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Supplementary Figures: 
 

 

Fig. 1 Geometry of the problem formulated in Supplementary Note 2. A discontinuity plane 

(represented by the dashed line) is inserted near one of the lateral walls. Bloch-type boundary conditions 

are enforced at the discontinuity plane [Supplementary Eq. (6)]. The edge modes propagate around the 

cavity perimeter and cannot penetrate into the bulk region, which is a photonic insulator. 
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Supplementary Notes: 

Supplementary Note 1: Derivation of the angular momentum of an edge-mode 

Let us consider a closed lossless cavity with an edge-mode circulating around the 

lateral walls (Fig. 1 of the main text). The edge mode is described by the complex-valued 

electromagnetic field  ,E H  (the time-variation i te   is implicit). The Abraham angular 

momentum is by definition: 

2

1
ˆz dV

c
  z r S ,      (1) 

where  *Re S E H  is the Poynting vector of a complex-valued field (the time-

averaged Poynting vector of the real-valued field  Re i te E  differs by a 1/ 2  factor 

from  *Re E H ).  

In the general case, the bulk region is a photonic crystal and thus is formed by many 

identical cells (let us say with dimensions 1 2 3a a a  ). The Poynting vector may vary 

considerably on the scale of each unit cell. Since the position vector r  varies slowly on 

this scale, for a large cavity we may write: 

av2

1
ˆz dV

c
  z r S ,     (2) 

where avS  should be understood as a spatially averaged Poynting vector with the 

fluctuations on the scale of the unit cell removed.  

We arbitrarily choose the origin of the coordinate axes to be at the center of the 

cavity. For a large cavity, the edge mode fields are concentrated near the walls and the 

coupling between different walls is negligible (the contribution of the corners region to 
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the angular momentum is negligible). Hence, z  may be regarded as a sum of 4 parcels, 

with each parcel associated with a specific wall. Let us focus on the wall 1 / 2x L , 

which gives the angular momentum contribution 
1

wall av2
/2

1
ˆz

x L
V

dV
c

  z r S


 , where V  is 

some volumetric region nearby the considered wall of the form 1 s 1/ 2 / 2L x L    and 

2 2/ 2 / 2L y L   . Here, s  is some characteristic penetration depth of the edge mode 

into the bulk region (the mode has an exponentially decay in the direction perpendicular 

to the wall). It is implicit that s iL   (i=1,2) so that V  does not overlap the edge mode 

profile associated with other walls. Clearly, avS  must be predominantly oriented along 

the ˆy  direction, because the energy can only flow along directions parallel to the wall. 

Thus, to leading order it is possible to write 

1

1 1
wall av,2 2

/2

1 1

2 2z y y
x L

V V

L L
dV S dVS

c c
  

 
 .    (3) 

The second identity follows from the fact that the volume integral of a spatially averaged 

quantity is simply the volume integral of that quantity. One can further write, 

2 1

2 1 s

/2 /2

/2 /2

L L

y y

V L L

dVS dy dx dz S
 

 
   

 
   


. The inner integral gives the flux of the Poynting 

vector through each section .y const , and thereby from the conservation of energy must 

be independent of y . This shows that: 

1

1
1 s

/2

1 2
wall 2

/2
/2

1

2

L

z y
x L

L

L L
dx dz S

c 




   .     (4) 
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Proceeding in the same way for the other 3 walls, we obtain similar formulas. 

Generically, the contribution of a given wall is of the form tot
||2

1

2

A
dx dz S

c   , where x  

is the coordinate perpendicular to the interface and ||S  is the Poynting vector component 

parallel to the interface (positive when the Poynting vector is oriented in the anti-

clockwise direction, with respect to z). For a large cavity, the integral ||dx dz S   is 

independent of the considered section-cut (around the cavity perimeter) due to the 

conservation of energy. Hence,  

||2
tot

|| ||2
P cav. perimeter

2

2
      

z dx dz S
A c

s dx dx dz S
c l









 

  



,    (5) 

where 1s    for modes that circulate in the anti-clockwise (clockwise) direction and 

 P 1 22l L L   is the cavity perimeter. 

Supplementary Note 2: Edge-mode branches and group velocity 

In order to characterize the edge modes supported by a closed cavity, we introduce an 

auxiliary mathematical problem whose geometry is coincident with the original one, 

except that the fields are allowed to be discontinuous near some rectangular cut 

( 0x  , 2 2/ 2 / 2L y L w     , and 0 z d  ) near the inferior lateral wall (see the 

Supplementary Figure 1). We will refer to this region simply as the “discontinuity plane”. 

It is implicit that the oscillation frequency is in a band-gap of the bulk region. The width 

w should be large enough so that it exceeds the penetration depth of the edge modes into 
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the bulk region ( sw  ) and at the same time 2 / 2w L  (thus, the cavity needs to be 

sufficiently large). 

We are interested in the eigen-solutions of the Maxwell’s equations such that the 

fields at the “+” and “” sides of the discontinuity plane are linked by Bloch-type 

boundary conditions: 

|| P

tan tan0 0

ik l

x x
e  

E E ,  || P

tan tan0 0

ik l

x x
e  

H H .  (6) 

The subscript “tan” refers to the field components tangential to the discontinuity plane. 

The parameter ||k  determines the phase delay ( || Pk l ) acquired by the wave as it goes 

around the lateral walls of the cavity with perimeter  P 1 22l L L  . Evidently, solutions 

with || P 2k l n  and n integer are also solutions of the original problem with no 

discontinuity plane. However, here it is convenient to admit that ||k  can take any real 

value. Furthermore, by analytic continuation, we can also consider eigen-solutions with 

||k  complex, ||k k ik   , which are evidently associated with some complex-valued 

eigen-frequencies i     . 

 Let us then consider a generic family of natural modes  || ||
,k kE H  of the Maxwell’s 

equations in the cavity that satisfy the Bloch-type boundary conditions (6) with 

dispersion  ||k  .  

For a lossless cavity, the conservation of energy implies that 0tW   S , with S  

the Poynting vector and W  the instantaneous stored energy density. For a dispersive 

lossless medium and complex-valued fields the Poynting vector is defined as 

 *Re S E H , whereas the electromagnetic energy density may be written as 
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*
g

1

2
W   Q M Q , with Q  the state-vector of the system and gM  a generalized material 

matrix [1, 2]. Integrating the formula 0tW   S  over the cavity volume, it is found 

that: 

     
0 0

discont.
plane

ˆ, , ,
x x

d
dV W t dS t t

dt
  

     r x S r S r .   (7) 

For complex-valued fields with a time variation i t i t te e e      both S  and W  vary in 

time as 2 te  . Furthermore, for modes that satisfy the supplementary Eq. (6) with a 

complex-valued ||k k ik    it is evident that    2

0 0
, ,Pk l

x x
t e t 



 
S r S r . Hence, for a 

generic eigenmode it is possible to write: 

     2

0
discont.
plane

ˆ2 , 1 ,Pk l
k ik k ik x

dV W t e dS t 


     

    r x S r ,  (8) 

with  
||

|| k k ik
i k  

  
   . Next, we take the limit 0k  . Since the eigenmodes 

satisfy the dispersion equation  ||k  , by doing a Taylor expansion it is seen that 

 
||

k k
k

   


. Hence, modes with a real-valued ||k  satisfy: 

   g P 0
discont.
plane

ˆk k x
v dV W l dS   

  r x S r .    (9) 

where  g
||

v k
k

 


 may be understood as the (net) group-velocity of the edge-mode. 

Note that for a real-valued oscillation frequency both S  and W  are independent of time. 

Moreover, the conservation of energy implies that the integral 
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||0 0
discont. discont.
plane plane

ˆ k x x
dS dx dz S   

  x S  is independent of the section-cut around perimeter 

of the cavity (see Supplementary Note 1). Thus, a generic edge-mode of the original 

cavity satisfies (dropping all the irrelevant subscripts): 

|| || g g

cav. perimeter cavity

dx dx dz S v dV W v       ,    (10) 

where   is the stored energy. The notations ||  and   are used with the same meaning as 

in Supplementary Note 1. The above formula generalizes the result gdV dV W S v , 

satisfied by generic Bloch waves in photonic crystals [3, 4]. 

Supplementary Note 3: The power spectral density circulating around the cavity walls 

Let p  be the unilateral power spectral density associated with the energy transported 

around the cavity walls (
0

P d p


  ).  From the supplementary Eq. (10), the power 

transported by a given edge mode is: 

g
P

1
P v

l
  ,       (11) 

where Pl  is the cavity perimeter. Thus, the power spectral density in a band-gap is given 

by 

  , g,
P

1
T n n

n

p v
l      ,      (12) 

with the summation over all the edge modes. For a sufficiently large cavity we can use 

||
P

1 1

2n

dk
l 

   (see the main text). Taking into account the contributions of all edge-
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mode branches and the link between the gap Chern number and the net number of 

unidirectional edge modes one obtains:  

,

1

2 Tp 
  .        (13) 

Thus, it follows that p  is also quantized in units of ,

1

2 T 
 . Note that the sign of p  

determines the direction (anti-clockwise vs. clockwise) along which the thermal energy 

flows.  

In simple terms, in the band gaps the cavity is analogous to a one-dimensional 

circular transmission line. Indeed, the fluctuation-induced power density transported by a 

standard transmission line mode is precisely per mode
,

1

2 Tp 
   [7]. In a nonreciprocal 

line, the net number of unidirectional modes can be nonzero, leading to a nontrivial p . 

Note that from the definition of angular momentum it follows immediately that for a 

circular transmission line tot
2

2A
p

c  . 

Supplementary Note 4: Modes of a cylindrical cavity filled with a gyrotropic material 

We consider a cylindrical cavity with radius R filled with a gyrotropic material with 

(relative) permittivity tensor t t a gˆ ˆ ˆi       1 z z z 1 , with t ˆ ˆ ˆ ˆ   1 x x y y , and a 

trivial permeability. The cavity lateral wall is a perfect electric conducting (PEC) surface. 

The fields are assumed to be TM-polarized with ˆzHH z  and ˆ ˆx yE E E x y . It is 

implicit that the fields are independent of the z-coordinate ( 0 z d  ) so that the problem 

is effectively two-dimensional. In the bulk region (the interior of the cavity) the magnetic 

field satisfies [5]:  
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2
2

ef2
0zH

c

 
 
   
 

,  with  
2 2
t g

ef
t

 





 .    (14)  

Hence, adopting a system of cylindrical coordinates ( ,  ) it is clear that a generic 

natural mode has a magnetic field of the form (apart from an arbitrary normalization 

factor): 

 0 ef
il

z lH I e    ,             (15) 

where 0  is the free-space impedance, lI  the modified Bessel function of the 1st kind, 

0, 1,...l    is the azimuthal quantum number and ef ef / c    . The electric field can 

be found using 1
0 εi   E H  with 

1 g

ef t a

1 1
ˆ ˆ ˆt i




  
  
     

 
1 z 1 z z . Since 

1
ˆ ˆz zH H 

    H ρ φ  it follows that: 

g g

0 ef t 0 ef t

1 1 1 1
ˆ ˆz z z z

i i
H H H H

i i   

 
       

   
           

   
E ρ φ .  (16) 

Using the supplementary Eq. (15), we obtain the explicit formula: 

   

   

g
ef ef ef

ef t

g
ef ef ef

ef t

1 1
ˆ

/

1 1
ˆ   

/

l l

l l

i
il I I

i c

I l I
i c


    

   


    

   

 
   

 
 

  
 

E ρ

φ

.    (17)  

Imposing the PEC boundary condition ( 0E  ) at R  , one finds the dispersion 

equation for the natural modes: 

 
 

ef g
ef

ef t

0
l

l

I R
R l

I R

 


 


  .      (18) 
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The Poynting vector (  *Re S E H ) of a (complex-valued) mode has the azimuthal 

component  *Re zS E H   . The angular momentum of the mode is 
2

1
z dV S

c   , 

which from the supplementary equations (15) and (17) can be written explicitly as (d is 

the height of the cavity along z): 

     *
ef ef ef ef2

0 ef 0

2 1 1
Re

/

R
gz

l l l
t

d I l I I
d c c

          
   

      
   




.  (19) 

The energy density of the complex–valued field is (note that for time-averaged real-

valued fields one needs to multiply the right-hand side by an additional 1/ 2  factor) [1, 

6]: 

  2*
0 0

1

2 zW H     E E .     (20) 

Thus, after some straightforward calculations the stored energy, dV W  , can be 

written as: 

       2 2 2*
0 t g 0

0

1
=2 2 Re

2

R

zd E E iE E H
d                  

 


, (21) 

where /     . Combining the supplementary equations (19) and (21) one finds that 

the angular momentum of a cavity mode normalized to its energy is given by: 

     

       

g*
ef ef ef ef

ef t0

2 2 2*
t g 0

0

1
Re

1

1
2 Re

2

R

l l l

z
R

z

d I l I I

d E E iE E H     


         

 


    

     
   

      
 








, (22) 

with , , zE E H   defined as in the supplementary equations (15) and (17). The right-hand 

side of the above equation determines the parameter  n  used in the main text. 
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Supplementary Note 5: Power rerouted from the cavity to the directional coupler 

In the following, we characterize the net power rerouted from the topological cavity (at 

temperature T) to the arms of the directional coupler (Fig. 6 of the main text). It is 

supposed that the material loss in the directional coupler is negligible and that ports A 

and B are terminated with matched loads (microwave bolometers) cooled to a 

temperature 0T T . For simplicity, in the following we refer to ports A and B as ports 1 

and 2, respectively.  

The thermal energy radiated by port 1 ( rad,1p )  is   0

2 ther
rad,1 11 ,1

2Tp s 



 
  , where 

  is the relevant bandwidth. Here, ijs  are the scattering parameters of the two-port 

microwave network. Furthermore, 
B

ther
, B

B

coth 1
2 2 1T k T

k T
k T e 

     
        


  

 is the 

mean thermal energy of a harmonic oscillator at temperature T. Note that ther
, 2T 




 
 is the 

thermal noise power delivered by a circuit with temperature T to a matched load [8].  

On the other hand, the thermal energy captured by port 1 ( abs,1p ) is 

 0

2 2 2ther ther
abs,1 12 , 11 12 ,1

2 2T Tp s s s 
 
 

  
    . Note that 

0

2 ther
12 , 2Ts 




 
 is the power 

collected at port 1 due to the thermal radiation from port 2. The leading coefficient of the 

second term of abs,1p  is found by noting that at thermal equilibrium ( 0T T ) one needs to 
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have abs,1 rad,1p p . Using ther
, BT k T   it follows that the power collected by ports i=1,2 is 

given by: 

2

abs,1 12 B 0 3 1 B2 2
p s k T C k T

 
 

 
  .     (23a)  

2

abs,2 21 B 0 3 2 B2 2
p s k T C k T

 
 

 
  .     (23b)  

where 
2 2

3 1 11 121C s s     and 
2 2

3 2 22 211C s s     are the coefficients that determine 

the coupling between the cavity (index 3) and the ports 1 and 2, respectively.  The net 

power flow abs, rad,i i ip p p   at port i can be written as: 

 3 B 0 2i ip C k T T




  .     (24) 

Thus, 2 1p p p    is given by    3 2 3 1 B 0 2
p C C k T T


 


   . This yields the result 

of the main text with D 3 2 3 1C C C    . 

The directional coupler may be designed such that one of the coefficients 3 iC   is 

negligible in a band-gap. For example, if the directional coupler ensures that when the 

topological modes rotate in the counter-clockwise direction ( 0 ) most of the energy is 

coupled to port B, then one has    B 0 Dsgn
2

p k T T C




    . The coefficients 

3 iC   are determined by the scattering parameters of the microwave network and hence 

can be easily determined with a vector network analyzer. In the reciprocal case 21 12s s  

and by symmetry 11 22s s  so that 0p  . 
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The equivalent noise temperature ( n,iT ) at port i is defined such that abs, n, 2i B ip k T




  

[8]. From the supplementary Eq. (23) it follows that 
2

n,1 12 0 3 1T s T C T   and 

2

n,2 21 0 3 2T s T C T  . If the coupling with the topological cavity is removed, the noise 

temperature is n 0T T  (note that the ports 1 and 2 are terminated with matched loads). 

Hence, the excess of thermal noise in port 2 due to the coupling with the cavity is 

 2

n,2 21 0 3 21T s T C T     . For a weak cavity coupling, and a detector with a 

sufficiently low temperature the first term is negligible (  2

21 0 01 s T T  ) provided the 

second term is comparable to or larger than 0T . In these conditions, the excess of noise 

temperature in the coupled port is roughly n DT C T   . 
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