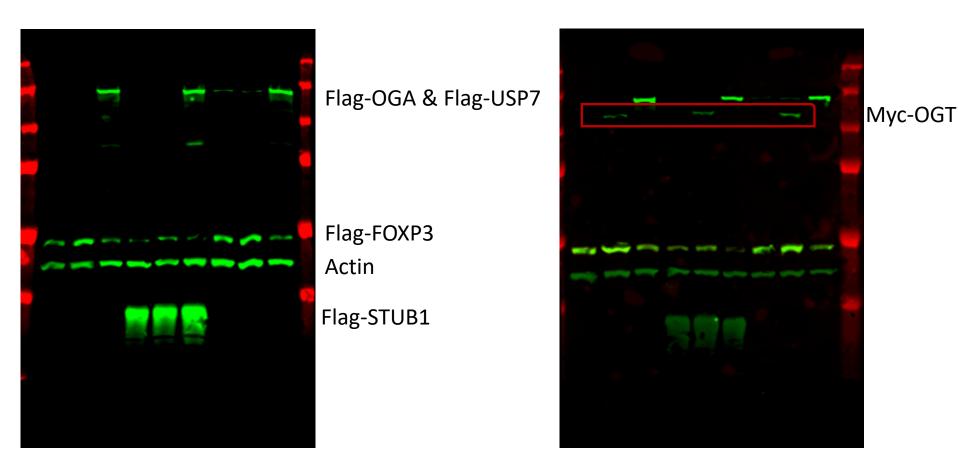




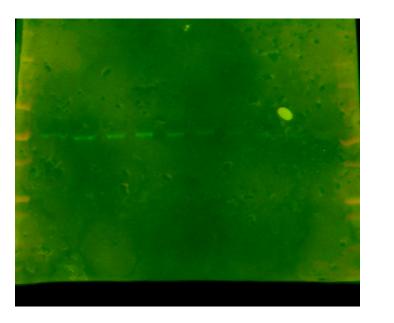

Fig 2E

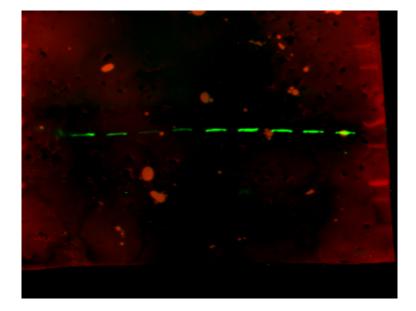

Input



IP-Myc-Foxp3






Supplementary Fig 1C

Foxp3

Actin

Supplementary Table 1

Primer name	Sequence
Human SOCS1 sense	5'-CACGCACTTCCGCACATTC-3'
Human SOCS1 antisense	5'-TAAGGGCGAAAAAGCAGTTCC-3'
Human SOCS 3 sense	5'-CCTGCGCCTCAAGACCTTC-3'
Human SOCS 3 antisense	5'-GTCACTGCGCTCCAGTAGAA-3'
Human 18S sense	5'-GCTGGAGGACTCATGTTCAAC -3'
Human 18S antisense	5'-CCTTGGGTCAAGTTCACAAGC-3'
Mouse Klrg1 sense	5'-TTTGGGGCTTTTGACTGTGAT-3'
Mouse Kirg1 antisense	5'-TGTAAGGAGATGTGAGCCTTTGT-3
Mouse Pd-1 sense	5'-ACCCTGGTCATTCACTTGGG-3'
Mouse Pd-1 antisense	5'-CATTTGCTCCCTCTGACACTG-3'
Mouse Cd44 sense	5'-TCGATTTGAATGTAACCTGCCG-3'
Mouse Cd44 antisense	5'-CAGTCCGGGAGATACTGTAGC-3'
Mouse Cd73 sense	5'-GGACATTTGACCTCGTCCAAT-3'
Mouse Cd73 antisense	5'-GGGCACTCGACACTTGGTG-3'
Mouse Socs1 sense	5'-CTGCGGCTTCTATTGGGGAC-3'
Mouse Socs1 antisense	5'-AAAAGGCAGTCGAAGGTCTCG-3'
Mouse Socs3 sense	5'-ATGGTCACCCACAGCAAGTTT-3'
Mouse Socs3 antisense	5'-TCCAGTAGAATCCGCTCTCCT-3'
Mouse Ogt sense	5'-AAGAGGCACGCATTTTTGAC-3'
Mouse Ogt antisense	5'-ATGGGGTTGCAGTTCGATAG-3'
Mouse 18s sense	5'-ACCGCAGCTAGGAATAATGGA-3'
Mouse 18s antisense	5'-GCCTCAGTTCCGAAAACCA-3'

Supplementary Table 2

Name	Vendor	Catalog no.	Dilution
CD4	BioLegend	100551	1:200
CD4	BioLegend	100548	1:200
CD4	eBioscience	48-0042-82	1:200
CD25	BioLegend	102041	1:200
CD8	BD Biosciences	563786	1:200
CD8	BD Biosciences	563068	1:200
PD-1	eBioscience	25-9985-80	1:200
PD-1	BioLegend	135208	1:200
CD44	BioLegend	103047	1:200
CD44	BioLegend	103012	1:200
CD62L	eBioscience	47-0621-80	1:200
KLRG1	BD Horizon	562897	1:200
Nrp-1	BioLegend	145209	1:200
TCRβ chain	BD pharmingen	560705	1:200
CD73	BioLegend	127214	1:200
CD103	BioLegend	121406	1:200
CD103	BioLegend	121415	1:200
Helios	BioLegend	137222	1:200
GITR	Thermo Fisher	25-5874-82	1:200
NK-1.1	BioLegend	108708	1:200
CD19	Tonbo Biosciences	65-0193-U100	1:200
CD45R/B220	BD Biosciences	563793	1:200
FOXP3	eBioscience	56-7773-82	1:50
O-GlcNAc	Abcam	201994	1:400
Ki-67	eBioscience	12-5698-82	1:100
T-bet	BioLegend	644824	1:100
GATA-3	eBioscience	12-9966-42	1:100
GATA-3	BD Horizon Biosciences	563349	1:20
RORγT	BD Horizon	562684	1:100
RORγT	BD Horizon	564723	1:100
GFP	Thermo Fisher	A-21311	1:400
Annexin V	BD Biosciences	550474	1:100
STAT5 (pY694)	BD Biosciences	612516	1:100
ΙFNγ	TONBO biosciences	60-7311-U100	1:100
IL4	BioLegend	504105	1:100
IL17A	BD Biosciences	559502	1:100
IL10	BD Biosciences Pharmingen	554467	1:100
IL5	Caltag Laboratories	RM9064	1:100
IL13	Invitrogen	47-7133-80	1:100
BLIMP-1	BioLegend	150007	1:100
pAKT (Ser473)	Cell Signaling Technology	#4060	1:100
pS6(Ser235, 236)	eBioscience	12-9007-41	1:100
rabbit IgG (H+L)	Life Technologies	A21429	1:100
• • •	-	12-8899-71	
GZMB	eBioscience	12-0099-11	1:100