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Supplementary Table S1 

Model parameters 

Symbol Description Value 

𝑣 

Retrograde flow speed relative to cell 

migration speed 

XTC cell 

keratocyte 

 

 

60 nm s-1 

100 nm s-1 

𝐷 

Diffusion coefficient of free actin probe 

Lifeact-mCherry 

Alexa647-phalloidin 

 

6.8 µm2 s-1 

16.7 µm2 s-1 

𝑘on 

Probe association rate 

Lifeact-mCherry 

Alexa647-phalloidin 

 

2.28 µM-1s-1 

2.9×10-2 µM-1s-1 

𝑘off 

Probe dissociation rate 

Lifeact-mCherry 

Alexa647-phalloidin 

 

30.1 s-1 

0.08 s-1 

𝐹 Uniform F-actin concentration 1000 µM 

𝑎 Slope of non-uniform F-actin concentration 112.5 µM µm-1 

𝑏 Base of non-uniform F-actin concentration 100 µM 

𝐿 Lamellipodium length 8 µm 
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Figure S1. Two other examples of the experiments in Fig. 1 D and E. The data show similar distribution 

of Atto 550-Lifeact (Atto 550-LA) and rhodamine-phalloidin (Rh-phalloidin) in fixed XTC cells.  

(A, and C) Images of fixed cells stained with Atto 550-LA (left) and Rh-phalloidin (right). Bars = 5 µm. 

(B, and D) Average fluorescence intensity of the images in A or C along the white lines in the insets.   
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Figure S2. Two other examples of the experiments in Fig. 2.  (A, and C) Fluorescent speckle images of 

Alexa546-phalloidin (A546-phalloidin, left) and CF680R-actin (right) in live fish keratocytes. Bars = 10 

µm. (B, and D) Average fluorescence intensity of the images in A or C along the white lines in the insets. 
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Figure S3. Simulated concentration profile of Lifeact-mCherry in a model with both F-actin and actin 

oligomers (O-actin) as Lifeact-binding species. (A) Concentration profiles of F- and O-actin in 

lamellipodia. The ratio of O-actin to F-actin is set as ~0.1 at leading edge (29). (B) Calculated 

distributions of Lifeact-mCherry in the states of F-actin-bound (red), O-actin-bound (orange) and free 

(light blue). The distribution of total Lifeact-mCherry is indicated by the pink line. A model 

lamellipodium with a linear decrease in F-actin concentration is indicated in a green dotted line. The 

supplementary method of simulation including oligomer actin is described below. (C) Calculated 

distribution of Lifeact-mCherry in a model with F-actin as only Lifeact-binding species. The method and 

the model parameters for simulation is same to that used in Fig. 3 C, except for the retrograde flow speed 

was set as 30 nm/s.  
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[Supplementary method of simulation including oligomer actin employed in Fig. S3B] 

1  Model equations 

The modified model to take into account the effect of oligomer actin is as follows 

𝜕𝐶!
𝜕𝑡

= 𝐷!
𝜕!𝐶!
𝜕𝑥!

+ 𝑘!""𝐶!" − 𝑘!"𝐹𝐶! + 𝑘!𝐶!" − 𝑘!𝑂𝐶! + 𝑘!𝐶!"         (1)

𝜕𝐶!"
𝜕𝑡

= 𝑣
𝜕𝐶!"
𝜕𝑥

− 𝑘!""𝐶!" + 𝑘!"𝐹𝐶! − 𝑘!𝐶!" + 𝑘!𝐹𝐶!"         (2)

𝜕𝐶!"
𝜕𝑡

= 𝐷!
𝜕!𝐶!"
𝜕𝑥!

+ 𝑘!𝐶!! − 𝑘!𝐹𝐶!" − 𝑘!𝐶!" + 𝑘!𝑂𝐶! − 𝑘!𝐶!"         (3)

𝜕𝑂
𝜕𝑡 = 𝐷!

𝜕!𝑂
𝜕𝑥! + 𝑘!𝐹 − 𝑘!𝐹𝑂 − 𝑘!𝑂         (4)

 

where 𝐶!, 𝐶!", and 𝐶!" are respectively the concentration of free, F-actin-bound, oligomer actin-bound 

probes. 𝐹 and 𝑂 represent the concentration of F-actin and oligomer actin at 1-dimensional position 𝑥 

at time 𝑡, respectively. 𝑥 ranges from 0 (lamellipodial base) from 𝐿 (leading edge). Based on our 

experimental data of 𝐹(𝑥) in XTC cells, we assumed that the concentration profile of actin, 𝐹(𝑥), is 

prescribed as 𝐹(𝑥) = 𝑎𝑥 + 𝑏. The model parameters are summarized in Supplementary Table S2. 

Supplementary Table S2: Model parameters for Fig. S3B 

Symbol Meaning Value 

𝑣 Retrograde flow speed 30 nm  s!! 

𝐷! Diffusion coefficient of free Lifeact 6.8 µμm!  s!! 

𝐷! Diffusion coefficient of oligomer actin 1.0 µμm!  s!! 

𝑘!" Rate at which free Lifeact associates with F-actin 2.28 µμM!!  s!! 

𝑘!"" Rate at which F-actin-bound Lifeact dissociates from F-actin 30.1 s!! 

𝑘! Rate at which free Lifeact associates with O-actin 2.28 µμM!!  s!! 
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𝑘! Rate at which O-actin-bound Lifeact dissociates from O-actin 30.1 s!! 

𝑘! F-actin severing rate 0.25 s!! 

𝑘! Rate at which O-actin is incorporated into F-actin 0.002 µμM!!  s!! 

𝑘! Disassembly rate of O-actin 0.5 s!! 

𝑎 Slope of linear F-actin concentration profile 112.5 µμM  µμm!! 

𝑏 Base of linear F-actin concentration profile 100 µμM 

𝐿 Lamellipodial length 8 µμm 

 

The boundary conditions at the steady state are 

𝐶! 0 = const. ,
𝜕𝐶! 𝐿
𝜕𝑥

= 0 (5)

𝑣𝐶!" 𝐿 = 0 (6)

𝐷!
𝜕𝐶!" 0
𝜕𝑥 = −𝑣𝐶!" 0 ,𝐷!

𝜕𝐶!" 𝐿
𝜕𝑥 = −𝑣𝐶!" 𝐿 (7)

𝐷!
𝜕𝑂 0
𝜕𝑥 = −𝑣𝐹 0 ,𝐷!

𝜕𝑂 𝐿
𝜕𝑥 = −𝑣𝐹 𝐿 (8)

 

In Eq. (5), const. is determined by the total amount of the probe. 

 

2  Spatial discretization 

Using the standard finite difference scheme, Eqs. (1)-(4) with the boundary conditions Eqs. (5)-(8) in the 

steady-state are discretized in space with a step 𝛥𝑥  as 
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0 = 𝐷!
!!(!!!!)!!!!(!!)!!!(!!!!)

!!!
+ 𝑘!""𝐶!"(𝑥!) − 𝑘!"𝐹(𝑥!)𝐶!(𝑥!) + 𝑘!𝐶!"(𝑥!) − 𝑘!𝑂(𝑥!)𝐶!(𝑥!) + 𝑘!𝐶!"(𝑥!)    (2 ≤ 𝑖 ≤ 𝑛 − 1) (9)

𝐶!(𝑥!) = const. (10)
𝐶!(𝑥!) = 𝐶!(𝑥!!!) (11)
0 = 𝑣 !!"(!!!!)!!!"(!!)

!"
− 𝑘!""𝐶!"(𝑥!) + 𝑘!"𝐹(𝑥!)𝐶!(𝑥!) − 𝑘!𝐶!"(𝑥!) + 𝑘!𝐹(𝑥!)𝐶!"(𝑥!)    (1 ≤ 𝑖 ≤ 𝑛 − 1) (12)

𝐶!"(𝑥!) = 0 (13)
0 = 𝐷!

!!"(!!!!)!!!!"(!!)!!!"(!!!!)
!!!

+ 𝑘!𝐶!"(𝑥!) − 𝑘!𝐹(𝑥!)𝐶!"(𝑥!) − 𝑘!𝐶!"(𝑥!) + 𝑘!𝑂(𝑥!)𝐶!(𝑥!) − 𝑘!𝐶!"(𝑥!)    (2 ≤ 𝑖 ≤ 𝑛 − 1) (14)

𝐶!"(𝑥!) = 𝐶!"(𝑥!) +
!"#
!!
𝐶!"(𝑥!) (15)

𝐶!"(𝑥!) = 𝐶!"(𝑥!!!) −
!"#
!!
𝐶!"(𝑥!) (16)

0 = 𝐷!
!(!!!!)!!!(!!)!!(!!!!)

!!!
+ 𝑘!𝐹(𝑥!) − 𝑘!𝐹(𝑥!)𝑂(𝑥!) − 𝑘!𝑂(𝑥!)    (2 ≤ 𝑖 ≤ 𝑛 − 1) (17)

𝑂(𝑥!) = 𝑂(𝑥!) +
!"#
!!
𝐹(𝑥!) (18)

𝑂(𝑥!) = 𝑂(𝑥!!!) −
!"#
!!
𝐹(𝑥!) (19)

  

where 𝑥! = (𝑖 − 1)𝛥𝑥    (𝑖 = 1,⋯ ,𝑛) and (𝑛 − 1)𝛥𝑥 = 𝐿. In the present study, we set 𝛥𝑥 = 0.01  [µμm]. 

Rearranging Eqs. (9)-(19) gives 

𝐶!(𝑥!) =
𝐶!(𝑥!!!)+ 𝐶!(𝑥!!!)+ 𝑐!𝐶!"(𝑥!)+ 𝑐!𝐶!"(𝑥!)

𝑐!𝐹(𝑥!)+ 𝑐!𝑂(𝑥!)+ 2
  (2 ≤ 𝑖 ≤ 𝑛 − 1) (20)

𝐶!(𝑥!) = const. (21)
𝐶!(𝑥!) = 𝐶!(𝑥!!!) (22)

𝐶!"(𝑥!) =
1
𝑐!

𝐶!"(𝑥!!!)+ 𝑐!𝐹(𝑥!)𝐶!(𝑥!)+ 𝑐!𝐹(𝑥!)𝐶!"(𝑥!)   (1 ≤ 𝑖 ≤ 𝑛 − 1) (23)

𝐶!"(𝑥!) = 0 (24)

𝐶!"(𝑥!) =
𝐶!"(𝑥!!!)+ 𝐶!"(𝑥!!!)+ 𝑐!"𝐶!"(𝑥!)+ 𝑐!!𝑂(𝑥!)𝐶!(𝑥!)

𝑐!𝐹(𝑥!)+ 𝑐!
  (2 ≤ 𝑖 ≤ 𝑛 − 1) (25)

𝐶!"(𝑥!) = 𝐶!"(𝑥!)+ 𝑐!"𝐶!"(𝑥!) (26)
𝐶!"(𝑥!) = 𝐶!"(𝑥!!!) (27)

𝑂(𝑥!) =
𝑂(𝑥!!!)+ 𝑂(𝑥!!!)+ 𝑐!"𝐹(𝑥!)

𝑐!𝐹(𝑥!)+ 𝑐!"
  (2 ≤ 𝑖 ≤ 𝑛 − 1) (28)

𝑂(𝑥!) = 𝑂(𝑥!)+ 𝑐!"𝐹(𝑥!) (29)
𝑂(𝑥!) = 𝑂(𝑥!!!)− 𝑐!"𝐹(𝑥!) (30)

 

where 

𝑐! =
𝑘!"𝛥𝑥!

𝐷!
, 𝑐! =

𝑘!𝛥𝑥!

𝐷!
, 𝑐! =

𝑘!""𝛥𝑥!

𝐷!
, 𝑐! =

(𝑘! + 𝑘!)𝛥𝑥!

𝐷!
, 𝑐! = 1+

(𝑘!"" + 𝑘!)𝛥𝑥
𝑣 (31)

𝑐! =
𝑘!"𝛥𝑥
𝑣 , 𝑐! =

𝑘!𝛥𝑥
𝑣 , 𝑐! =

𝑘!𝛥𝑥!

𝐷!
, 𝑐! = 2+

(𝑘! + 𝑘!)𝛥𝑥!

𝐷!
, 𝑐!" =

𝑘!𝛥𝑥!

𝐷!
(32)

𝑐!! =
𝑘!𝛥𝑥!

𝐷!
, 𝑐!" = 2+

𝑘!𝛥𝑥!

𝐷!
, 𝑐!" =

𝑣𝛥𝑥
𝐷!

(33)
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Notice that Eqs. (20)-(30) remain unsolved with respect to 𝐶!(𝑥!),𝐶!"(𝑥!),𝐶!"(𝑥!) and 𝑂(𝑥!) because 

the RHS of Eqs. (20)-(30) also include unknown 

𝐶!(𝑥!!!),𝐶!(𝑥!!!),𝐶!"(𝑥!!!),𝐶!"(𝑥!!!),𝐶!"(𝑥!!!),𝑂(𝑥!!!) and 𝑂(𝑥!!!). 

 

3  Iterative method to obtain the steady-state solution 

To fully solve Eqs. (20)-(30), we used the following iterative update of 𝐶!(𝑥!),𝐶!"(𝑥!),𝐶!"(𝑥!), and 

𝑂(𝑥!): 

𝐶!
[!!!](𝑥!) ←

𝐶!
[!](𝑥!!!)+ 𝐶!

[!](𝑥!!!)+ 𝑐!𝐶!"
[!](𝑥!)+ 𝑐!𝐶!"

[!](𝑥!)
𝑐!𝐹(𝑥!)+ 𝑐!𝑂[!](𝑥!)+ 2

  (2 ≤ 𝑖 ≤ 𝑛 − 1) (34)

𝐶!
[!!!](𝑥!) ← 𝐶!

[!!!](𝑥!!!) (35)

𝐶!"
[!!!](𝑥!) ←

1
𝑐!

𝐶!"
[!](𝑥!!!)+ 𝑐!𝐹(𝑥!)𝐶!

[!](𝑥!)+ 𝑐!𝐹(𝑥!)𝐶!"
[!](𝑥!)   (1 ≤ 𝑖 ≤ 𝑛 − 1) (36)

𝐶!"
[!!!](𝑥!) ←

𝐶!"
[!](𝑥!!!)+ 𝐶!"

[!](𝑥!!!)+ 𝑐!"𝐶!"
[!](𝑥!)+ 𝑐!!𝑂[!](𝑥!)𝐶!

[!](𝑥!)
𝑐!𝐹(𝑥!)+ 𝑐!

  (2 ≤ 𝑖 ≤ 𝑛 − 1) (37)

𝐶!"
[!!!](𝑥!) ← 𝐶!"

[!!!](𝑥!)+ 𝑐!"𝐶!"
[!!!](𝑥!) (38)

𝐶!"
[!!!](𝑥!) ← 𝐶!"

[!!!](𝑥!!!) (39)

𝑂[!!!](𝑥!) ←
𝑂[!](𝑥!!!)+ 𝑂[!](𝑥!!!)+ 𝑐!"𝐹(𝑥!)

𝑐!𝐹(𝑥!)+ 𝑐!"
  (2 ≤ 𝑖 ≤ 𝑛 − 1) (40)

𝑂[!!!](𝑥!) ← 𝑂[!!!](𝑥!)+ 𝑐!"𝐹(𝑥!) (41)
𝑂[!!!](𝑥!) ← 𝑂[!!!](𝑥!!!)− 𝑐!"𝐹(𝑥!) (42)

 

where the superscript [𝑘] indicates the number of iteration steps. It is clear that one can obtain the 

steady-state solution of Eqs. (1)-(4) after the convergence of the loop with respect to 𝑘. During the 

iterations, we kept 𝐶!(𝑥!) constant, namely, 1, and also maintained 𝐶!"(𝑥!) = 0. We set the initial 

guess of 𝐶!,𝐶!",𝐶!" , and 𝑂  as 𝐶!(𝑥!) = 1,𝐶!(𝑥!∼!) = 0,𝐶!"(𝑥!∼!) = 0,𝑂(𝑥!) = 𝑂(𝑥!)+

𝑐!"𝐹(𝑥!),𝑂(𝑥!∼!!!) = 𝑘!𝐹(𝑥!∼!!!)/[𝑘!𝐹(𝑥!∼!!!)+ 𝑘!] , and 𝑂(𝑥!) = 𝑂(𝑥!!!)− 𝑐!"𝐹(𝑥!) . We 

judged convergence of the loop if all of the following conditions are satisfied: ∥ 𝐶!
[!!!] − 𝐶!

[!] ∥!≤ 𝜖, ∥
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𝐶!"
[!!!] − 𝐶!"

[!] ∥!≤ 𝜖, ∥ 𝐶!"
[!!!] − 𝐶!"

[!] ∥!≤ 𝜖  and ∥ 𝑂[!!!] − 𝑂[!] ∥!≤ 𝜖  ( 𝜖 = 10!!" ). After the 

convergence, we normalized 𝐶!,𝐶!"  and 𝐶!"  such that they satisfy (!! 𝐶! + 𝐶!" + 𝐶!")𝑑𝑥 = 𝐶!"! 

where 𝐶!"! is the total amount of actin probes in lamellipodia. In the present study, we set 𝐶!"! = 1. 

Instead of Eq. (12) where the forward finite difference scheme was used, one might use the central 

finite difference scheme to replace Eq. (36) with 

𝐶!"
[!!!](𝑥!) ←

1
𝑐! − 1

𝐶!"
[!](𝑥!!!)− 𝐶!"

[!](𝑥!!!)+ 𝑐!𝐹(𝑥!)𝐶!
[!](𝑥!)+ 𝑐!𝐹(𝑥!)𝐶!"

[!](𝑥!) (43) 

However, we found that iterative updating using Eq.(43) was unstable because the RHS of Eq (43) can 

sometimes become negative due to −𝐶!"
[!](𝑥!!!) depending on model parameters and shape of 𝐶!"(𝑥!). 

To ensure positivity of 𝐶!" during all updating steps, we used the forward difference scheme. 

 

A	
 Appendix: analytical solution 

In the special case where 𝑘! = 0 is satisfied, the analytical solution of 𝑂 can be obtained. we used the 

analytical solution to check the validity of the iterative method. The steady-state model equation about 

O-actin and its BCs are 

𝜕!𝑂
𝜕𝑥! + 𝑘!𝐹 − 𝑘!𝐹𝑂 − 𝑘!𝑂 = 0 (44)

𝐷!
𝜕𝑂(0)
𝜕𝑥 = −𝑣𝐹(0),𝐷!

𝜕𝑂(𝐿)
𝜕𝑥 = −𝑣𝐹(𝐿),𝐹(𝑥) = 𝑎𝑥 + 𝑏 (45)

 

The solution of which is given by 
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𝑂(𝑥) =
𝑘!
𝑘!
(𝑎𝑥 + 𝑏)+ 𝐶!exp −

𝑥
𝜆 + 𝐶!exp

𝑥
𝜆 (46)

𝐶! =
𝜆

exp − 2𝐿𝜆 − 1

𝑎𝑘!
𝑘!

+
𝑏𝑣
𝐷!

exp −
𝐿
𝜆
− 1 +

𝑎𝑣𝐿
𝐷!

exp −
𝐿
𝜆

(47)

𝐶! = 𝐶! −
𝑎𝑘!𝜆
𝑘!

−
𝑏𝑣𝜆
𝐷!

(48)

 

where 𝜆 = 𝐷!/𝑘!. 

Supplementary Figure S4 compares the numerical solution and analytical solution at 𝐷! = 0.25 

[µμm!s!!]. The numerical solution agrees well with the analytical one. 

 

Figure S4  Comparison between analytical and numerical solutions. 𝐷! = 0.25 [µμm!s!!] and 𝑘! = 0 

[µμM!!  s!!]. 

 


