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CHAPTER 1.  INTRODUCTION 
 

This technical report documents the details of a model projecting health expenditures, disease, 
and disability among future generations of the elderly.  At the core of the model development project is 
the development of a demographic-economic model to project future health care expenditures.  The first 
goal is to answer the question:  If current health status and disability trends continue, what will be the 
costs to Medicare for treating the elderly, and how will they affect health and functional status?  The 
second goal is to serve as the simulation vehicle for evaluating “what if” scenarios about the future health 
care environment. 

The model diverges from traditional approaches in that it includes a multi-dimensional 
characterization of health status.  In addition, conventional actuarial approaches employ cell-based 
models in which each cell represents a subpopulation of interest.  While it is theoretically possible to 
extend cell-based models to support health care projections, practical shortcomings make it difficult to 
simulate changes of the sort identified in Chapter 2.  The desirability of a rich characterization of health 
status, by sex and age group, implies that the number of cells would need to be very large.  Cell sizes 
would be correspondingly small, and the very large Markovian transition probability matrix difficult to 
estimate.  Microsimulation models offer a conceptually and analytically superior alternative.   

THE MECHANICS OF THE MICROSIMULATION 

Microsimulation models start out with as large a sample of individuals as possible.  The sample 
needs to contain information on all health status measures that are strong predictors of health 
expenditures.  For expositional purposes, suppose health measures A, B, and C are relevant.  In our 
preliminary specification, these measures reflect ADLs, clinical diagnoses (cancer, diabetes) or perhaps 
states such as “institutionalized in a nursing home.”  One may well both suffer from diabetes and be 
institutionalized, i.e., the states are not mutually exclusive.  The measures may or may not be “absorbing,” 
i.e., one may recover from a subset of health statuses.  Denote with H the “healthy” state in which the 
person is free from A, B, and C, and with D the “deceased” state.  Individuals may then be H; A; B; C; 
A+B; A+C; B+C; A+B+C; or D. 

At the time the sample was drawn, we know individuals’ health status.  The goal is to map out 
individuals’ remaining life paths and identify at what point(s) in time they transition into other health 
statuses and when they are likely to become deceased.  This requires that we estimate transition models 
into all possible health states.  In the example, we need at least four models: transition into A; transition 
into B; transition into C; transition into D (deceased), plus potentially additional recovery models.  We 
don’t need to distinguish, say, transitions H B from A A+B; the fact that an individual suffers from A 
may be treated like any other covariate, so that the models are conditional on existing health status. 

The first step is to estimate individual health transition models.  Several types of models may be 
chosen, depending on the richness of available (longitudinal) data.  For example, a simple logit or probit 
transition model may be estimated if information is available on health status at two points in time.  With 
more than two health status observations per individual, such simple models may account for health 
history; with yet more detailed information, continuous-time hazard models may be estimated.  Transition 
models may be estimated using any data source that contains health measures that are identical to those 
distinguished in the microsimulation sample.  It is, of course, preferable to estimate transition models 
directly off the microsimulation sample, so that the definition of health outcomes is exactly right. 

The second step is to project future health transitions.  Regardless of the estimated model type, 
we can compute interval (discrete) transition probabilities conditional on a rich set of demographics, 
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current health status, and (if available) health status history.  These transition probabilities are used to 
forecast health transitions.  If the probabilities only account for current information, a first-order 
Markovian process is generated; if they account for lagged covariates, such as accumulated health 
histories, higher-order Markovian processes result.  Note that the probabilities depend on potentially 
many individual-specific characteristics and initial state, unlike the generic transition probabilities in cell-
based models which apply to cells consisting of a fairly heterogeneous subpopulation. 

By illustration, consider an individual who at baseline suffers from health condition A.  The 
model computes the following four transition probabilities: 

1) Probability of recovering (transition into state H) in the next year (say, ph=.002); 

2) Probability of attracting health condition B (transition A A+B) in the next year (say, ph=.06); 

3) Probability of attracting health condition C (transition A A+C) in the next year (say, ph=.05); 

4) Probability of dying (transition A D) in the next year (say, ph=.08); 

We draw a random number between zero and one from a uniform distribution to simulate a health 
shock.  If the transition probability exceeds the corresponding random draw, we project that the transition 
took place.  It may well be that all four random draws are larger than the transition probabilities.  In that 
case, the person remains in state A throughout the year.  It may also be that multiple transitions are 
projected to take place.  In the example, transitions into both B and C may be possible, so that the person 
ends up with multiple health conditions, A+B+C.  The transition into death logically dominates all others.  
If multiple transitions are conceptually implausible or impossible, the transition interval may be shortened 
(from a year to perhaps just a week or a day), so that multiple transitions are ruled out1. 

Continuing the example, the model projects that the individual will remain in state A throughout 
the first year.  Transition probabilities for the next year change, because the individual is one year older, 
and perhaps because there are time trends in the transition models.  We then draw new random numbers.  
If he remains in state A for four additional periods, until in the sixth period, he is projected to attract 
illness B, so his new state is A+B.  Then the set of potential next transitions changes.  Further, the 
transition probabilities have changed not just because of age and time, but also because of a change in 
health condition.  For example, his health has now deteriorated severely so that his mortality risk is much 
higher than before.  We compute new transition probabilities and compare them with randomly drawn 
numbers.  The result is a simulated life path in which the person accumulates multiple disease conditions, 
and then dies. 

CHOICE OF THE HOST DATA SET 

The microsimulation sample needs to be a large data base with information on many personal 
characteristics:  sex, date of birth, health conditions, income, supplemental health insurance status, and as 
many other covariates as possible.  These requirements point to large-scale survey data.  This data base is 
the “host” survey.  

After consultation with the social science expert panel, we chose to use the Medicare Current 
Beneficiary Survey (MCBS).  The MCBS is a nationally representative data set designed to ascertain 
utilization and expenditures for the Medicare population, especially those expenditures born by the 
beneficiary or supplemental insurance.  The sample frame consists of aged and disabled beneficiaries 
enrolled in Medicare Part A and/or Part B although we use only the aged.  The MCBS attempts to 
interview each person twelve times over three years, regardless of whether he or she resides in the 
community, a facility, or transitions between community and facility settings.  The disabled (under 65 
years of age) and the oldest-old (85 years of age or over) are oversampled.  The first round of 
interviewing was conducted in 1991.  Originally, the survey was a longitudinal sample with periodic 
supplements and indefinite periods of participation.  In 1996, the MCBS switched to a rotating panel 
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design with limited periods of participation.  Each fall a new panel is introduced, with a target sample size 
of 12,000 respondents, and each summer a panel is retired.  The MCBS contains detailed self-reported 
information, including the prevalence of various conditions; measures of physical limitation in 
performing daily activities (ADLs) and instrumental activities of daily living (IADLs); and height and 
weight.  In addition, the MCBS contains very detailed self-reported data on health service use, as well as 
Medicare service use records.  Institutionalized respondents are interviewed by proxy.  To increase 
sample size, we pool multiple rotation groups.  Table 1 shows the sample size for MCBS in each year 
after dropping observations with missing data (mostly due to missing self-reported conditions). 

Table 1.  Sample Size For the MCBS Analytic File, 1992 to 1998 
Year N Percent 
1992 10,584 14.6% 
1993 10,188 14.1% 
1994 10,557 14.6% 
1995 9,974 13.8% 
1996 9,866 13.6% 
1997 10,426 14.4% 
1998 10,881 15.0% 
Total 72,476 100.0% 

For our simulations, we select all individuals age 65 and older in MCBS 1998 dataset.  This 
leaves 10,881 individuals.  (For some simulations, we restrict attention to a cohort of 70 year olds whom 
we follow through time.  In these cases, we use data from the pooled sample 1992 to 1998 to ensure 
adequate sample size).  Original MCBS cross-sectional weights indicate the number of persons in the 
population that every sample member represents.  The weights range from 1106 to 12,131 due to stratified 
survey sampling and non-response rates.  We re-scale the weights such that they add up to the 1998 
population of individuals aged 65 and older (representing 34,385,239 individuals).  A simulation with this 
host data set of 10,881 individuals would generate unbiased projections.  However, the sample size for 
rare subpopulations (as measured by their multi-dimensional health status) is limited.  We therefore 
replicate observations in the sample.  This allows for multiple health status paths per sample member and 
yields more precise (smoother) estimates of future health status distributions.  We replicate in accordance 
with individuals’ relative weight in the sample; the minimum number of replications is two, the maximum 
55.  The average replication is 10 times, so that the resulting host data consists of 108,810 individuals.  
Their weights are now more uniform and range from 276 to 355. 

 

DEFINING HEALTH STATES 

We define health states based on self-reported health conditions and disability.  The MCBS asks 
about a multiplicity of health conditions.  For the preliminary model, we chose to focus our analysis on 
diseases being investigated by our medical panels.  Because of the way these diseases were chosen, these 
conditions are the ones that are most prevalent in the elderly population and also the most expensive to 
treat.  The conditions we use are shown in Table 2 along with their prevalence in the MCBS.  For 
comparability with other studies, these rates exclude individuals residing in a facility at any point during 
the year.   
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Table 2. Prevalence of Select Conditions, MCBS Non-Institutionalized Population 
 Prevalence (%): 

Condition 65+ 65-69 70+ 
Cancer 17.7 14.3 19.0 

Breast1 6.5 6.8 6.4 
Prostate2 6.6 4.3 7.5 
Uterus1 2.9 2.4 3.0 
Colon 2.5 1.6 2.9 
Bladder 0.9 0.3 1.1 
Lung 1.0 0.9 1.1 
Kidney 0.3 0.3 0.3 
Throat 0.5 0.2 0.7 
Head 0.2 0.1 0.3 
Brain 0.1 0.1 0.1 
Other 3.1 2.7 3.3 

Heart Disease 38.2 29.5 41.4 
Angina pectoris/CHD 14.4 11.3 15.5 
Myocardial infarction 14.7 12.4 15.6 
Other 27.6 20.4 30.4 

Alzheimer’s 2.4 0.7 3.0 
Stroke 10.4 7.4 11.5 
Diabetes 16.0 15.2 16.3 
Hypertension 55.8 49.5 58.1 
Lung 14.2 13.7 14.4 
Arthritis 57.3 48.5 60.6 
BMI3 26.0 27.1 25.5 
Ever Smoke 60.3 64.4 58.8 
Disability  

ADL≥1 25.8 16.1 29.4 
ADL≥3 8.4 3.7 10.2 

 
Note:  Results from 1998 survey sample and exclude nursing home residents. Responses are weighted using MCBS 
1998 cross-sectional weights. 
1 Universe includes women only. 
2 Universe includes men only. 
3 Measured as kg/m2, not as percentages. 
 

As a consistency check, we compared several of these rates with data from the 1994 and 1995 
National Health Interview Surveys.  The NHIS serves as the data source for the under 65 population who 
will age into Medicare in the microsimulation.  The result of this comparison is shown in Table 3. 
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Table 3.  Comparison of Condition Prevalence between the MCBS and NHIS 
 MCBS Prevalence by Age (%) NHIS Prevalence by Age (%) 

Condition 65+ 65-69 70+ 65+ 65-69 70+ 
Cancer 19.3 15.9 20.7  

Breast1 6.6 6.2 6.7 2.6 1.5 3.1 
Prostate2 5.8 4.4 6.4 4.5 2.6 5.5 
Uterus1 3.1 2.9 3.1 0.2 0.2 0.2 
Colon 2.3 1.2 2.8 0.6 0.4 0.7 
Lung 0.8 0.8 0.8 0.4 0.1 0.5 

      
Heart Disease 38.3 30.2 41.7 27.5 21.5 30.2 
Hypertension 54.4 47.9 57.1 36.4 30.8 38.9 
Diabetes 17.2 16.0 17.6 10.1 8.7 10.8 
Disability      

ADL≥1 27.2 17.1 39.4 9.6 4.5 11.9 
ADL≥3 9.5 5.0 11.5 4.1 2.0 5.1 

Notes: NHIS prevalence rates are from the 1994 survey, except for disability, which comes from the 1995 Disability 
Phase I supplement.  Tabulations are based on the recodes provided by NHIS (Diagnostic Recode C).  The NHIS 
asks about stomach, intestine, colon, and rectal cancer in one question, the response to which is reported as “colon 
cancer” in the table; the list of cancer types asked by the MCBS is shown in Table 2. MCBS data are from 1995. 

1 Universe includes women only. 
2 Universe includes men only. 

Clearly there are some large differences between the two sets of prevalence estimates.  Some of 
the difference can be explained by question wording.  The MCBS asks about all conditions in the form 
“Has a doctor ever told you had [condition]?”  However, the NHIS varies its wording depending on the 
condition.1  For diabetes, and the cancers listed above, the questions are of the form “During the past 12 
months, did anyone in the family have [condition]?”  For cardiovascular disease and hypertension, the 
NHIS asks “Has anyone in the family ever had…?”, except for tachycardia and heart murmurs which 
were asked in the form “During the past 12 months, did anyone in the family have…?” 

This wording difference means the rates of cancer should be much lower in the NHIS, since 
cancer survivors are much less likely to report having disease in the NHIS than the MCBS.  For example, 
if a woman had an early stage, non-metastatic tumor removed from her breast 10 years ago, she will not 
report this cancer in the NHIS but she would in the MCBS.  On the other hand, the NHIS has much lower 
rates of cardiovascular disease2, hypertension, and diabetes that cannot be explained by differences in 
question wording.   

Disability in the MCBS is defined as having any difficulty with or inability to perform bathing or 
showering, dressing, eating, getting in and out of bed or chairs, walking, and using the toilet.  In the NHIS 
supplement, disability is defined as having any difficulty with or inability to perform bathing, dressing, 

                                                 
1The NHIS does not ask each respondent all conditions.  Instead, the family is randomly assigned to one of six 
condition lists: skin and musculoskeletal conditions; impairments; selected digestive conditions; selected conditions 
of the genitourinary, nervous, endocrine, metabolic, and blood forming systems; selected circulatory conditions; or 
selected respiratory conditions.  Since the list of cancers crosses condition lists, we cannot calculate an overall 
prevalence rate for any cancer.  
2Cardiovascular disease includes the following recodes from the NHIS: rheumatic fever with or without heart 
disease (501); ischemic heart disease (502); heart rhythm disorders including tachycardia or rapid heart (503), heart 
murmurs (504), other and unspecified heart rhythm disorders (505); congenital heart disease (506); other selected 
diseases of heart (excludes hypertension) (507); and hardening of the arteries (510).  
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eating, getting in and out of bed or chairs, getting around inside the home, and using the toilet.  Because 
the MCBS asks about walking—which results in higher rates of difficulty than getting around inside the 
home—and showering, it should have higher rates of disability.  These wording differences explain 
much—but not all—of the difference in disability rates, since the differences persist even when looking at 
similarly-worded ADLs (data not shown). 

MODEL OVERVIEW 

Figure 1 depicts how the cost models, transition models, and rejuvenation models are integrated 
into our microsimulation model.  The model is designed to yield predictions in constant dollars and—at 
baseline—using 1990’s ‘technology.’  We start with MCBS data for 1998 as the host cohort.  The 
characteristics of these individuals are used to predict per capita 1998 medical expenditures.  The weights 
of the host data are adjusted such that they add up to the 1998 population of individuals age 65 and older.  
The product of per capita expenditures and population size yields aggregate 1998 medical expenditures.  
The host data include some individuals who, at the time of their last interview of their first year in the 
MCBS had become deceased.  These are dropped from the sample.  We then project individuals’ health 
status in 1999.  By then, the sample has aged to 66 years of age and older.  We rejuvenate the sample 
using a rejuvenation sample which consists of age-65 MCBS respondents.  The weights of newly entering 
individuals are adjusted, first, in accordance with 1999 prevalence rates of health conditions among 65-
year olds, and second, such that the sum of weights newly entering 65 years old equals the 1999 
population of individuals age 65.  The resulting sample is representative of the 1999 age 65+ population.  
We use the health status and demographic characteristics of this sample to predict per capita 1999 medical 
expenditures and derive the 1999 aggregate expenditures.  We then drop individuals who have become 
deceased, project the health status of survivors in 2000, rejuvenate the sample, and compute 2000 costs; et 
cetera, through the year 2030.  More detail is provided in this and subsequent chapters. 

Figure 1.  Overview of the FEM
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Sample Rejuvenation 

As our initial host sample ages, it is no longer representative of the age 65+ population.  We 
therefore rejuvenate the sample annually with a newly entering cohort of 65-year olds.  These 
individuals consist of 65-year olds in the 1992-1998 MCBS; each individual enters only once, with 
his or her characteristics measured as of the first year of the MCBS in which he or she was 
interviewed.   

There are 2,863 respondents age 65 in the 1992-1998 MCBS.  We conducted a separate 
analysis of the “diversity” of these 2,863 individuals, distinguishing all possible combinations of 
cancer, heart disease, neurological disorder, hypertension, diabetes, and disability (0 vs 1+ vs 3+ 
ADLs).  The number of theoretically possible combinations is 2*2*2*2*2*3 = 96.  The 10881 first-
year MCBS respondents of all ages represent 95 health status combinations; the number of 
combinations among 2,863 respondents age 65 is 89.  In other words, there are 7 health status 
combinations missing among the 65-year olds.  Naturally, as individuals age, they may attract more 
health conditions and move into new health condition combinations. 

Components of the Model 

Subsequent chapters describe the three models that form the components of our 
microsimulation model: health care costs, health status transitions; and characteristics of future newly 
entering Medicare enrollees.  Chapter 2 describes the cost estimation using data from the MCBS.  We 
consider two outcomes:  total Medicare payments and from any source.  The explanatory covariates 
include self-reported health status, interactions of health status with disability measures (to capture 
severity of the condition), residency in a (nursing home) facility, and demographic characteristics.  
The product of these cost models are functional relationships that predict medical expenditures; we 
denote these relationships by Ct=C(Ht,Xt).3  In so doing, we make several assumptions. 

1. We assume that future individuals with a given set of health conditions receive the same medical 
care as individuals in the MCBS.  This is tantamount to saying that our baseline case corresponds 
to 1990’s “technology.” 

2. We assume that 1998 unit prices continue throughout our forecast period.  This (obviously 
unrealistic) assumption implies that our results are in 1998 dollars.  The applicable price index is 
the price index for medical services, not the standard consumer price index. 

3. Cost regressions are based on non-HMO Medicare enrollees, so our per capita projections apply 
to the non-HMO population only. 

4. We assume that the elderly do not migrate across Census region borders (North-East, Midwest, 
West, South, other) as they age.  We also assume that elderly that live in urban areas continue to 
do so, and that those in rural areas do not move to an urban area. 

5. We assume that there are no changes in the age patterns of omitted and potentially time-varying 
covariates, such as marital status and private retiree health insurance coverage.   

We also convert per capita medical expenditures into population aggregates using elderly population 
estimates from the Census Bureau.  This requires several more assumptions: 

                                                 
3 For flow variables, such as in annual costs, Ct, subscript t denotes a calendar year; for stock variables, such as 
health status, Ht, it denotes the year of interview (typically administered in the fall). 
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6. Medical costs of HMO enrollees and the non-HMO elderly are the same. 

7. We assume that all elderly are covered by Medicare Parts A and B.  This implies a slight 
overestimate of projected aggregate HI costs and an overestimate of roughly 3 percent of 
projected aggregate SMI costs. 

8. The population forecasts do not distinguish race or Hispanic ancestry, so we assume that the 
fractions African Americans and Hispanics remain constant. 

Chapter 3 develops models of health transitions.  It currently only uses data from the MCBS.  
We project transitions of self-reported cancer, heart disease, neurological disorder, hypertension, 
diabetes, and disability.  Mortality is calibrated to national figures using Vital Statistics, thereby 
allowing a global time trend in life expectancy.  Finally, we project transitions into facilities, such as 
nursing homes.  We assume that residency in a facility is an absorbing state.  The explanatory 
covariates include health status and demographic characteristics as measured in the previous year.  
The product of these transitions models are functional relationships that predict health status one year 
into the future; we denote these relationships by Ht+1=H(Ht,Xt).  Because these states are measured by 
questions as “Did a doctor ever tell you....” we treat them as absorbing.  We also project future 
disability status (number of ADLs), which may improve or deteriorate with age.  Finally, we project 
entry into facilities such as nursing homes.  We assume that residence in a facility is an absorbing 
state. 

Chapter 4 describes how we estimate prevalence in future years—i.e., how we forecast the 
health status of new entrants into Medicare at age 65.  It uses data from several years of the NHIS, 
and exploits prevalence and incidence rates of individuals as young as 30 years.  It projects joint 
prevalence rates of cancer, heart disease, neurological disorder, hypertension, diabetes, and disability 
status among 65-year olds through the year 2030.  In addition, it takes account of co-morbidity 
patterns of newly entering Medicare enrollees in the MCBS and forces MCBS prevalence correlations 
to continue in its forecasts.  It then rescales projected joint prevalence rates into weight adjustment 
factors, which are used for annual rejuvenation of the sample with newly entering Medicare enrollees.  
The product of these trend models are relative weights for each health condition combination for 65-
year olds in 1995 through 2030; we denote these relative weights by Wt=W(t).  Before rejuvenating 
the simulation sample with newly entering 65-year olds, we adjust their weights in accordance with 
projected joint prevalence levels.  We then apply a second adjustment to the weights of newly 
entering individuals to ensure that the total population of individuals age 65 and older matches 
projections from the Census Bureau.  Finally, to boost sample size, we replicate newly entering 
individuals and adjust their weights accordingly. 
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CHAPTER 2.  ESTIMATING COSTS 

A major determinant of health care expenditures among elderly Americans is the prevalence 
of chronic disease and disability.  While not all of these conditions lead to persistently high medical 
costs, the presence of a stroke, cancer, and many other conditions can have a lasting impact on health 
status, disability and the demand for medical services. 

We use longitudinal data from the Medicare Current Beneficiary Survey (MCBS) Cost and 
Use files, as described in Chapter 2.  Reimbursements in the MCBS are categorized into nine 
different service groups, such as inpatient care, ambulatory services, outpatient prescription drugs, 
home health, and institutional care.  This level of cost detail allows us to explore how new therapies 
and technologies affect treatment and outcomes and how the mix of services change over time and 
across patient subgroups.   

The cost analyses exclude enrollees under age 65, persons enrolled in HMOs, and those 
without Part B Supplemental Medicare Insurance due to incomplete ascertainment of utilization.  
Because of these exclusions, the sample sizes for these analyses will be smaller than those shown in 
the previous chapter.  The average yearly sample consists of approximately 8,400 beneficiaries.   

The annual number of enrollees and average Medicare reimbursements over the 7-year period 
are reported in Table 2.1.  Average Medicare expenditures increased nearly 11.5 percent in real terms 
between 1992 and 1998, reflecting possibly increased per capita utilization.  The number of enrollees 
in our sample declined over time, primarily due to increased HMO enrollment and greater numbers of 
younger beneficiaries who were excluded from the analyses.   

 

Table 2.1.  Sample Size and Medicare Reimbursement, by Year 
  Medicare Reimbursement 
MCBS Year N Mean Std Dev. 

1992 9,406  $4,441 $11,303 
1993 8,966 4,501 11,790 
1994 9,212 5,021 13,208 
1995 8,469 5,160 13,322 
1996 8,073 5,315 13,432 
1997 8,200 5,416 13,339 
1998 8,325 4,953 11,747 
Total 60,651 4,960 12,614 

Source: 1992-1998 MCBS. 

Because we are interested in forecasting future Medicare outlays, the primary cost measures 
used in the analyses are total Medicare reimbursements and their major components.  CMS calculates 
and projects allowed charges or costs for Medicare covered services and subtracts the deductibles and 
coinsurance owed by the beneficiary. Part A reimbursements cover inpatient hospital services, up to 
100 days of post-hospital skilled nursing facility (SNF) care, home health services and hospice care.  
Part B provides coverage for physician services, outpatient hospital services, durable medical 
equipment, and other medical and ancillary services.   Secondary analyses examine out-of-pocket 
expenses, Medicaid reimbursements, and medical spending by other third-party payers. 
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DISABILITY, HEALTH STATUS, AND DISEASE  

We first examined how alternative measures of health and disability affect expenditures, both 
independently and interactively.   

Disability.  Past efforts to model the effects of medical interventions on utilization and costs 
typically include various measures of physical health such as functional limitations, disability, or the 
presence of chronic diseases.  Two measures of physical functioning common in survey data are 
functional limitations and activities.   Functional limitations generally reflect an inability to carry out 
physical tasks such as bending or lifting without help or aids.  Alternatively, activities of daily living 
(ADLs) are more closely tied to social roles, particularly those deemed necessary to meet an 
individual’s personal needs, e.g. eating, bathing, and dressing. A related concept, instrumental 
activities of daily living (IADLs), are more complex activities, such as managing money and 
shopping for groceries.   

The MCBS asks respondents if they have any difficulty performing each of six daily 
activities because of health or physical problems.  The fraction of the sample reporting 
difficulty with each activity is reported in Table 2.2.   Nearly one in five older beneficiaries 
reports difficulty bathing or getting out of bed or a chair; 6 percent have troubling eating; and 
almost a third report difficulty walking.   

Table 2.2.  Frequency of Activity Limitations 
Condition Percent of Sample Reporting Difficulty 

Bathing 16.9 
Dressing 11.9 
Eating 5.2 
Getting Out of Bed/Chair 16.9 
Using the Toilet 9.4 
Walking 27.2 

Notes: Analyses come from the 1992-1998 MCBS.  All calculations are weighted using normalized 
annual cross-sectional weights—i.e., the weights for each year sum to one.  All costs are reported in 
1998 dollars and are inflated using  the medical CPI.  

In aggregate, over 40 percent of older beneficiaries report one or more ADLs, which are 
highly correlated with Medicare reimbursements.  Beneficiaries age 65 and older who experience 
difficulties walking, dressing, or getting out of bed have substantially higher medical expenditures 
than those without limitations (Table 2.3).   For example, persons reporting five or more ADLs incur 
nearly $17,000 in annual Medicare expenses compared to under $2900 for seniors without limitations.  

Table 2.3. Average Medicare Reimbursement by ADL Counts 
ADL Counts N (Unweighted) % of Sample Mean $ Median $ 

0 36,469 60.1 $2,875 $451 
1 7,242 11.9 $5,685 $1,071 
2 3,751 6.2 $6,510 $1,361 
3 2,098 3.5 $9,215 $2,514 
4 1,665 2.7 $10,865 $3,271 
5 1,634 2.7 $14,629 $6,649 
6 985 1.6 $20,675 $10,355 

Nursing Home 6,807 11.2 $11,303 $3,369 
See notes for table 2.2 

ADL’s are widely used in empirical studies because they are highly predictive of medical 
care utilization and costs and easily interpretable.  However, ADLs are inconsistently defined across 



  11

surveys.  Disability rates in the MCBS tend to be higher than other surveys of the same population, 
particularly the fraction reporting difficulty walking.   Further, some researchers argue that ADL 
measures are biased by cultural norms and societal roles of how older men and women function 
(Freedman & Martin, 1999).4    

Self-reported health status.  Another common measure of physical well-being is self-
reported health status.  The MCBS asks respondents to rate their general health using a 5-category 
Likert scale (excellent, very good, good, fair, poor).   The Likert scale is widely used in national 
surveys and highly predictive of medical expenditures (Table 2.4).  Our data indicate that  nearly 70 
percent of older beneficiaries report being in good to excellent health, despite the fact that over 40 
percent report 1 or more ADLs.  In addition, the Likert scale of general health status is highly 
correlated with Medicare expenditures.  Older beneficiaries reporting to be in “poor” general health 
have a nearly 3-times the costs of those in “good” health and more than a 7-fold increase in Medicare 
expenses relative to those in “excellent” health. 

Table 2.4.  Medicare Reimbursement by Self-Reported Health Status 
S.R. General Health N (Unweighted) % of Sample Mean $ Median $ 

Excellent 8,854 14.6 $1,919 $233 
Very Good 15,012 24.8 $2,639 $422 
Good 18,523 30.5 $4,351 $794 
Fair 12,771 21.1 $7,580 $1,728 
Poor 5,339 8.8 $14,640 $5,567 
Missing 152 0.3 $11,149 $2,929 

See notes for table 2.2. 

The principal limitation of the Likert scale is the difficulty translating advances in medical 
technologies and treatments to changes in self-reported health states.   In other words, how we map 
input from the Medical TEPs on emerging technologies and treatment breakthroughs into discrete 
changes in health states is unclear.  For this reason, the Social Science Expert Panel cautioned against 
using self-reported health in a forecasting model, preferring more medically-based definitions of 
health status and disease states.  

Chronic disease.   In addition to measures of physical functioning and self-reported health 
states, many studies characterize morbidity by the presence of chronic disease and related symptoms.  
The MCBS contains both self-reported and claims-based measures of specific conditions.5   Self-
reported measures are based on participant responses to ever being told by a physician they had a 
specific condition.  Thus, they reflect lifetime prevalence of a condition.   Claims-based measures are 
derived from diagnostic codes recorded on administrative data.  As a result, they are more likely to 
pick up incident cases or recurrences that require acute treatment. 

How disease incidence and prevalence are defined has a considerable effect on both the 
number of observed cases and average medical costs.   Frequencies of self-reported conditions exceed 
claims-based measures for every condition (Table 2.5).  Moreover, average Medicare reimbursements 
associated with self-reported diseases are substantially lower than claims-based definitions.  Both of 
these findings underscore the distinction between prevalence and incidence.  Prevalence reflects the 
number of existing cases in a population at a given time, or during a given period.  Prevalence rates 

                                                 
4 Freedman VA, Martin LG. “The role of education in explaining and forecasting trends in functional 
limitations among older Americans.” Demography, Nov;36(4):461-73, 1999.  
5 We are currently working to get more historical claims data for all MCBS respondents; these additional data 
will change the results shown here. 
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are often used in health-care planning and management because they reflect the need or demand for 
health services between disease onset and recovery or death.  Incidence reflects occurrence of new 
cases in a well-defined population during a given period, typically a year.  It is commonly used for 
studying disease etiology, yet also provides more accurate information on the costs of treating an 
initial episode of care.   

The number of self-reported and claims-based cases of specific conditions differ substantially 
for illnesses with high survival rates, low recurrence, or slow disease progression, such as skin cancer 
or Alzheimer's.  Conversely, incidence and prevalence begin to converge for conditions with high 
mortality rates such as lung cancer.    

Similarly, average Medicare expenditures within the same condition vary substantially 
between self-reports and claims-based measures (Table 2.5).  For example, average Medicare 
expenses are nearly three times higher for beneficiaries with an ICD-9 code for colon cancer or 
arteriosclerosis than for persons with self-reported measures of those conditions.   Alternatively, we 
observe only modest differences in expenditures for both breast and prostate cancers for self-report 
and claims-based measures.  In part, this reflects the distinction between defining health using 
concurrent claims data—which by definition require some episode of care for that illness—and a self-
reported measure of “ever having the disease.” 

 
Table 2.5. Medicare Reimbursement by Self-Reported Conditions 

 N (Unweighted) Mean $ 
Cancer 11,510 6,775 

  Breast 2,589 5,823 
  Prostate 1,786 7,937 
  Uterine 1,194 5,142 
  Colon 1,816 7,389 
  Bladder 548 10,070 
  Lung 549 12,266 
  Kidney 253 7,729 
  Throat 246 10,321 
  Head 207 6,406 
  Brain  140 12,764 
  Other 2,632 7,238 

Heart disease 25,124 7,268 
  CHD 10,272 8,153 
  Myocardial infarction 9,742 8,853 
  Other  18,964 7,563 

Alzheimer’s 4,125 8,363 
Stroke 8,335 9,228 
Diabetes 10,201 8,079 
Hypertension 32,812 5,764 
Lung 8,633 7,533 
Arthritis 34,205 5,160 

See notes for table 2.2. 

Neither measure is ideal.  Prevalence estimates derived from patient self-reports may be 
sensitive to the type of data being used.  Claims-based definitions are more objective, but may be 
biased if providers overreport high reimbursement conditions.   In the present context, we are mainly 
concerned with predictive power and the ability to map health status into our “what-if” scenarios.  In 
the present context, we re mainly concerned with predictive power and the ability to map health status 
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into our “what-if” scenarios.  Claims-based definitions are superior for the later, and we explore the 
former later in the chapter. 

Multiple conditions.   The presence of a chronic illness or a functional limitation increases 
the likelihood that additional impairments will develop.   For instance, difficulty walking can lead to 
lack of exercise, which decreases cardiopulmonary function and further reduces mobility.  Reduced 
mobility, in turn, can lead to a bed disability such as bed sores, that can foster a new source of 
pathology and disablement process.  We find that nearly one-third of older beneficiaries suffer from 
multiple conditions among the limited set of illnesses under study.  Further, medical expenditures 
increase monotonically with each additional condition (Table 2.6).    

Table 2.6. Total Medical Care Costs by Number of Conditions (Claims-Based) 
 No. of Additional    
Base Condition  Conditions** Mean $ Median $ N 
Cancer (11) † 0 $16,861 $10,293 2,128 
   1 24,514 21,375 131 
 2 33,031 26,442 10 
     
Cardiovascular (4) † 0 $20,420 $13,109 4,012 
 1 25,626 19,006 1,064 
 2 37,757 30,197 234 
 3 51,676 37,907 36 
     
Neurology (3) 0 $25,213 $19,379 2,926 
 1 32,609 24,304 81 
 2 49,347 38,024 3 
     
Any Condition* 0 $15,111 $7,871 8,495 
 1 22,576 15,292 2,945 
 2 29,147 22,899 771 
 3 35,509 29,812 216 
 4 49,102 32,610 41 
 5 75,372 54,606 9 
Note: Cardiovascular disease- Angina pectoris/CHD, Arteriosclerosis, Myocardial infarction and other; 
Neurological disease- Alzheimer's, Stroke and Parkinson's. 
*  Based on ICD-9 codes for any of the 18 conditions. 
†  Excludes skin cancer and hypertension. 
** Within disease class only; except for “any condition.” 

Interaction of ADLs and chronic disease.  While functional limitations and chronic 
diseases are correlated with medical care spending, neither measure necessarily explains costs or 
predicts future health states.   For instance, an incident case of cancer may predict higher than average 
expenditures next year, as the patient receives follow-up therapy.   But if the cancer goes into 
remission or is cured, the patient’s expenditures may not be much higher than average in subsequent 
years (Garber et al, 1997).   Similarly, an early diagnosis of prostate or breast cancer may indicate 
high future expenditures or concern for preventive care and health-conscious behavior that results in 
low medical costs in the long-run.  Interacting chronic disease and functional limitations provides a 
more accurate assessment of underlying health and medical spending. 

Table 2.7 presents average Medicare reimbursements by disease and ADL categories.  We 
categorized ADLs into 3 groups (0, 1-2, 3+) and defined diseases separately based on patient self-
reports and administrative claims.   Medicare expenses rise substantially with increases in physical 
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limitations, particularly among persons reporting three or more ADLs.  This pattern occurs 
consistently across conditions, for both self-reported and claims-based disease measures.  

Table 2.7.  Medicare Costs by Self-reported Conditions and ADL Counts 
 Self-Reported 
Condition 0 1-2 3+ Nursing Home 
Cancer  $4,491 $7,284 $14,025 $13,800 

  Breast 3,808 5,376 11,232 14,788 
  Prostate 5,866 8,099 17,586 14,102 
  Uterus 3,144 4,965 11,250 13,004 
  Colon 5,386 7,791 12,968 12,003 
  Bladder 7,734 10,637 17,170 23,652 
  Lung 8,458 10,602 25,446 12,761 
  Kidney 4,806 10,332 14,526 14,829 
  Throat 5,326 12,570 31,247 13,043 
  Head 3,349 9,482 17,527 4,995 
  Brain 4,397 4,816 24,737 13,001 
  Other 4,868 7,828 14,618 14,281 

Heart 4,670 7,501 14,055 12,355 
  Angina pectoris/CHD 5,340 8,339 15,621 11,857 
  Myocardial infarction 5,928 8,783 16,952 14,087 
  Other 4,769 7,794 14,124 12,288 

Alzheimer’s 4,111 5,905 11,681 8,765 
Stroke 4,776 7,830 15,434 11,942 
Diabetes 4,290 8,143 15,992 16,430 
Hypertension 3,457 6,256 13,200 12,773 
Lung 4,247 8,079 15,033 15,343 
Arthritis 3,143 5,726 11,899 11,429 
See notes for table 2.2 

Aggregate measures of disease.   The number of disease states is potentially quite large, 
especially using claims-based measures.  Our preliminary model takes a conservative approach to this 
issue by aggregating specific diseases among our clinical domains of primary interest.  These are then 
integrated with ADL counts to create disease-disability states, as shown in Table 2.8.  ADLs and 
medical expenditures remain positively correlated, however the rise in expenditures associated with 
three or more ADLs is less pronounced than in Table 8 with disaggregated disease measures.   While 
aggregating diseases simplifies the model, it does limit interpretability somewhat by combining 
conditions with different pathologies and treatment protocols. 

Table 2.8.  Mean Medicare Costs by Self-reported Aggregate Conditions & ADL Counts 
 Cancer Heart disease 

ADL Count N (Unweighted) Cost N (Unweighted) Cost 
0 6,542 $4,491 12,584 $4,670 
1 1,519 7,090 3,519 7,293 
2 820 7,662 1,915 7,901 
3 517 9,828 1,147 11,249 
4 386 13,351 985 12,482 
5 361 15,891 920 12,246 
6 221 23,061 546 21,923 
Nursing home 1144 13,780 3,508 12,355 

See notes for table 2.2 
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Predictive power.  To compare the predictive power of alternative measures of health and 
physical functioning, we computed partial R-squared  derived from a series of cost regressions.  A 
partial R-square reflects the fraction of variation in the dependent variable explained by a specific 
independent variable or variables, after controlling for the effects of other regressors in the model.   

The dependent variable is the log of Medicare reimbursements.  The independent variables 
include patient demographics, year dummies, nursing home status, and alternative measures of 
physical health.   The latter include ADL counts (with and without walking), ADL categories (0, 1-2, 
3+),  Likert scale of general health, self-reported and claims-based measures of disease, aggregate 
diseases, and various combinations of these measures.  

Given that MCBS respondents answer health status questions late in the calendar year, it is 
unclear whether these measures should be used to predict expenditures in the current or future year.   
We report partial R-squares for both contemporaneous and lagged measures of the independent 
variables.  The models are highly predictive of Medicare expenditures, with a maximum R-square of  
.173 in the lagged model and .343 with contemporaneous health measures.  

Selected results are reported in Table 2.9.  As expected, multiple measures of physical health 
status are more predictive of costs than single constructs.  For example, the Likert scale of general 
health explains about 8 percent of the variation in Medicare reimbursements, after controlling for the 
effects of patient demographics and other independent variables.  Adding self-reported diseases to 
this model increases the partial R-square from .081 to .129 in a model with contemporaneous 
regressors.  Difficulty walking is an important predictor of expenditures, despite concerns the MCBS 
measure overstates national prevalence.  Disaggregated measures of diseases (specific cancers, 
cardiovascular, and neurologic conditions) are only modestly more predictive of costs than aggregate 
measures.  Finally, a Likert scale of general health status is an independent predictor of costs, even in 
models that include binary indicators of chronic diseases and ADLs. 
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Table 2.9.  Partial R-squares of alternative measures of health status. 
 Partial R2 

Model 
Lagged 

measures 
Contemporaneous 

measures 
Disability only   
  5 ADLs† 0.023 0.037 
  ADL counts†† 0.031 0.047 
  6 ADLs 0.032 0.049 
   
Without Disability   
  Claims (3 Categories)* 0.046 0.179 
  Likert  0.047 0.081 
  Likert & Claims (20 Conditions)**  0.047 0.223 
  Claims (20)** 0.050 0.180 
  Self-Reported Conditions (SRC) 0.055 0.086 
  SRC & Claims (20)  0.055 0.212 
  Likert & SRC 0.080 0.129 
   
Disability and Health Status   
  Likert & 6 ADLs 0.058 0.095 
  Likert, Claims (20), & 6 ADLs 0.058 0.233 
  Claims (3 Categories) & 6 ADLs 0.070 0.208 
  Claims (20) & 6 ADLs 0.073 0.208 
  SRC & 6 ADLs 0.074 0.114 
  SRC, Claims (20), & 6 ADLs 0.074 0.232 
  Likert, SRC, & 6 ADLs 0.088 0.140 

†Excludes “walking”. 
†† ADL categories are defined as 0, 1-2, 3+ 
*Aggregate claims (3) categorized as cancer, cardiovascular and neurology. 
**Claims-based conditions include 12 for cancer, 5 for cardiovascular and 3 neurologic. 

 
Despite the limited duration of the MCBS panel, we examined trends in average Medicare 

expenditures following an incident condition for a subsample of patients with three or more years of 
data.   Incident cases were defined by an ICD-9 diagnostic code for a specific condition in year (t) and 
the absence of the condition in year (t-1).  We compared average expenditures in the incident year 
and up to three successive years based on the respondents reporting status.  We examined the pattern 
of expenditures separately for three categories of respondents: those who died in the current year; 
persons who were alive and interviewed in the subsequent year; and those who attrited.   

Among the 1,922 respondents with an ICD-9 code for hypertension in year (t) but not year (t-
1), 125 died in year (t), 1,214 were alive in year (t+1), and 583 attrited in (t+1).   Among those who 
were alive, mean Medicare expenditures were $9,927 in the incident year (t) and modestly lower in 
subsequent years, although the comparison is limited by declining sample sizes.  Among those who 
died, average yearly Medicare expenses declined by nearly $6,000 between those who died in the 
incident year and persons dying in the subsequent year.  The reliability and statistical significance of 
this analysis was limited by the relatively short panel in which we observe trends in treatment costs. 
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COST REGRESSIONS 

We impute costs in the microsimulation by computing fitted values from cost regressions.  
The primary dependent variables used in the cost regressions are Medicare reimbursements and their 
components (Part A and Part B reimbursements), and total medical experts.6  The set of independent 
variables include demographics such as age, gender, ethnicity, education, and geography (region and 
urban residence), nursing home residence, death, and time dummies.  Measures of physical health 
include self-reported health, ADL counts and categories, self-reported and claims-based disease 
indicators, and interactions of these measures.  We have used both lagged and contemporaneous 
measures of health status. 

The final regressions are based on weighted least squares rather than alternative approaches 
such as the two-part model or modified versions of it.   Least squares is robust to asymmetric and 
highly-skewed errors, although there is a loss of efficiency compared to more complex estimators.   
The dependent variable in the model presented is total Medicare reimbursements.  The 
contemporaneous set of independent variables are described above, with health status measures 
consisting of a ADL categories (0, 1-2, 3+), self-reported disease categories (binary measures of any 
cancer, cardiovascular, hypertension, neurology, and diabetes), and interactions of ADLs and disease.   

Admission to a nursing home, ever having smoked, residing in the northeast, mortality, and 
physical health status have considerable effects on expenditures.  Individuals who die during the year 
have substantially higher medical expenses than survivors, which is consistent with the literature.  
Medical expenditures increase with age, until about age 85.  Lower expenditures among the oldest old 
may reflect biological differences among those who have survived to that age, as well as less 
aggressive medical treatment.  We also find that costs increase substantially with ADLs, 
particularly 3 or more.  The interactions of ADLs and disease vary in magnitude and significance, 
both in this model and other specifications.  Once we have additional years of data from Medicare 
claims files, we can distinguish between incident and non-incident cases of treatment using claims-
based measures and more fully explore interactions of disease and disability status.   The final models 
are shown in Table 2.10. 
 

                                                 
6 A panel of social science experts recommended not distinguishing the components of costs—e.g., inpatient, 
outpatient, and home health—because trends during the 1990’s were so extreme, and this is the period spanned 
by our data. 
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Table 2.10.  OLS estimates from MCBS cost regressions 

Characteristic Estimate Std. Error Estimate Std. Error
Age 70 to 74 1,218 187 630 151
Age 75 to 79 1,165 200 605 166
Age 80 to 84 1,133 222 586 178
Age 85+ -146 267 -822 212
Male 605 150 370 118
Black 817 261 984 220
Hispanic 833 354 945 263
Death 6,101 569 9,870 470
Less than high school -233 158 75 130
Some college 251 205 110 166
College or above 154 193 -149 138
Northeast 2,308 194 1,105 151
Midwest -16 145 -165 117
West 883 208 526 177
Other (except South) -2,603 398 -2,345 299
1-2 ADLs (no nursing home residency) 2,968 384 1,943 304
3+ ADLs (no nursing home residency) 10,819 1,037 7,776 874
Nursing home residency 31,929 1,063 6,985 627
Diabetes 1,559 194 1,052 167
Cancer 2,278 163 1,478 133
Heart disease 2,784 133 1,988 112
Stroke 1,287 288 932 251
Alzheimer's disease 570 577 548 500
Hypertension 981 110 651 92
Arthritis 555 111 303 93
Lung disease 1,453 211 898 181
Cancer and 1-2 ADLs -736 413 -392 340
Cancer and 3+ ADLs -183 857 -238 728
Cancer and Nursing home residency -110 1,322 528 1,022
Heart disease and 1-2 ADLs 53 329 57 263
Heart disease and 3+ ADLs 272 765 46 672
Heart disease and nursing home residency -1,114 901 -1,185 699
Stroke and 1-2 ADLs 621 638 237 483
Stroke and 3+ ADLs 1,964 965 1,650 839
Stroke and nursing home residency 190 968 -914 733
Arthritis and 1-2 ADLs -581 956 -893 740
Arthritis and 3+ ADLs -1,553 1,236 -2,192 1,042
Arthritis and nursing home residency -141 963 -4,306 713
Hypertension and 1-2 ADLs -440 315 -227 249
Hypertension and 3+ ADLs -646 712 100 607
Hypertension and nursing home residency -860 866 939 621
Diabetes and 1-2 ADLs 1,242 457 1,166 379
Diabetes and 3+ ADLs 3,482 873 2,677 747
Diabetes and nursing home residency 5,679 1,452 4,216 1,166
Lung and 1-2 ADLs 1,455 488 1,161 408
Lung and 3+ ADLs 1,559 1,046 1,112 921
Lung and nursing home residency 259 1,647 1,795 1,294
Alzheimer's and 1-2 ADLs -776 353 -516 286
Alzheimer's and 3+ ADLs -3,410 899 -2,158 759
Alzheimer's and nursing home residency -2,806 887 -418 680
Ever smoked 756 134 773 106
Spline for BMI<20 -358 156 -337 136
Spline for 20<BMI<25 -56 45 -71 36
Spline for BMI>25 -101 25 -90 21
Medicare Part A only -2,671 341 -2,774 182
Medicare Part B only -3,267 741 -3,112 250
Constant 7,506 3,057 6,797 2,659

Total Expenditures Medicare expenditures
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CHAPTER 3.  PREDICTING HEALTH STATUS 

As noted previously, the microsimulation model consists of three main component models.  
First, parameter estimates from a health status transition model form the basis of individuals’ health 
status forecasts from the moment at which they enter the simulation host data until they become 
deceased.  Second, every year we rejuvenate the host data with age-65 individuals to ensure that the 
data remain representative of the entire population age 65 and older.  We estimate a model to forecast 
trends in various measures of health status and adjust the relative weights of the rejuvenation sample 
in accordance with those trends.  Third, we apply a model of health care expenditures as a function of 
demographic characteristics and health status to project Medicare and total health care expenditures.  
Chapter 2 explained the cost model; the current chapter describes the health status transition model; 
and Chapter 4 describes the trend model for future Medicare entrants. 

Our model of health status transition probabilities is based on historical experiences of the 
respondents to the 1992-1998 MCBS.  These data also form the basis of the microsimulation host 
data, so that there is no comparability issue.  We pool multiple MCBS waves and use 21,495 
individuals for the transitions model.  Other health surveys, such as the NHIS, may have larger 
samples, but would lack the comparability and provide only subsets of information on subsets of 
respondents.  The MCBS sample is very heterogeneous with respect to health status:  Distinguishing 
six health conditions with potentially 96 combinations (cells), the 21,495 MCBS respondents span 
almost the entire spectrum of conditions.   

The sample selection criteria are as follows.  Individuals must be at least 65 years old.  This 
yields 28,371 respondents with a total of 72,774 interview years.7 Our outcomes are annual 
transitions, so we keep only individuals who participated in two or more contiguous interview years.  
This leaves 21,534 individuals and 65,937 interview years.  Finally, we drop all interviews of 
individuals with any missing value for any health measure of interest or for nursing home residency. 
This affects 39 individuals and the final estimation sample consists of 21,495 individuals and 65,575 
interview years. Each outcome (transition) requires two contiguous interview years; the 65,575 
interview years translate into 44,160 interview-pairs.   

The health status measures include cancer (excluding skin cancer), heart disease, neurological 
disorder, hypertension, diabetes, number of ADLs, and general health status.  Table 2.1 presents 
prevalence and incidence rates in the MCBS estimation sample, including facility-based respondents 
but excluding respondents who were only interviewed once or had missing information, as of 
respondents’ year of entry into the MCBS.  (Tables in Chapter 1 presented prevalence rates by broad 
age categories in the community-based MCBS population, for comparison with NHIS prevalence 
rates.)  Table 2.1 also includes the percent of respondents that was interviewed in a facility and the 
distribution. 

                                                 
7 Health status information is only collected in the fall interview round, so for our purposes, there is only one 
interview per year. 
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Table 3.1.  Prevalence and Incidence of Select Conditions, MCBS Estimation Sample 
 Prevalence Incidence 

Condition 65+ 65-69 70+ 65+ 65-69 70+ 
Mortality    3.3 1.2 4.1 
Cancer 18.6 15.2 19.9 1.8 1.5 1.9 
Breast (women only) 6.5 6.4 6.5    
Prostate (men only) 5.2 3.4 6.0    
Uterus (women only) 3.0 3.1 3.0    
Colon 2.7 1.6 3.1    
Bladder 0.9 0.5 1.0    
Lung 0.8 0.8 0.8    
Kidney 0.4 0.4 0.4    
Throat 0.4 0.4 0.4    
Head 0.3 0.2 0.4    
Brain 0.2 0.2 0.2    
Other 4.3 3.4 4.7    
Heart disease 38.7 29.6 42.2 3.2 2.3 3.5 
Angina pectoris/CHD 15.8 11.8 17.4    
Myocardial infarction 15.0 12.2 16.1    
Other 29.0 21.2 32.0    
Alzheimer’s 4.9 1.1 6.4 1.2 0.3 1.5 
Stroke 11.8 7.6 13.5 1.4 0.8 1.7 
Diabetes 16.6 15.2 17.1 1.3 1.1 1.3 
Hypertension 54.1 48.3 56.3 3.0 2.6 3.2 
Lung1 14.1 13.0 14.6 1.4 0.9 1.5 
Arthritis 56.3 47.6 59.7 4.4 4.4 4.4 
Disability       
ADL>=1 30.8 21.2 34.5    
ADL>=3 10.3 5.6 12.1    
Nursing home 6.8 2.3 8.6 1.5 0.2 2.0 

1 Refers to lung disease which excludes lung cancer  

Note that incidence rates increase sharply with age for, in particular, cardiovascular disease, 
neurological disorder, and entry into a (nursing home) facility.  The next set of tables present the 
distributions of age, sex, race, Hispanic ancestry, education, smoking (by sex), and marital status.  All 
tabulations are based on the first interview year.  

 
Table 3.2.  Age Distribution, MCBS Estimation Sample 

Age Freq. Percent 
65-69 5,551 25.82 
70-74 3,969 18.46 
75-79 4,115 19.14 
80-84 4,155 19.33 
85-89 2,385 11.10 
90-94 1,016 4.73 
95-99 264 1.23 
100+ 40 0.19 
Total 21,495 100.00 
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Table 3.3.  Distribution of Sex, MCBS Estimation Sample 
 Freq. Percent 
Female 12,914 60.08 
Male 8,581 39.92 
Total 21,495 100.00 

 
Table 3.4.  Distribution of Race, MCBS Estimation Sample 
 Freq. Percent 
Native American 145 0.67 
Asian, Pacific Islander 255 1.19 
African American 1,985 9.23 
White 19,110 88.0 
Total 21,495 100.00 

 
Table 3.5.  Distribution of Hispanic ancestry, MCBS Estimation Sample 

 Freq. Percent 
Non-Hispanic 20,325 94.56 
Hispanic 1,170 5.44 
Total 21,945 100.00 

 
Table 3.6.  Distribution of Educational Attainment, MCBS Estimation Sample 

 Freq. Percent 
High school drop-out 9,248 43.02 
High school graduate 6,575 30.59 
Some college 2,892 13.45 
College graduate 2,780 12.93 
Total 21,495 100.00 

 
Table 3.7.  Distribution of Ever Smoked, by Sex, MCBS Estimation Sample 

 Women Men 
Ever Smoked? Freq. Percent Freq. Percent 
No 7,876 60.99 1,789 20.85 
Yes 5,038 39.01 6,792 79.15 
Total 12,914 100.00 8,581 100.00 

 
Table 3.8.  Distribution of Currently Smoking, by Sex, MCBS Estimation Sample 

 Women Men 
Smoke Now? Freq. Percent Freq. Percent 
No 11,552 90.17 7,171 84.20 
Yes 1,259 9.83 1,346 15.80 
Total 12,881 100.00 8,517 100.00 

 

Table 3.9.  Distribution of Marital Status, MCBS Estimation Sample 
 Freq. Percent 
Single 10,730 49.92 
Married 10,765 50.08 
Total 16,839 100.00 
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MISSING DATA 

As stated above, respondents with missing information on health conditions or facility 
residence were dropped from the estimation sample.  For demographic characteristics, we attempted 
to fill in missing data from other waves and from CMS’s program records on sex, date of birth, and 
race/ethnicity.  Small numbers of missing variables remained.  We imputed these variables randomly 
in accordance with their MCBS sample distributions.  For smoking, we imputed separately for men 
and women.  All imputed variables were flagged with indicator variables.  At first, we included these 
indicator variables in all transition models.  However, very few turned out to be significant, indicating 
that variables were missing at random with respect to health transitions.  We therefore omitted 
indicators for missing variables from our final model specifications. 

RESULTS OF ESTIMATION 

The health conditions that we use in our analysis are all self-reported.  One may expect health 
measures based on claims data to be more predictive of costs.  In addition, medical costs vary by 
duration since the onset of a condition and tend to be particularly high in the final year of life.  In 
order to account for these duration effects, it is required to know the year of onset of each condition.  
We are currently working with CMS to obtain historical claims records.  The preliminary results in 
this report, however, are based on self-reported health conditions without information on the year of 
onset. 

Mortality is an absorbing state.  For cancer, cardiovascular disease, neurological disorder, 
diabetes, and hypertension, the MCBS questions were worded as “Did a doctor ever tell you that ...”  
In other words, the question wordings define these conditions as absorbing states.  Accordingly, we 
only model transitions into these states, without allowing for recovery.  Similarly, we assume that 
residence in a facility is an absorbing state.  We model transitions into mortality, cancer, 
cardiovascular disease, neurological disorder, diabetes, hypertension, and facility residence as 
proportional hazard models: 

ln ( ) ( )h t Age t Xj j= ′ +γ β , 

where lnhj  is the log-hazard of onset of the j-th condition (including mortality and entry into a 
facility); Age t( )  is a piecewise-linear spline transformation of age at time t (see below); and X j  are 
demographic characteristics and co-morbidities that affect the onset of condition j.   

The baseline duration dependency is the dependency on respondent age, ′γ Age t( ) .  The 
hazards of various conditions’ onset are assumed to be linear in age, with potentially different slopes 
before and after age 77, i.e., the baseline log-hazard is piecewise-linear (also known as piecewise 
Gompertz or generalized Gompertz).8   

The unit of observation is an interview-pair.  All explanatory covariates are measured with a 
one-year lag.  Only individuals who, at the time of the first interview, did not suffer from a specific 
condition contribute to the model estimation.  The sample sizes for various health status transition 
models vary therefore.  For example, consider an individual who entered the MCBS in 1993 without 

                                                 
8 Formally, γ  is a vector of two age slopes and Age t( )  is a spline transformation, Age t
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cancer but with a heart condition.  In 1994, his conditions are unchanged; in 1995, he is diagnosed 
with cancer; in 1996, his conditions are unchanged.  This person starts out with a heart condition, so 
he does not at all contribute to the heart disease transition model.  In 1993 and 1994, he is free of 
cancer, so he contributes two observations to the cancer transition model.  The outcome in his first 
contribution (1993 to 1994) is zero, because he remained free of cancer; the outcome in his second 
contribution (1994 to 1995) is one, because he was diagnosed with cancer.  He is out of the sample 
for subsequent years.  We ignore the clustering that arises from the fact that the same individual may 
contribute more than once to a model. 

Table 3.10 presents the results of estimation for hazard models of onset of cancer, heart 
disease, stroke, Alzheimer’s, hypertension, diabetes, lung disease, arthritis, disability, and entry into a 
facility.  The coefficients on age indicate the baseline slopes on age.  They are generally positive, i.e., 
the risks of onset of various conditions tends to increase with age.  It may surprise that the age 
coefficients tend to be smaller after age 77 than before, i.e., that there is a deceleration in the risk 
pattern.  Note, however, that this age pattern applies only to individuals without any co-morbidity.  
As individuals get older, they are more likely to suffer from various conditions, which have positive 
effects on the onset of other conditions.  The net result is typically an acceleration of the log-hazard 
with age.  We return to this issue below, in the discussion of mortality. 
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Table 3.10.  Results of Health Transition Estimation 
(Log-hazard parameters) 

 Cancer Heart Stroke Alzheimer’s Hypertension Diabetes Lung Arthritis ADL1+ ADL3+ Nursing 
home 

Cancer   -0.1121      0.12342 0.17632 -0.0961
   (0.0906)      (0.0488) (0.0670) (0.0987)
Heart disease   0.26613      0.14723 0.22733 -0.0597
   (0.0819)      (0.0400) (0.0569) (0.0817)
Stroke         0.25793 0.56533 0.43203

         (0.0600) (0.0712) (0.0891)
Alzheimer’s         -0.99463 -0.46093 1.10783

         (0.1220) (0.1275) (0.1062)
Hypertension  0.47233  0.37683      0.23143 0.23173 -0.0946
  (0.0569) (0.0858)      (0.0404) (0.0603) (0.0824)
Diabetes  0.25983  0.26462  0.23993    0.21213 0.41483 0.30633

  (0.0726) (0.1049)  (0.0832)    (0.0511) (0.6713) (0.0973)
Lung         0.42153 0.27603 0.0279
         (0.0519) (0.0734) (0.1122)
Arthritis         0.49873 0.50523 -0.19522

         (0.0404) (0.0613) (0.0834)
ADL>=1            0.91733

           (0.1027)
ADL>=3           0.47083

           (0.0932)
Age<77 (spline) 0.05883  0.07213  0.06533 0.17393 0.04413 0.05813 0.04723 0.04613 0.08453 0.09193 0.19133

 (0.0119) (0.0096) (0.0141) (0.0197) (0.0091) (0.0142) (0.0142) (0.0072) (0.0065) (0.0102) (0.0218)
Age>77 (spline) -0.0102 0.02233  0.02973 0.09043 0.0058 -0.05203 0.0031 0.0059 0.02243 0.05043 0.08043

 (0.0097) (0.0067) (0.0094) (0.0083) (0.0069) (0.0135) (0.0103) (0.0061) (0.0052) (0.0061) (0.0071)
Ever smoked 0.14981  0.0394 0.21682    0.72793  0.23553 0.11131 0.0331
 (0.0842) (0.0609) (0.0934)    (0.0999)  (0.0436) (0.0637) (0.0869)
Under Weight  0.0963 0.31183  -0.23863 -0.22912  -0.34833 -0.09422 0.12001 0.48103

  (0.0636) (0.0889)  (0.0639) (0.1100)  (0.0552) (0.0462) (0.0643) (0.0813)
Obese  0.24313 -0.1093  0.29113 0.71303  0.26423 0.39533 0.35753 -0.26201

  (0.0741) (0.1274)  (0.0819) (0.1038)  (0.0657) (0.0524) (0.0767) (0.1514)
Male 0.39273  0.15492 0.0966 -0.0556 -0.21143 0.0669 -0.0862 -0.29663 -0.19293 -0.18373 -0.0886
 (0.0787) (0.0601) (0.0909) (0.0950) (0.0571) (0.0889) (0.0894) (0.0477) (0.0435) (0.0661) (0.0901)
Black -0.0747 -0.0337 -0.0422 0.23751 0.47923 0.2300 -0.44482 0.1371 0.0927 0.0807 -0.2033
 (0.1347) (0.0959) (0.1480) (0.1437) (0.1026) (0.1450) (0.1761) (0.0847) (0.0682) (0.0949) (0.1412)
Hispanic -0.33891 -0.1142 -0.2684 -0.2596 0.26472 0.42592 0.28251 0.0025 0.1422 0.20471 -1.05553

 (0.1779) (0.1200) (0.1968) (0.2247) (0.1131) (0.1668) (0.1587) (0.1048) (0.0816) (0.1136) (0.2601)
HS drop-out 0.0855 0.11882  0.21822 0.24132 0.12802 0.20452 0.18692 0.09631 0.14703 0.30083 0.15501

 (0.0809) (0.0591) (0.0856) (0.0952) (0.0606) (0.0935) (0.0888) (0.0519) (0.0421) (0.0612) (0.0830)
College graduate 0.1319 -0.0423 -0.2241 -0.0968 -0.16921 0.1225 -0.25351 0.0406 -0.19063 -0.0251 -0.35033

 (0.1060) (0.0867) (0.1398) (0.0952) (0.0885) (0.1318) (0.1395) (00685) (0.0641) (0.0976) (0.1496)
Constant -8.40973  -8.8003 -9.68973 -17.85673 -5.93793 -8.57983 -8.08123 -5.52373 -9.33543 -11.3593 -19.4963

 (0.8705) (0.6694) (1.0448) (1.4771) (0.6617) (1.0376) (1.0440) (0.5257) (0.4788) (0.7581) (1.6485)

ln-L -3799.23 -5402.80 -3185.27 -2577.32 -4877.19 -2861.02 -3047.76 -6277.41 -8813.26 -5403.68 -2775.01
 
NOTE: Asymptotic standard errors in parentheses; 
 Significance: '1'=10%;  '2'=5%;  '3'=1%. 
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Positive coefficients in Table 3.10 indicate a higher hazard and thus poorer health.  The 
coefficients indicate shifts in the log-hazard and thus proportional shifts in the hazard or risk of onset.  
For example, hypertension increases the log-hazard of heart disease by 0.4723, i.e., it increases the 
risk of heart disease by 100*(exp(0.4723)-1) = 60.37 percent.  Table 3.11 provides the same 
information as Table 3.10, but with log-hazard coefficients transformed into percent changes in the 
various hazards (relative risks). 

Table 3.11.  Results of Health Transition Estimation 
(Relative risks) 

 Cancer Heart Stroke Alzheimer’s Hypertension Diabetes Lung Arthritis ADL1+ ADL3+ Nursing 
home 

Cancer   -10.60      13.132 19.282 -9.16 
Heart disease   30.493      15.863 25.523 -5.80 
Stroke         29.423 76.003 54.033 

Alzheimer’s         -63.013 -36.933 202.773 

Hypertension  60.373  45.763      26.043 26.073 -9.03 
Diabetes  29.673  30.292  27.113    23.633 51.413 35.843 

Lung         52.423 31.783 2.83 
Arthritis         64.663 65.733 -17.732 

ADL>=1            150.253 

ADL>=3           60.133 

Ever smoked 16.161  4.02 24.212    107.073  26.553 11.771 3.37 
Under Weight  10.11 36.593  -21.233 -20.482  -29.413 -8.992 12.751 61.773 

Obese  27.523 -10.35  33.793 104.013  30.243 48.483 42.983 -23.051 

Male 48.103  15.752 10.14 -5.41 -19.053 6.92 -8.26 -25.673 -17.543 -16.783 -8.48 
Black -7.20 -3.31 -4.13 26.811 61.483 25.86 -35.902 14.69 9.71 8.40 -18.40 
Hispanic -28.741 -10.79 -23.54 -22.86 30.302 53.102 32.641 0.25 15.28 22.721 -65.203 

HS drop-out 8.93 12.612  24.382 27.292 13.662 22.292 20.552 10.111 15.843 35.093 16.77 

College graduate 14.10 -4.14 -20.08 -9.23 -15.571 13.03 -22.391 4.14 -17.353 -2.48 -29.55 

NOTE: Asymptotic t-statistics in parentheses; 
 Significance: '1'=10%;  '2'=5%;  '3'=1%. 

All explanatory covariates are measured with a one-year lag, i.e., as of the first interview of 
the interview-pair.  Note the very powerful cross-effects of health conditions.  Neurological disorder, 
diabetes, hypertension, and self-reported disability all significantly increase the risk of developing a 
heart condition; self-reported disability increases the risk of all transitions, except for contracting 
cancer; et cetera.  As explanatory covariates, ADLs are measured marginally.  For example, the effect 
of three or more ADLs is found by adding up the coefficients of ADL>=1 and ADL>=3. 

Men tend to have higher risks of cancer and heart disease than women and lower risks of 
hypertension.  Blacks and Hispanics have higher risks of hypertension.  Hispanics also have higher 
risks of diabetes.  Hispanics are far less likely than non-Hispanics to enter a facility, such as a nursing 
home.  Better educated individuals tend to be in better health.  Having ever smoked increases the risk 
of cancer, but not by very much and only marginally significantly.  We do not control for current 
smoking behavior.  Its effects often appeared counterintuitive, and we question the accuracy of 
respondents’ reports.  In addition, inclusion of current smoking behavior would require projections of 
future smoking behavior for the microsimulation model.  We prefer to omit this covariate. 
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The model specifications do not control for household income since the MCBS data are of 
poor quality (Goldman and Smith, 2001).9 In early model development stages, we included indicator 
variables that flag whether race, Hispanic ancestry, education, past smoking, and marital status were 
missing and imputed.  Their coefficients were rarely significant, indicating that there is no systematic 
pattern in the missing rates of demographic covariates.  We therefore need not include these indicator 
variables. 

The estimates of Table 3.10 form the basis of the health status projection algorithms in the 
microsimulation model.  Table 3.12 shows the estimates of the hazard model of mortality.  The first 
and second columns show log-hazard coefficients; the third shows percent changes in the mortality 
risk.  These estimates are based on MCBS data.  The MCBS may or may not capture all deaths, so the 
next subsection compares MCBS estimates to Vital Statistics. 

                                                 
9 Goldman D, Smith J.  “Commentary: Methodological Biases in Estimating the Burden of Out-of-Pocket 
Expenses.”  Health Services Research, 35(6):1357-1370, 2001. 
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Table 3.12.  Results of Mortality Estimation 
(Log-hazard parameters and relative risks) 

  
Log-hazard coefficients 

Percent 
hazard 
changes 

 Male Female  
    

Age<77 0.0547 *** 0.0932 ***  
 (0.0114) (0.0130)  
Age>77 0.0641 *** 0.0707 ***  
 (0.0065) (0.0051)  
Constant -7.9263 *** -11.2608 ***  
 (0.8371) (0.9688)  
Cancer 0.3199 *** 37.70 *** 
 (0.0499)  
Heart disease 0.4103 *** 50.73 *** 
 (0.0450)  
Stroke 0.3785 *** 46.01 *** 
 (0.0515)  
Alzheimer’s 0.8654 *** 137.60 ***  
 (0.0599)  
Diabetes 0.5044 *** 65.60 *** 
 (0.0515)  
Lung 0.3557 *** 42.72 *** 
 (0.0548)   
Arthritis -0.2727 *** -23.87 *** 
 (0.0467)  
Hypertension -0.0039 -0.39 
 (0.0454)  
ADL>=1 0.2766 *** 31.86 *** 
 (0.0551)  
ADL>=3 0.3711 *** 44.93 *** 
 (0.0625)  
Ever smoked 0.1785 *** 19.54 *** 
 (0.0519)  
Under weight 0.4428 *** 55.71 *** 
 (0.0474)  
Obese -0.0961 -9.16 
 (0.0759)  
Black 0.0716 7.42  
 (0.0760)  
Hispanic -0.2753 ** -24.07 ** 
 (0.1112)  
High school drop-out 0.1172 ** 12.43 **  
 (0.0463)  
College graduate -0.2564 *** -22.62 *** 
 (0.0771)  
    

ln-L -7511.37  

NOTE: Asymptotic t-statistics in parentheses; 
 Significance: '*'=10%;  '**'=5%;  '***'=1%. 
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As before, all explanatory covariates are measured with a one-year lag, i.e., as of the first 
interview of the interview-pair.  All health conditions increase the risk of mortality, except 
hypertension.  Figure 3.1 illustrates the effects of morbidities on mortality risk. 

Figure 3.1.  Log-hazard of Mortality for Men with Selected Health Conditions 
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The figure illustrates several features.  First, the overall age pattern is increasing, i.e., older 

men face higher mortality risks.  There is a kink in the age pattern at age 77.  Before age 77, the log-
hazard increases 0.0547 (about 5.5 percent) per year.  After age 77, the increase is 0.0641 (about 6.4 
percent) per year; see Table 3.12.  Healthy individuals enjoy the lowest mortality risks.  Cancer, heart 
disease, neurological disorder, and disability increasingly elevate mortality risks.  Their effects are to 
shift the age pattern parallel to the baseline (healthy) pattern.  This parallel shift is a consequence of 
the assumed functional form.  A shift in the log-hazard translates into proportional or relative changes 
in the hazard. 

While the log-hazard of mortality appears to decelerate at higher ages, the actual pattern for 
any one individual may well accelerate.  For example, someone may be healthy at age 65 and 
experience the lowest mortality log-hazard.  If this person contracts, say, heart disease at age 70, he 
moves from the baseline curve to the heart disease curve.  If further complications develop, he moves 
to even higher curves.  The implication is that many individuals experience accelerating mortality 
risks. 

Table 3.12 also reports the effects of demographic factors.  In light of large sex differences in 
mortality risks, we allowed for a full sex interaction in age.  The interaction terms are jointly strongly 
significant.  Controlling for all health conditions, there is no differential mortality risk by race or 
Hispanic ancestry.  Better educated individuals tend to live longer.  Having ever smoked increases the 
risk of dying, even conditional on cancer.  

The model does not control for marital status, even though it is highly significant and 
strongly predictive of men’s mortality risk (and both sexes’ entry rates into facilities).  The reason for 
its exclusion is that inclusion would require an auxiliary model of marital status in order to project 
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future marital status for the microsimulation exercise.  We intend to develop such a model in the next 
iteration, as we also did for the Model of Income in the Near Term (MINT) that we developed for the 
Social Security Administration.  The estimates of Table 3.12 form the basis of the mortality 
projection algorithms in the microsimulation model.  A correction will apply, as explained below, but 
that correction is minuscule. 

MORTALITY 

The mortality estimates of Table 3.12 are based on survival probabilities in the MCBS.  
While the MCBS is presumably representative of the elderly U.S. population, it is not a priori clear 
whether the resulting mortality rates are representative of mortality rates among all American elderly.  
It may be, for example, that deceased individuals could not be located and were incorrectly classified 
as attrited.  This would bias mortality estimates down. 

The Model of Income in the Near Term (MINT) that we developed for the Social Security 
Administration corrected for underdetection of mortality.  Its mortality model was based on the 1968-
93 Panel Study of Income Dynamics.  We follow a similar procedure here. 

The MCBS data are from 1992-1998, too short a time span to identify a longevity trend.  We 
therefore compare the MCBS mortality data to cross-sectional 1995 Vital Statistics of the United 
States.  We convert Vital Statistics lifetables into mortality spells10 and estimate very simple hazard 
models, by sex, which only depend on age.  We wish to compare these estimates to similar estimates 
based on the MCBS.  To that end, we impose the Vital Statistics coefficients on MCBS data and 
estimate differential coefficients. 

Table 3.14.  Mortality Hazard Estimates (based on Vital Statistics and the MCBS) 
 Vital Statistics MCBS (marginal coeff) 
Males:   

Constant -9.2085 *** -0.1291 
 (0.0161) (0.8321) 
Age<77 0.0819 *** 0.0021 
 (0.0002) (0.0113) 
Age>77 0.0971 *** -0.0098 

 (0.0003) (0.0065) 
Females:   

Constant -10.1469 *** -1.8924 ** 
 (0.0177) (0.9520) 
Age<77 0.0884 *** 0.0249 * 
 (0.0002) (0.0128) 
Age>77 0.1082 *** -0.0098 ** 

 (0.0003) (0.0048) 
ln-L -13073761.48 -8012.46 

NOTE: Asymptotic t-statistics in parentheses; 
 Significance: '*'=10%;  '**'=5%;  '***'=1%. 

                                                 
10 For example, the male lifetable for 1995 states that out of 85,507 men age 65, 79,037 (92.4 percent) will 
survive to age 70.  Census data indicate that there are 5.4 million men age 65-70 in 1995.  We combine this 
information and create two hazard spells, one for survivors and one for men who decease between their 65th and 
70th birthdays.  The first spell spans five years (age 65-70) and is open; it carries a weight of 0.924*5.4 million; 
the second also spans five years (age 65-70) but is closed; it carries a weight of 0.076*5.4 million.  We do this 
for all age categories above age 65 and for both sexes. 
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The Vital Statistics coefficients are very precisely estimated due to the huge underlying 
population size.  For males, the MCBS estimates are not significantly different from Vital Statistics 
estimates.  For females, there is a difference in the age slope under age 77.  This difference is partially 
compensated by a seemingly very large intercept difference, but this intercept operates at birth.  At 
age 65, the intercept difference is only -1.8924+65*0.0249=-0.27 .  Figure 3.2 illustrates estimated 
age patterns for females based on Vital Statistics and the MCBS.  

Figure 3.2.  Log-hazard of male mortality based on Vital Statistics and the MCBS 

-5

-4

-3

-2

-1

65 70 75 80 85 90

age

Lo
g-

ha
za

rd

 
The patterns are statistically and visually different, but are these differences substantial?  A 

priori, it is impossible to tell and we therefore anchor mortality estimates on Vital Statistics.  This is 
done as follows.  First, we estimate mortality models that control for health conditions and 
demographic characteristics using MCBS data.  Second, for the purpose of projections, we correct for 
differences between Vital Statistics and the MCBS by subtracting the marginal coefficients of the 
MCBS (last column of Table 3.14) from model estimates.  The resulting projection parameters lead to 
the same aggregate mortality rates as Vital Statistics parameters, with the advantage of differentiating 
mortality risk by health conditions and demographic characteristics.  Our simulations showed very 
little difference between projection algorithms based on Vital Statistics or MCBS.  Stated differently, 
the MCBS does an outstanding job identifying deceased respondents. 
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CHAPTER 4.  PROJECTING THE HEALTH STATUS OF FUTURE 
MEDICARE ENTERING COHORTS 

This subtask is designed to predict the health status of each of the future entering cohorts of 
Medicare patients between the years 2001 and 2030.  While it may be plausible to look simply at 65 
year olds in the year 2000 to predict the presence of chronic conditions and disability among 65 year 
olds in 2001, such a procedure is likely to lead to misleading predictions for future entering cohorts.  
This is especially true given the presence of well-known trends in the prevalence of disease and 
disability among all adult age cohorts.  If these trends continue, the health of 65 years olds in 2030 is 
likely to look considerably different from the 65 year olds today. 

The measures of health status that we are most interested in here are the presence of seven of 
the most important, costly, and devastating chronic conditions that inflict the Medicare population.  
These are: heart disease, hypertension, cerebrovascular disease, Alzheimer’s disease or senile 
dementia, cancer11, diabetes, and chronic obstructive pulmonary disease (COPD).  In addition, we 
project future trends in the prevalence of disability among incoming Medicare cohorts.  Our measure 
of disability focuses upon self-reports by respondents regarding their ability to perform basic tasks of 
daily living, including bathing, dressing, and feeding oneself.   

DATA 

We use data from the National Health and Interview (NHIS), which is a large annual data set 
collected by the National Center for Health Statistics (NCHS).  This is the right data set for our 
purpose because it is specifically designed to measure the population prevalence levels of a large 
number of chronic disease conditions and disability.  Unlike another NCHS data set, the National 
Health and Nutrition Examination Survey (NHANES), the NHIS does not contain any physical exam 
or clinical data; health status is elicited from survey respondents using self-reports.  However, unlike 
the NHANES, the NHIS is available for every year since 1957, contains large sample sizes, and uses 
essentially the same questionnaire in every year between 1982 and 1996.  Because the survey 
instrument was redesigned in 1997, we use annual data between 1990 and 1996 to construct our 
projections.  In addition, the NHIS contains extensive demographic and economic information about 
its respondents. 

One drawback to the NHIS data relates to its sampling scheme.  Rather than asking all 
respondents about the presence or absence of a large number of disease conditions, the NHIS 
randomly divides the sample into six groups.  Each respondent in any given one of the six groups is 
asked about a different set of diseases than respondents in the other five groups.  Therefore, no 
respondent is ever asked about the presence or absence of all of the chronic conditions considered by 
the NHIS.  In fact, for a large subset of conditions, there is no overlap across the chronic condition 
questions list posed to each of the groups.  However, the NHIS questionnaire also includes a list of 
questions regarding a small subset of chronic conditions that are posed to all respondents with some 
activity limitations.   

                                                 
11 We included COPD and stroke in this analysis in anticipation that they might be added to the model later.  A 
broader measure of neurological impairment beyond Alzheimer's cannot be constructed from the NHIS for the 
reasons articulated in Chapter 2.  Further discussion of how this work feeds into the rest of the model is 
contained in Chapter 8 and 10. 
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Among the seven chronic conditions that we consider, questions regarding heart disease and 
hypertension are both posed to the same group of randomly selected respondents, while a question on 
diabetes is posed to a different group.  There is no comprehensive question on cancer that is asked to 
all respondents.  Instead, different groups of randomly selected respondents are asked about the most 
common types of cancer.  Questions on breast and prostate cancer are posed to one group (the same 
group asked the question on diabetes), a question on lung cancer is posed to a second group, while a 
question on lung cancer is posed to yet a third group.  We construct our estimates for total cancer 
incidence by summing over the incidence rates for each of the cancers separately.12  Finally, a 
question regarding Alzheimer’s disease is posed to NHIS respondents who report activity limitations. 

Each year several questions regarding disability status are posed about NHIS respondents 
who are between 25 and 69 years old.  These disability questions include “Does any impairment or 
health problem now keep [you] from working at a job or business?” (Work Limitation), “[Are you] 
limited in any way in any activities because of an impairment or health problem?” (Activity 
Limitation), and “Because of any impairment or health problem, [do you] need the help of other 
persons with – personal care needs, such as eating, bathing, dressing, or getting around the house?” 
(Self-Care Limitation).  In addition, the NHIS includes a question on general health status (General 
Health Status) measured on a five-point Likert scale that is posed to everyone in the data set.  
Unfortunately, none of these disability and health status questions map naturally to the ADL measures 
that are asked in the MCBS, so they cannot be used to directly infer changes in the prevalence profiles 
of people unable to perform one or more ADLs (ADL 1+), or three or more ADLs (ADL 3+).13   

In 1995, however, the NHIS included an extensive supplement that posed a version of the 
ADL questions to its respondents.14  Because the usual disability and health status questions were also 
posed to NHIS respondents in that year, we use these data to construct map that predicts the presence 
of limitations in ADL from the usual NHIS questions on disability and health status.  For the 1995 
data, we estimate an ordered probit model that relates the total number of ADLs that respondents have 
difficulty performing to the Work Limitation, Activity Limitation, Self-Care Limitation, and General 
Health Status responses, in addition to a quadratic polynomial in age, and sex.  The results of this 
model are presented in Table 4.1.  The signs of the coefficients are consistent with common sense—
older, sicker patients with more severe activity, work, or self-care limitations are more likely to report 
more limitations in performing ADLs.  In turn, we use this model to predict ADL 1+ and ADL 3+ for 
each NHIS respondent in the years when these ADL questions were not asked.  It is these predicted 
values that we use in our simulations of disability prevalence. 

                                                 
12 The NHIS questions for cancer are of the form “During the past 12 months, did anyone in the family have…”, 
so they are best interpreted as incidence rather than prevalence rates.   This is in contrast to the NHIS questions 
for hypertension and heart disease, which are of the form “Has anyone in the family ever had…” When we sum 
over the incidence of the various cancer types, we implicitly assume that the incidence of each cancer type is 
independent of the others.  This is reasonable because it is rare for cancer to emerge simultaneously at two 
different primary sites. 
13 These are the indicators of disability status that our MCBS-based microsimulation model currently uses. 
14 There are some differences in the ADL questions posed in the 1995 NHIS supplement and in the MCBS.  
These differences lead to lower estimates of difficulty performing ADLs in the NHIS compared with the 
MCBS, as discussed in Chapter 2. 
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Table 4.1. Ordered Probit Model of Number of ADL Limitations 
Variable Estimate Statistic 
General Health*   
Very Good .0329 0.425 
Good .205 2.91 
Fair .333 4.42 
Poor .692 8.96 
Work Limitation**   
Limited in kind/amount of work -.222 -2.70 
Limited in other activities -.111 -1.27 
Activity Limitation***   
Limited in kind/amount of major activity -.0414 -0.577 
Limited in other activities -.595 -5.94 
Self-Care Limitation****   
Limited in performing routine needs -1.29 -19.8 
Not limited in performing personal care 
           or routine needs 

-2.00 -32.9 

No Limitations -2.19 -18.9 
Age .00735 0.581 
Age2 -.0000375 -0.289 
Male .0449 1.19 
Cut Points   
Between 0 and 1 ADL .166 .303 
Between 1 and 2 ADL .526 .303 
Between 2 and 3 ADL .778 .303 
Between 3 and 4 ADL 1.01 .304 
Between 4 and 5 ADL 1.22 .304 
Between 5 and 6 ADL 1.75 .308 
   
Log Likelihood -3854.71  
Pseudo-R2 0.383  
N 51423  

*General Health Status = Excellent is the excluded category. 
**Work Limitation = Unable to perform work is the excluded category 
***Activity Limitation = Unable to perform major activity is the excluded category 
****Self-Care Limitation = Unable to perform personal care needs is the excluded category 

Finally, in addition to NHIS data, we need information on overall and cause-specific age-
mortality profiles for each year between 1990 and 1996 inclusive.  We obtain these data from the 
annual analysis on death certificate data, Vital Statistics of the United States, conducted by the NCHS 
(1992-1998).  In the next section, we discuss how we combine these data to obtain disease prevalence 
projections for future incoming Medicare cohorts. 

METHODS 

Our strategy to predict the health status of future cohorts proceeds in four stages.  First, for 
each chronic disease condition of interest, we use the NHIS data to obtain age-specific prevalence 
information.  Though the NHIS has a large sample size overall, for some age-cohorts the sample size 
is insufficient to produce noise-free estimates of low prevalence diseases.  Thus, we introduce a 
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method to smooth the NHIS age-specific prevalence profiles, while at the same time accounting for 
trends in disease prevalence.   

Second, we use a synthetic cohort-based procedure to obtain age-specific incidence rates 
from the smoothed prevalence profiles.  In particular, we compare the prevalence of a disease in one 
year for one age-cohort with the prevalence rate of that disease in the next year of data (where that 
cohort has aged by one year).  Our procedure adjusts these raw prevalence differences to account for 
population and disease-specific death rates.  

Third, we combine information from the most recent NHIS with our estimated age-specific 
incidence rates to obtain our predictions about the health status of the future incoming Medicare 
cohorts.  For example, we add the prevalence of disease among 64 year olds in 2000 to our estimated 
incidence rate for that disease among 64 year olds to obtain our predictions about the 2001 class of 65 
year olds. 

Fourth, we take our estimates of future prevalence among the entering cohort and use them to 
construct adjustments to the population weights of future entering cohorts with the various disease 
conditions.   

Step 1:  Smoothed Age-Specific Prevalence Rates 

In order to describe the method we use to produce smooth age-specific prevalence 
functions—the overlap polynomial method—it is helpful to introduce some notation.  The NHIS is a 
repeated cross section with hundreds of thousands (say, N) observations.  Each observation i, taken in 
yeari, consists of information about i’s self-reports regarding disease conditions and disabilities, age 
(agei), and other information (Xi).  In the remainder of this section, we consider one disease condition, 
but extending the analysis to other conditions is straightforward.  Let di indicate whether patient i has 
some chronic disease.  We estimate the following logit model of disease prevalence using all the 
years of the NHIS data between 1990 and 1996 inclusive: 

(1) P d age year
g age g yeari i i

i i

= =
+ +

1 1
1 1 1 2 2
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exp ; ;β βb g b gc h  

The g functions allow the presence of disease to flexibly vary with the year of observation 
and the age-cohort of the respondent.  Age-cohort enters the model through g1, which is specified 
using an overlap polynomial: 
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where ( )jij agep 1;β  j = 0…K+1 are all nth-order polynomial in agei.  The knots are k0…kK+1, 
and σ1 is a smoothing parameter, which in addition to n, are all fixed before estimation.  We use first 
degree polynomials.  Though we experimented with higher order polynomials, we find that they add 
to the costs of computation with no change in the final projections.  

The properties of the overlap polynomial can best be appreciated when the smoothing 
parameters approach zero.  When this is the case, Φ(.) reduces to an indicator function equal to zero if 
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equals p0 when k0 < age ≤ k1, and zero otherwise.  Thus between k0 and k1, the prevalence rate is 
given by p0, which in turn depends on the parameters β1,0.  Similarly, between k1 and k2 the prevalence 
rate is determined by p1, between k2 and k3 it is determined by p2, and so on.  Allowing positive values 
of the smoothing parameters eliminates the sharp discontinuity of the growth rates at the knots.  In 
fact, one advantage of this overlap polynomial over traditional splines is that the function and all its 
derivatives are automatically continuous at the knots without imposing any parameter restrictions.15 

In addition to an overlap polynomial for age, we also include another overlap polynomial, g2, 
for year to flexibly allow for changes in the age-prevalence relationship over time.  Here, the knots 
are mj, j = 0…M, the smoothing constant is σ2, and qj are the polynomials.  As before experimentation 
led us to use first order polynomials in year.16 
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While (1) does not include any covariate information regarding i, such information can 
readily be incorporated into the analysis by replacing (1) with the following: 

(1’) P d age year X
g age g year Xi i i i

i i i
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This framework can also be adapted to allow for interactions between age and year effects: 
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The object of the maximum likelihood logit estimation is to obtain consistent estimates for β1 
and β2—β1 and β 2  respectively.  In this version of our estimates, for the sake of simplicity we use 
equation (1) rather than (1’) or (1’’).  In future drafts, we will generalize our estimates to account for 
more interactions. 

Using these estimates, it is easy to generate age-prevalence profiles representative for any 
particular year.  Let ρt,a be the disease prevalence among a-year olds in year t.  Then, 
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In the next section, we combine these estimates of disease prevalence with information on 
population and cause-specific death rates to derive yearly age-incidence curves. 

                                                 
15 After some experimentation, we choose k0 = -∞, k1 = 25, k2 = 35, k3 = 45, k4 = 55, k5 = 65, k6 = 75, k7 = ∞, and 
σ1 = 25. 
16 After experimentation, we choose m0 = -∞, m1 = 91, m2 = 93, m3 = 95, m4 = ∞, and σ2 = 4.  In all our analyses, 
yeari is entered as yeari – 1900. 
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Step 2:  Estimating age-incidence profiles 

The purpose of this section is to develop a simple model relating the prevalence of a disease 
in one period to its prevalence in the next period.  We use a synthetic cohort approach to estimate an 
age-incidence profile for each disease from the prevalence estimates that we derive in the previous 
section.  In the basic structure of our model, cohorts age from year to year and transition between 
health and disease.  Because the NHIS is a nationally representative survey, a - 1 year old respondents 
in year t - 1 are presumably drawn from the same population universe as a year olds in year t, except 
aged by one year.  Broadly speaking, we derive our estimate of age-specific incidence rates by 
comparing successive prevalence rates.   

In our model, the population transitions between health and illness from year to year.  Figure 
1 illustrates all the possible transitions for one disease.  At time t, the size of the population who are 
aged a is given by Popt,a.  The size of the age a diseased population at time t is given by Pt,a < Popt,a.  
The Popt,a – Pt,a patients without the disease condition, who are inside the large circle but outside the 
smaller circle, die from all other causes at a yearly rate given by πt,a and they develop the disease 
condition at the age- and year- specific incidence rate it,a.  The Pt,a patients inside the smaller circle 
die from the disease at a yearly rate given by rt,a and are cured at a rate given by ct,a. 
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Figure 1:  Population Transitions 
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Because there is no immigration of people into the population in Figure 1, the total size of the 
population aged a + 1 at time t + 1 will equal the size of the population aged a at time t, minus the 
people who die either from the disease condition or from other causes.  The transition equation 
linking the population size of a given cohort from one year to the next is then given by: 

(5) ( ) atatatatatatat rPPPopPopPop ,,,,,,1,1 −−−=++ π  

Dividing through by Popt,a, we write (5) in terms of the population age-specific prevalence of 
the disease, ρt,a, and the cohort growth rate γt,a: 
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We are interested in how the number of chronically diseased people within a fixed cohort, 
who are age a at time t, changes as that cohort ages.  This formula will allow us to relate incidence 
rates to changes in the prevalence rates that we calculate in Step 1, above.  The number of people with 
chronic diseases in that cohort at t + 1 will equal all of those with the disease in the previous year 
save those who are cured or died, plus all the health people in the cohort who develop the disease.  
Therefore, the number of chronically ill within a fixed cohort evolves according to the following 
equation: 

(7) ( ) atatatatatatatatat cPrPiPPopPP ,,,,,,,,1,1 −−−+=++  

Again, we divide through by Popt,a to express (7) in terms of population prevalence rates: 

(8) ( )atatatatatatat crii ,,,,,1,1, 1 −−−+=++ ρργ  

Finally, we rearrange (8), solving for it,a to write the age-incidence curve as a function of 
successive measurements of disease prevalence: 
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We use information from equation (4) to generate estimates of disease prevalence rates, 
1,1 ++ atρ  and at ,ρ .  We use information from Vital Statistics to generate information on disease 

specific death rates atr ,  and on overall death rates at ,1 γ− .  Data on disease specific cure rates are 
nowhere available from any single consistent source.  Consequently, in our calculations we assume 
that ct,a << rt,a.  Because we are considering only chronic diseases with low cure rates, this assumption 
should not introduce too much error.17 

Finally, taking linear combinations over t of it,a generates age-incidence profiles that are 
representative for the period over which the linear combination is taken.  Thus, in this framework it is 
easy to incorporate information about trends in disease or disability, at least to the extent that such 
trend evidence is present in the successive NHIS years that we use.  Let the linear combination of 
age-incidence profile be ia. 

Step 3: Projecting the health status of future Medicare entering cohorts 

Once the prevalence and incidence functions are calculated for each disease separately, we 
generate our projections for the health status of future entering cohorts of Medicare enrollees.  The 
essential idea behind our projection is that for any given future year, we know how old the entering 

                                                 
17 Indeed, for some conditions, this is true by definition.  For example, the NHIS asks respondents whether a 
doctor has ever told them that they had a heart attack.  There is no cure for heart disease if it is defined in this 
way; once a doctor tells a respondent that he has had a heart attack, the respondent should always respond yes to 
this question. 



  39

Medicare cohort is today.  For example, writing in the year 2000, we know that the 65 year olds of 
2001 are currently 64 years old; 64,2000ρ  gives the prevalence of chronic disease among this cohort, 

and 64i  gives the predicted proportion of those without disease in that cohort who will develop the 
disease between ages 64 and 65 (among those who are disease free at 64).  The disease prevalence for 
65 year olds in 2001 is given by a direct application of equation (8):18  

(10) ( )( )64,20006464,200064
64,2000

65,2001 11 rii −−+= ρ
γ

ρ  

Recursive application of equation (8) to different cohorts in the NHIS data yields predictions 
regarding the prevalence of this disease condition for the entering cohort of any future year y (as long 
as the cohort is alive at the time of the latest NHIS).  Thus, for our disease prevalence estimates for 65 
year olds in 2002, we combine the disease prevalence numbers for 63 year olds in 2000, which we 
observe directly, with our incidence estimates: 
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 Similarly, our projections for the year 2003 start with the disease prevalence of 62 
year olds in 2000, and recursively apply the incidence rates i62, i63, and i64 in three applications of 
equation (8).  By starting with progressively younger cohorts, and applying the recursion formula 
more times, we generate projections of disease prevalence for each year between 2001 and 2030.  In 
principle, this method could be used to project disease prevalence for any future year, as long as the 
group of people who will be 65 in that year are alive today.19 

Step 4: Constructing population weight adjustments from prevalence projections 

The three steps we have described up to now allow us to construct projections of future 
disease prevalence one disease at a time.  While such univariate projections are independently 
interesting, they are insufficient for a project focused on predicting future Medicare expenditures.  
Elderly patients can have more than one chronic disease, and it is simply untrue that medical 
expenditures on a patient with two chronic diseases will equal the sum of expenditures on two 
patients, each with one chronic disease.  In order to construct plausible estimates of total future 

                                                 
18 For simplicity of exposition, the formula uses prevalence and incidence formula based upon the 2000 NHIS 
(which obviously has not yet been completed).  The actual calculation for the 2001 entering cohort starts with 
prevalence estimates for 60 year olds in 1996, and use the predicted incidence formulae for 61, 62, 63, 64, and 
65 year olds to generate the predicted 2001 prevalence.  We do not use the 1997 and 1997 NHIS because the 
survey instrument changed in 1997, and it is not clear that the data after the change are directly comparable with 
the data after the change. 
19 As we mention in footnote 18, the discussion in the main text maintains the existence of the 2000 NHIS, 
which in reality has not been released at the time of this writing.  Because the latest NHIS year we use is 1996, 
we start with disease prevalence rates of the 60 year olds from that year to construct our year 2001 projections.  
Similarly, we use 59 year olds from that year to construct our year 2002 projections, and so on. 
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Medicare expenditures, then, we need some estimate of the frequency with which chronic diseases 
jointly occur, as well as their frequency in isolation.  This frequency distribution over the joint 
occurrence of chronic diseases can then easily be converted into predicted population weights for the 
incoming Medicare cohorts.  Our purpose in this section is to describe the methodology we use to 
infer this joint frequency distribution. 

As we mention above, in this document we focus on seven of the most expensive to treat 
chronic disease conditions that afflict the elderly, in addition to a measure of disability.  The disease 
conditions include heart disease, hypertension, cerebrovascular disease, Alzheimer’s disease, cancer, 
diabetes, and COPD.  For the purpose of this section we define a set of index variables 

{ }8*2*1** ,..., iiii dddd = , where the superscript indexes over each of the eight disease and disability 
conditions, and i indexes over each member of some future Medicare incoming cohort.  We redefine 

{ }821 ,..., iiii dddd =  to be a set of indicator variables such that ( ) jdd j
i

j
i ∀>=   01 * , where ( ) . 1  is 

the indicator function.20  The analysis up to now allows us to estimate 
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The critical missing ingredient is information on the joint incidence of these seven conditions 
and of disability in the population of interest.  In principle, there are 28 = 256 different combinations 
of our chronic diseases that incoming Medicare cohorts can have.  In practice, however, many cells 
are likely to be sparsely populated.  For example there are, fortunately, few unfortunate folks in the 
cell where 8...1  1 =∀= jd j .  The most densely populated cells tend to those where 

( ) 11 =−∏
≠kj

jj dd  for some j = 1…8; that is, those cells whose inhabitants have exactly one chronic 

condition.  Also, some combinations of chronic conditions are quite important from an 
epidemiological and medical point of view, such as diabetes and heart disease, or hypertension and 
cerebrovascular disease. 

Unfortunately, the NHIS does not allow us derive an estimate of this joint distribution 
without further assumptions.  As we describe in the Data section above, the particular sampling 
scheme used by the NHIS never asks respondents about the presence or absence all disease conditions 
at the same time.  The consequence of this data limitation is that using the NHIS we cannot derive the 
frequency of combined occurrence for some chronic conditions, including some important 
combinations (such as diabetes and heart disease).   

To circumvent this difficulty, we augment our NHIS marginal prevalence estimates with 
information from Medicare recipients aged between 65 and 70 years.  We examine recipients in the 
65-70 year age range, because if we were to restrict the sample to just 65 year olds, our sample size in 
the MCBS database would be too small to allow an accurate estimation of the correlation across the 
prevalence of disease conditions.  Let the correlation matrix in d measured in this Medicare 
population be denoted by Σ .  Because the disease variables are each dichotomous variables, for any j 
we have that: 

(12) ( ) ( )jjjdVar 6565 1 ρρ −= .   

                                                 
20 For the sake of notational simplicity in this section, we suppress the t subscript that reflects which future 
incoming Medicare cohort that i belongs to.  For the same reason, we henceforth drop the i subscript as well. 
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Let ( ) ( ) ( )( )821 ..., , dVardVardVardiag=Λ .  We assume that the joint distribution 
over d is generated by: 

(13) ( )( )ΛΣΛΛΦ−  ,~ 1* ρNd  

 Here, 1−Φ  is the inverse of the standard normal cumulative density function applied element 
by element to the ρ vector.  Both ρ and Λ  are estimated from the NHIS data using the procedure we 
describe in sections 0, 0, and 0, whereas Σ  is estimated from an entirely different data source, 
MCBS, but is representative of the same population as the NHIS.  The main attraction of the 
normality assumption is that it allows a significant reduction in the number of parameters we need to 
characterize the distribution over d.  Instead of 256 numbers, one for each possible combination of d, 
we represent the distribution with 8 numbers for the univariate prevalence estimates and the 

282
8 =




  numbers for the correlation matrix.  We show below that the normality assumption on the 

joint distribution of d* allows us to accurately recover information on first two moments of the d 
distribution. 

Under assumption (13), we can reproduce the observed marginal prevalence rates as the mean 
of the d distribution.  To show this, we note first that all the diagonal elements of Σ  are equal to one, 
since it is a correlation matrix.  With a slight abuse of matrix notation, this implies that  

(14) ( ) ( ) ( ) ( ) ( )( )8212 ..., , dVardVardVardiagdiagdiag =Λ=ΛΣΛ  

Given (13) and (14), we have for each disease condition j that: 
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The population prevalence of disease j is given by: 
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 Therefore, 

(17) [ ] ( )( ) ( )( ) jjjjdP 6565
1

65
111 ρρρ =ΦΦ=Φ−Φ−== −− . 

In addition to the marginal probabilities of the d distribution, (13) and (14) allow us to infer 
second order moments, which are simple functions of the first moment—see (12).  In addition to 
these two moments, with the joint normality assumption over d* we can now specify the joint 
probability distribution over d, [ ]821 ,..., dddP , based upon known information: 
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where ( )*8*2*18 ,... , dddΦ  is the cumulative density function of the 8-variate normal distribution 
shown in (13). 

  
 




