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Supplementary Figure 1 | Liquid chromatography-tandem mass spectrometry (LC-MS2) identification of N-acetyl-L-aminoadipate (a) 
and N-acetyl-L-tryptophan (b) accumulating in senescent leaves clh2-1 (FLAG_076H05). MS and MS2 spectra, chemical structures and 
fragmentation pattern are shown. Calculated [M+H]+ adducts for acetyl-aminoadiate and acetyl-tryptophan are 204.0866 m/z and 247.1077 m/z, 
respectively. Note that the fragmentation pattern for N-acetyl-D/L-aminoadipate and N-acetyl-D/L-tryptophan is concordant with the fragmentation 
pattern of L-aminoadipate, L-tryptophan and N-Acetyl-DL-tryptophan as in METLIN database (https://metlin.scripps.edu/index.php 36) and as 
published previously25.
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Supplementary Figure 2 | Quantification of free amino acids in senescent leaves of BAR-containing Arabidopsis. Absolute quantification of 
acetyl-aminoadipate, aminoadipate, acetyl-tryptophan and tryptophan, and relative or absolute quantification of 21 other free amino acids in SAIL and 
FLAG lines. Error bars, mean ± s.d. (n = 3 biological replicates). Significance levels were indicated based on unpaired Student t-tests with correction 
for multiple comparison using the Holm-Sidak method. a, p-value<0.1; b, p-value<0.05; c, p-value<0.01. Note that values for a few amino acids are 
shown as relative levels (a.u., arbitrary unit.) because their concentrations in some samples were more than 10-fold higher than the highest 
concentration of the standard.
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Supplementary Figure 3 | Accumulation of acetyl-aminoadipate and acetyl-tryptophan in senescent leaves and seeds of 
phosphinothricin-resistant (PR) Glycine max, Brassica napus, Brassica juncea and Triticum aestivum. a, Absolute quantification of 
acetyl-aminoadipate and acetyl-tryptophan in senescent leaves and seeds of phosphinothricin-resistant Glycine max (WT, Chiba Green wild-type; 
PR, Liberty Link trait A2704-12 (Bayer CropScience). b, Absolute quantification of acetyl-aminoadipate and acetyl-tryptophan in senescent leaves 
and seeds of phosphinothricin-resistant Brassica napus (WT-1 (control-1), NDC-E12131; WT-2 (control-2), NDC-E13285; WT-3  (control-3), 
NDC-E12027; PR, Liberty Link trait L252, Bayer CropScience). Note that isogenic lines controls could not be obtained for Glycine max and Brassica 
napus PR lines. c, Relative quantification of acetyl-aminoadipate and acetyl-tryptophan in senescent leaves of phosphinothricin-resistant Brassica 
juncea (WT, wild-type isogenic line;  PR (5 and 17), phosphinothricin-resistant lines31). d, Relative quantification of acetyl-aminoadipate and 
acetyl-tryptophan in senescent leaves of phosphinothricin-resistant Triticum aestivum (WT, wild-type isogenic line;  PR (A13), 
phosphinothricin-resistant line32). Error bars, mean ± s.d. (n = 3 biological replicates). Significance levels were indicated based on unpaired Student 
t-tests. a, p-value<0.1; b, p-value<0.05; c, p-value<0.01. For Brassica napus, the highest p-values obtained by comparison of each wild-type with the 
phosphinothricin-resistant line are indicated.
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Supplementary Figure 4 | Genotyping of FLAG_lkrsdh and analysis of LKR/SDH expression. a, Gene structure of Arabidopsis LKR/SDH 
(AT4G33150.1). LKR and SDH exons are depicted in blue and orange, respectively. The T-DNA insertion site and genotyping primers for 
FLAG_lkrsdh (FLAG_271B12) are indicated. ATG and TGA depict start and stop codons. b, Genotyping by PCR of the segregating population 
(12 plants) of FLAG_lkrsdh used for the experiment presented in Figure 2. The genotype of each individual is indicated on the right. WT, 
Wild-type Wassilewskija control. c, Analysis of gene expression in homozygous mutant FLAG_lkrsdh by quantitative real-time PCR. The 
expression of LKR/SDH was normalized to the reference gene At1g1332030. The positions of the three primer sets used for this analysis are 
depicted on the right. n.d., not detected.
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Supplementary Figure 5 | Absolute quantification of acetyl-aminoadipate and acetyl-tryptophan in seeds of BAR-containing Arabidopsis. 
Error bars, mean ± s.d. (n = 3 biological replicates). Significance levels were indicated based on unpaired Student t-tests with correction for multiple 
comparison using the Holm-Sidak method. a, p-value<0.1; b, p-value<0.05; c, p-value<0.01.
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Supplementary Figure 6 | Purification and time-dependent activities of recombinant BAR from E.coli. a, BAR expression and purification 
was monitored by SDS-PAGE. The 6xHis-BAR protein fusion was isolated from the E. coli lysate (lane 1, uninduced cells;  lane 2, induced cells; 
lane 3, soluble proteins; lane 4, insoluble proteins) by metal affinity chromatography (Ni2+-charged HisTrap (GE Healthcare)); lane 5, 
flow-through; lane 6, 6xHis-BAR elution). Partially purified 6xHis-BAR protein fusion was then treated with 6xHis-TEV protease37 and passed 
through the HisTrap to remove the His-tag (lane 7, flow-through; lane 8, elution of 6xHis-TEV and uncut 6xHis-BAR) and further purified by gel 
exclusion chromatography (lane 9). Time-dependent activities of purified 6xHis-BAR were determined at substrate concentration of 500 µM for 
phosphinothricin (b) and 1000 µM for aminoadipate (c) and tryptophan (d). a.u., arbitrary unit.
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Supplementary Figure 7 | Structural alignment of BAR/CoA/phosphinothricin ternary complex (yellow) and Tetrahymena GCN5 
bound to CoA and histone H3 peptide (red, PBD ID: 1QSN). a, Diagram showing two views of the alignment perfomed using the SSM 
structural alignment function under Coot41. b, Close-up view of the active site.

120°

a

b

BAR
GCN5

Histone H3 peptide

Phosphinothricin

CoAs

CoAs

Histone H3 
peptide

Phosphinothricin

E122

E88

H2O



a

b

120°

Supplementary Figure 8 | BAR crystallizes as homodimer with two active sites symmetrically distributed around the 
dimer interface. a, Each asymmetric unit (ASU) is constituted of one homodimer and two monomers that form homodimer with 
chains from neighboring cells (shown as transparent chains). b, Surface representation of BAR revealing a large open cavity at 
the dimer interface.



Supplementary Figure 9 | Structural alignment of the BAR/acetyl-CoA holocomplex (purple) with the BAR/CoA/phosphinothricin ternary 
complex (brown). a, Close-up of view of the active site of BAR. b, Diagram showing the residues involved in catalysis. Distances are shown in 
Angstroms.
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Supplementary Figure 10 | Expression and purification of 23 recombinant mutant versions of BAR and wild-type PAT from 
E.coli. Left SDS-PAGE lane, soluble fraction of E.coli lysate; right lane, purified protein; Ctrl, empty vector.
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Supplementary Figure 11 | Protein sequence alignement of BAR from Streptomyces hygroscopicus, PAT from Streptomyces viridochromogenes and 
closely related homologues from other species. Active site residues as displayed in Fig. 4b are labelled. The alignment was performed using Jalview V2 
(T-Coffee, default settings53). Secondary structure of BAR as labelled in Fig. 4a is shown. The acetyltransferase GNAT domain (pfam13420) is displayed. Protein 
sequences related to BAR from Streptomyces hygroscopicus were retrieved from GenBank at the NCBI website using protein BLAST search 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Protein sequence accessions (GenBank): Streptomyces hygroscopicus: CAA29262; Streptomyces viridochromogenes, 
WP_003988626; Kitasatospora phosalacinea, WP_033213694; Streptomyces xiamenensis, AKG45686; Salinispora tropica, WP_028566484; Owenweeksia 
hongkongensis, WP_014202881; Vibrio diazotrophicus, WP_042485812; Alcaligenes faecalis, CAA00175; Sphingomonas wittichii, WP_037526498; Ponticaulis 
koreensis, WP_022694195; Pseudomonas syringae,  WP_032656505; Sphingobium herbicidovorans, WP_037462269.
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Supplementary Figure 12 | Selection of T1 transgenic Arabidopsis transformed with BAR variants. Photographs of Arabidopsis T1 lines transformed 
with wild-type BAR from Streptomyces hygroscopicus (WT BAR), PAT from Streptomyces viridochromogenes and selected BAR mutants taken 10 days after 
Finale® application. Scale bar = 1 cm
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Supplementary Figure 13 | Resistance to phosphinothricin of T2 transgenic Arabidopsis transformed with BAR variants. 17-day old transgenic T2 plants 
were sprayed with Finale® and further grown for 8 days. b, Photographs were taken before and after Finale® application. Scale bar = 1 cm
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Supplementary Figure 14 | Resistance to phosphinothricin of transgenic Arabidopsis transformed with BAR variants Y92F, N35T and WT BAR. a, 
Seventeen-days old transgenic T2 plants were sprayed with 3 different concentrations of Finale® and further grown for 8 days. Photographs were taken 8 days 
after Finale® application. Scale bar = 1 cm. b, Average fresh weight were measured for each population 8 days after Finale® application. Error bars, mean of 
plant aerial fresh weight ± s.d. (n = 6 (Y92F), 5 (N35T), 5 (WT BAR), 2 (Col-0) biological replicates from individual populations). The weight of 7-9 plants were 
measured and average for each individual population.
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Supplementary Figure 15 | Protein levels of BAR variants in Arabidopsis. a, Total proteins were extracted from T2 plants, separated by SDS-PAGE, 
transferred to nitrocellulose membrane and stained by Ponceau S. For each protein extraction, equal amounts of aerial tissues from 5-6 T2 populations 
grown from seeds from independent T1 plants were pooled. b, Detection of BAR by anti-BAR immunoblotting of the membrane shown in panel (a). rBAR, 
recombinant BAR from E.coli.
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Supplementary Figure 16 | In vitro enzyme kinetic assays of wild-type BAR (WT BAR, as shown in Fig. 3) and BAR variants Y92F and N35T 
against native (a) and non-native substrates (b). Calculated Km, Vmax, kcat, kcat/Km and Vmax/Km  values for phosphinothricin are indicated, as well Vmax/Km 
values for aminoadipate and tryptophan (estimated from Lineweaver-Burk plots). Note that aminoadipate and tryptophan reached solubility limit before 
reaching saturation concentration for WT BAR, Y92F and N35T.
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Supplementary Figure 17 | Genotyping of GABI_833F02. a, Gene structure of Arabidopsis ABCG27 (AT3G52310.1). Exons and introns are 
depicted in blue and gre, respectively. The T-DNA insertion site and genotyping primers are indicated. ATG and TGA depict start and stop 
codons. b, Genotyping by PCR of 11 homozygous mutant plants of GABI_833F02 (PCRs were performed with the 3 primers shown in (a) in 
single reactions). WT, Wild-type Columbia-0 control.

a

b

TGA




