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Supplementary Note 1: Analysis of resistivity and Hall resistivity  
Supplementary Figure 2a shows the temperature dependence of resistivity for various 

samples. All samples show similar temperature dependence; the resistivity moderately decreases 
as temperature decreases from 300 K to 100 K and shows a peak around 20 K. We determined 
the carrier density and mobility from the Hall conductivity in the scheme of semiclassical 
Boltzmann theory,  
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Here, ni and μtr,i are the carrier density and transport mobility of i-th carrier. The best fitting 
curve is obtained with assuming two kinds of carriers. The fitting curves for the S9 sample at 
0.12 K are exemplified in Supplementary Fig. 2b with n1=5.5×1016 cm-3, μtr1=6.2×104 cm2V-1s-1, 
n2=2.0×1017 cm-3 and μtr2=2.1×103 cm2V-1s-1, respectively. The signs of fitted curves are 
negative for B > 0, indicating that the two kinds of carriers are electron-type. The parameters of 
highest mobility carrier do not significantly depend on the fitting procedure of another; the lower 
mobility carrier constitutes a broad peak lying in the high field regime as demonstrated by the 
green curve in Supplementary Fig. 2b and gives a least effect in the low field regime where the 
high mobility carrier governs the Hall conductivity. The μtr of the highest mobility carrier is 
plotted as a function of temperature in Supplementary Fig. 2c. As discussed in the main text, μtr 
increases as temperature decreases and reaches 62,000 cm2V-1s-1 for S9 at 0.12 K.  
 
Supplementary Note 2: Analysis of Shubnikov de Haas oscillation 
 For the analysis of SdH oscillations, we adopted the formula of resistivity1,2 expressed as  
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Given that the g-factor is about 23, the energy scale of Zeeman splitting is much smaller than 
cyclotron energy in the investigated magnetic field regime. For simplicity, we have neglected the 
last factor of Supplementary Eq. (3) [cos (πrmcg/2m0)]. We have also neglected the terms of 
higher harmonics (r > 1) and R, taking into account the magnitude of mc, BF and TD. Then, 
Supplementary Eq. (2) is simplified to  Eq. (1) in the main text. Supplementary Fig. 3a 
demonstrates the thermal damping of oscillation amplitude and fits by Eq. (1) of the main text 
for the high-field oscillation for B||a. The extracted mc slightly depends on Landau index n and is 
determined to be 0.31±0.04m0 with m0 the free electron mass. The oscillation amplitude at n=1 
cannot be fitted by a single value of mc; the amplitude shows moderate temperature dependence 
above 3 K, but is steeply enhanced below 3 K, resulting in mc=0.34m0 at lower temperatures and 
mc=0.13m0 at higher temperatures, respectively. The Dingle temperatures are determined by the 
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Dingle plot of ln[∆ρxx/ρxx Bsinh(x)] vs 1/B as shown in Supplementary Fig. 3b. The Dingle plot 
at 0.12 K yields TD=3.5 K, corresponding to the quantum life time τQ=3.5×10-13 s.  
We have performed similar analysis for the low-field oscillation of B||c (Supplementary Figs. 

3d and 3e). The temperature dependence of oscillation amplitude at n=1 again cannot be  
reproduced by a single value of mc as in the case of high-field oscillation (Supplementary Fig. 
3d). The deviation from Lifshitz-Kosevich formula at n=1 suggests that the terms of higher 
harmonics (r > 1) in Supplementary Eq. (2) or breakdown of the rigid band scheme, which may 
be a precursory phenomenon of gap opening or electron localization inherent to the quantum 
limit, cannot be  neglected. The carrier densities estimated by assuming an isotropic Fermi 
surface are qualitatively consistent with the results of Hall conductivity. In addition, we also 
performed the fitting of Δρxx/ρxx with Eq. (1) of the main text. As shown in Supplementary Figs. 
3c and 3f, Eq. (1) of the main text adequately reproduces the high-field oscillation for B || a, but 
poorly does the low-field oscillation for B || c.  
 
 
 Supplementary Note 3: Assignment of Fermi surface and estimation of size of line node 
One of the major difference between the electron pockets around U-point (ka = 0, kb = π, kc = π) 

and those around T-point (ka =π, kb = 0, kc = π) is in the anisotropy of extremal cross-section of 
Fermi surface SF. To clarify the anisotropy, we investigated the SdH oscillation under the tilted 
magnetic field. Supplementary Figures 5a and 5b show the high- and low-field SdH oscillations 
(Δρxx/ρxx) when the magnetic field is tilted within the ac-plane at 0.12 K. The peak and dip of the 
high-field oscillation move to larger 1/B as the tilting angle θ increases, while those of the low-
field oscillation show more moderate θ-dependence. Supplementary Figure 5c shows the peak 
and dip of oscillatory component as a function of 1/B and θ. The low-field oscillation (open 
symbols) is discernible in a wide angular regime 0 ≤ θ  ≤ 90°, whereas the high-field oscillation 
(filled symbols) is not clear for θ  > 40°.  
First, we focus on the θ-dependence of the low-field oscillation. Supplementary Figure 5d 

shows the θ-dependence of SF. The SF moderately decreases with decreasing θ from 90° (B || c). 
We also plot the expected θ-dependence of SF which is simulated with the calculated band 
structure. Here, the absolute value of simulated SF is set as a free parameter, since EF has not 
been exactly reproduced by the ab-initio calculation at the precision required for the present 
purpose. The observed angular dependence of SF is consistent with the electron pockets around 
U-point rather than those around T-point.  
Next, we consider the θ-dependence of the high-field oscillation. The SF and mc of the high-

field oscillation are nearly constant for θ ≤ 10°, but suddenly decrease and appear to merge into 
those of the low-field oscillation for θ ≥ 13°. This sudden change cannot be reproduced by the FS 
predicted by the calculated band structure, given that the FS or magnetic (cyclotron) orbit is not 
significantly reconstructed by the magnetic field. One possible scenario is the magnetic 
breakdown orbit, which is often seen in metals with multiple Fermi surface; the magnetic orbit 
changes via the quantum tunneling of electron between the two neighboring FSs, accompanying 
the change in the SF and mc. Indeed, the steep angular dependence of SF or mc has been ascribed 
to the angle sensitive magnetic breakdown in the metal with multiple Fermi surfaces4. Because 
the line node can be gapped out under the magnetic field tilted from high symmetry axis in the 
present material5, one plausible scenario is that the field induced band reconstruction smears out 
or pushes up the SdH oscillation of outer-FS to much higher field regime, and consequently the 
diminishing quantum orbit of outer-FS partially overlaps with that of the inner-FS via the 
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quantum tunneling for 13° ≤ θ ≤ 40°. Indeed, the modest magnetic field of about 5 T may be 
sufficient to induce tunneling among them with the momentum separation of the inner- and 
outer-FSs (about 0.008 Å-1).  
 We also explored the SdH oscillation under the magnetic field tilted within the bc-plane (ω). 
Supplementary Figures 6a and 6b show the high-field and low-field SdH oscillations, 
respectively, measured at 2 K. Here, the measurement geometry is shown in Supplementary Fig. 
6c. The high-field oscillation is discernible for ω ≤ 15°, whereas the low-field one is observed in 
wide range of 45° ≤ ω ≤ 90° (=B || c). Supplementary Figure 6d shows the Landau index plot of 
both oscillations. The SF of high-field oscillation for B || b is comparable with that for B || a. The 
angular dependence of SF is plotted in Supplementary Fig. 6e. The SF of low-field oscillation 
increases with decreasing ω. This behavior is consistent with the electron pocket nearby U-point 
(solid curve in Supplementary Fig. 6e). On the other hand, the SF of the high-field oscillation 
suddenly changes around ω = 10°, as in the case for B || ac-plane. We anticipate that the 
magnetic breakdown between the inner- and outer-Fermi surfaces of Dirac-like dispersion occurs 
even for B || bc-plane.  

Having identified the plausible electron pockets, next we discuss EF in the Dirac like 
dispersion. There are two possibilities whether EF is located above or below the “band crossing 
point at U-point“ as shown in Supplementary Figs. 7b and 7d. The geometrical shape of Fermi 
surface(s) is two concentric spheroids in the former case, but is a torus in the latter case 
(Supplementary Figs. 7c and 7e). Although both cases yield two SdH oscillations with different 
frequency, we conclude that the former case is more plausible for the following reasons; (a) both  
kinds of carriers extracted from σxy are electron-type, (b) the angular dependence of SF of the 
inner-FS is moderate in a wide angle range both within ac-plane and within bc-plane, and (c) the 
SF of the outer FS for B || a is comparable with that for B || b.  
    By assuming that the linearly dispersing bands are parallel to each other and the anisotropy of 
FS can be neglected, the diameter of the line node can be estimated by the difference between the 
kF of the inner- and outer-FSs as illustrated in Supplementary Figs. 7a and 7b. The “averaged” kF 
of the outer-FS is determined to be about 0.018 Å-1 from the SdH oscillation for B || b. Since the 
kF of the inner-FS could not be accurately extracted for B || b, we employed the kF determined for 
B || c (=0.01 Å-1). In this way, the diameter of the nodal loop is approximately determined to be 
0.008 Å-1.  
Finally, we remark the phase shift of SdH oscillation. A distinguished feature of the line node is 

that electrons acquire a nontrivial π Berry phase around the loop encircling the line node, but do 
a trivial phase around a loop parallel to the plane of the line node6. It is well-known that the 
Berry phase manifests itself as the phase shift of the SdH oscillation. According to Ref.6, the 
outer FS with electron character should give rise to the phase shift φ = -5/8 when the magnetic 
field is parallel to or perpendicular to the nodal loop. The phase shift of the inner FS is expected 
to be 5/8 or 1/8 in the case of torus type Fermi surface with a low Fermi energy. Within the 
experimental accuracy, the observed value of the high-field oscillation (ϕ= - 0.9) suggests the 
outer-FS of line node, which also supports our interpretation.  

 
 
Supplementary Note 4: Resistivity in the quantum limit 

To quantify the insulator-like behavior at high magnetic field, we analyzed the temperature 
dependence of electrical conductivity σxx (= 1/ρxx) at 14 T by thermal activation model, variable 
range hopping model and the model of Tomonaga-Luttinger liquid with disorder. The resistivity 
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above 1 K can be fitted by the Arrhenius model σxx =σ0 +A0exp(T0/T), yielding the thermal 
activation energy T0 = 1.9 ±0.6 K (Supplementary Fig. 9a). Here the σ0 and A0 are the 
temperature independent conductivity stemming from residual carriers and a constant, 
respectively. Since T0 is too small to be ascribed to the field induced mass gap, it would 
correspond to the thermal activation energy of nearly localized carriers due to the spatially 
varying potential landscape as observed in the two dimensional electron gas7,8.  

In this context, we have examined the variable range hopping and model of Tomonaga-
Luttinger liquid with disorder9. Supplementary Figures 9b-d display the fitting by the variable 
range hopping (VRH) model, the model of Tomonaga-Luttinger liquid with disorder and the 
VRH model with Coulomb interaction,  respectively. The corresponding temperature dependence 
of resistivity is expressed as Supplementary Eqs. 7-9, respectively.  

σxx=	σ0+A1exp(T1/T)1/(1+d)        (7) 
 

σxx=	σ0+B1Tα                             (8) 
 

σxx=σ0+
A2√T

exp(T2/T)1/(1+d)      (9) 

 
Here, T1, T2, A1, A2, B1 and α are temperature independent fitting parameters. The VRH 

model and the model of Tomonaga-Luttinger liquid with disorder are consistent with the 
observed resistivity below 1 K. On the other hand, the VRH model with Coulomb interaction 
appears to be appropriate in a wider temperature range. Although we cannot uniquely determine 
the best model, it is likely that the thermally assisted hopping transport governs the low 
temperature transport.  
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Fig. 1. X-ray diffraction pattern of single crystalline CaIrO3. 

The number is the Bragg reflection index.  
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Fig. 2. Comparison of resistivity and Hall conductivity in various samples. 

a Temperature dependence of resistivity for samples S5, S9 and T3. b The experimental data 
and fitting curve within the semiclassical Boltzmann transport scheme for sample S9, where two 
kinds of carriers (1 and 2) are assumed. c The transport mobility versus temperature. d and e Hall 
conductivity versus B in sample S5 and in sample T3, respectively.  
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Fig. 3. Temperature and magnetic field dependence of SdH oscillation.  

a&d Temperature dependence of  the oscillation amplitude at various Landau indices (circle: 
n=1, triangle: n=1.5, square: n=2) for high- and low-field oscillations and a fitting with Eq. (1) of 
the main text. The effective mass is extracted at each Landau index. b&e The Dingle plots of 
log[dρxx/ρxx•Bsinh(x)] versus 1/B at 0.12 K for the high- and low-field oscillations. c&f 
Experimental data and a fit by the Lifshitz-Kosevich formula potted against 1/B for the high- and 
low-field oscillations.  
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Fig. 4. Band structure around T-point.   

  a-d The band structure around T-point for Ueff = 0, 1.0, 2.0 and 2.5 eV. The color denotes the 
magnitude of spectral function.  
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Fig. 5. Angular dependence of SdH oscillation for magnetic field tilted in ac-plane.   

  a&b The high- and low-field SdH oscillations at 0.12 K. c The SdH oscillation as a function of 
θ and 1/B. Open (closed) circle and triangle denote the peak and dip of low (high) field 
oscillation, respectively. The low-field oscillation is observed for 1/B > 0.4 T-1 in the regime 0° < 
θ < 90°. On the other hand, the high-field oscillation is observed for 1/B < 0.4 T-1 in the regime 
0° < θ < 40°. Inset shows the illustration of measurement geometry about the magnetic field and 
electrical current. d&e The extremal cross-section of Fermi surface SF and effective mass of 
electron mc/m0  plotted as a function of θ, respectively. Blue (red) circle denotes SF and mc/m0 
corresponding to the high-field (low-field) oscillation. The dashed line is the SF nearby the U-
point stemming from the Dirac-like band dispersion, which is simulated with the calculated band 
structure. The sudden deviation of the high-field oscillation may be attributed to the magnetic 
breakdown. The SdH oscillation stemming from the electron pockets around T-point is not 
visible. The uncertainty of effective mass is derived from the statistical deviation associated with 
the analysis of SdH oscillation.  
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Fig. 6. Angular dependence of SdH oscillation for magnetic field tilted in bc-plane.   

  a&b The high- and low-field SdH oscillations at 2 K. The dashed line in b denotes the second 
derivative of ρxx (–dρ2

xx/dB2) at ω=90°.  c The illustration of geometry of magnetic field and 
electrical current. d Landau index plot of high-field oscillation for B || b and low-field oscillation 
for B || c. e The extremal cross-sectional area of Fermi surface SF versus tilted angle ω in the bc-
plane. The solid and dashed curves denote the ω dependence of SF for electron pockets around 
U-point and T-point, respectively, which are simulated with the calculated band structure. The 
electron pockets around U-point are qualitatively consistent with the experimental results. The 
rapid reduction of SF of high-field oscillation above 10° may be ascribed to the magnetic 
breakdown between the inner- and outer-FSs.  
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Fig. 7. Illustration of band dispersion nearby the Dirac line node.   

  a&b The illustration of band dispersion within the ka-kc plane and its cross-section along the ka-
line. The line node is marked by the blue line or blue points. The green plane or line denote the 
Fermi energy. c The Fermi surface when the Fermi energy is above the band crossing at U-point 
(brown circle). d&e The illustration of band dispersion along ka-line with the Fermi energy close 
to the line node and the corresponding Fermi surface.  
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Fig. 8. The Ueff dependence of band parameters.  

  a The renormalization factor and Fermi velocity vF plotted as a function of Ueff. The vF was 
evaluated for the Fermi surface around the U point, in the direction along the U-X line. The vF 
along the U-Z [U-R] line is slightly (by ~10%) larger [smaller] than the plotted value. The 
hatched bar denotes vF determined by the experiment (the SdH oscillations). b The energy of the 
nodal line ELN, measured from the Fermi energy, is determined by the peak energy of the spectral 
function along the U-X line. The horizontal line denotes ELN evaluated from the experiment (the 
SdH oscillations). With increasing Ueff, vF decreases monotonically along with the 
renormalization factor, whereas ELN asymptotically approaches EF as the precursory phenomena 
of the Mott criticality. On the basis of the magnitude and systematic variation of vF and EF, the 
results of Ueff=2.0 eV may be most consistent with the experimental results.  
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Fig. 9. Temperature dependence of electrical conductivity at 14 T.   
  a-c Temperature dependence of electrical conductivity at 14T plotted as a function of 1/T, 
1/T0.25, T for the Arrhenius, variable range hopping (VRH) and Tomonaga-Luttinger model with 
disorder35 d The value of T0.5σxx versus T0.5 for the Coulomb gap model.  
 
 
  

a b c d



 
 

15 
 

 

 

Table 1. Crystallographic data for perovskite CaIrO3 at 300 K.  

Space group Pbnm (No. 62), lattice parameter a= 5.3597(5) Å, b= 5.6131(4) Å, c = 7.6824(8) Å, 
Z=4, V= 231.12(4) Å3 The reliability factors are R=0.0540, RW=0.1440, GOF(Goodness of fit) = 
1.147. In the table, x, y and z are the fractional coordinates. Anisotropic atomic displacement 
parameters are represented as U11, U22, U33, U12, U13 and U23 in units of (Å2). The bond angles of 
Ir-O1-Ir and Ir-O2-Ir are 145.90(16) ° and 146.76(10)°, respectively.  
 
 
 
  

Atom site x y z U11 U22 U33 U12 U13 U23

Ir 4a 0 0 0 0.0146(3) 0.0180(3) 0.0075(3) -0.00002(3) -0.00002(2) -0.00005(3)

Ca 4c 0.48318(12) 0.0604(2) 1/4 0.0182(3) 0.0215(5) 0.0122(3) 0 0 -0.0009(2)

O1 4c 0.6036(5) 0.4650(5) 1/4 0.0193(10) 0.0250(11) 0.0088(8) 0 0 -0.0002(9)

O2 8d 0.1933(3) 0.3011(4) 0.0522(2) 0.0184(7) 0.0218(7) 0.0133(6) -0.0012(5) 0.0019(5) -0.0028(6)
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Table 2. Parameters extracted from the SdH oscillations.  
 

 
 
  

Geometry SF[Å-2] kF[Å-1] n3D (cm-3) mc/m0 vF(ms-1) TD (K) τQ (s)

Low-freq.  (B||c) 3.0×10-4 0.010 3.2×1016 0.12±0.04 8.7±1.2×104 4.5 2.7×10-13

High-freq.  (B||a) 1.0×10-3 0.018 2.1×1017 0.31±0.04 6.9±0.6×104 3.5 3.5×10-13
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