Biophysical Journal, Volume 116

Supplemental Information

Convection-Induced Biased Distribution of Actin Probes in Live Cells

Sawako Yamashiro, Daisuke Taniguchi, Soichiro Tanaka, Tai Kiuchi, Dimitrios Vavylonis, and Naoki Watanabe

Supplementary Table S1

Model parameters

Symbol	Description	Value
	Retrograde flow speed relative to cell	
	migration speed	
V	XTC cell	60 nm s ⁻¹
	keratocyte	100 nm s ⁻¹
	Diffusion coefficient of free actin probe	
D	Lifeact-mCherry	6.8 µm² s⁻¹
	Alexa647-phalloidin	16.7 µm² s ⁻¹
	Probe association rate	
k _{on}	Lifeact-mCherry	2.28 µM⁻¹s⁻¹
	Alexa647-phalloidin	2.9×10 ⁻² µM ⁻¹ s ⁻¹
	Probe dissociation rate	
$k_{\rm off}$	Lifeact-mCherry	30.1 s⁻¹
	Alexa647-phalloidin	0.08 s ⁻¹
\overline{F}	Uniform F-actin concentration	1000 µM
а	Slope of non-uniform F-actin concentration	112.5 µM µm⁻¹
b	Base of non-uniform F-actin concentration	100 µM
L	Lamellipodium length	8 µm

Suppl. Fig. S1

Figure S1. Two other examples of the experiments in Fig. 1 *D* and *E*. The data show similar distribution of Atto 550-Lifeact (Atto 550-LA) and rhodamine-phalloidin (Rh-phalloidin) in fixed XTC cells. (*A*, and *C*) Images of fixed cells stained with Atto 550-LA (left) and Rh-phalloidin (right). Bars = 5 μ m. (*B*, and *D*) Average fluorescence intensity of the images in *A* or *C* along the white lines in the insets.

Suppl. Fig. S2

Figure S2. Two other examples of the experiments in Fig. 2. (*A*, and *C*) Fluorescent speckle images of Alexa546-phalloidin (A546-phalloidin, left) and CF680R-actin (right) in live fish keratocytes. Bars = 10 μ m. (*B*, and *D*) Average fluorescence intensity of the images in *A* or *C* along the white lines in the insets.

Suppl. Fig. S3

Figure S3. Simulated concentration profile of Lifeact-mCherry in a model with both F-actin and actin oligomers (O-actin) as Lifeact-binding species. (A) Concentration profiles of F- and O-actin in lamellipodia. The ratio of O-actin to F-actin is set as ~0.1 at leading edge (29). (B) Calculated distributions of Lifeact-mCherry in the states of F-actin-bound (red), O-actin-bound (orange) and free (light blue). The distribution of total Lifeact-mCherry is indicated by the pink line. A model lamellipodium with a linear decrease in F-actin concentration is indicated in a green dotted line. The supplementary method of simulation including oligomer actin is described below. (C) Calculated distribution of Lifeact-mCherry in a model with F-actin as only Lifeact-binding species. The method and the model parameters for simulation is same to that used in Fig. 3 C, except for the retrograde flow speed was set as 30 nm/s.

[Supplementary method of simulation including oligomer actin employed in Fig. S3B]

1 Model equations

The modified model to take into account the effect of oligomer actin is as follows

$$\frac{\partial C_{\rm f}}{\partial t} = D_{\rm f} \frac{\partial^2 C_{\rm f}}{\partial x^2} + k_{\rm off} C_{\rm fb} - k_{\rm on} F C_{\rm f} + k_{\rm -} C_{\rm ob} - k_{\rm +} O C_{\rm f} + k_{\rm d} C_{\rm ob} \qquad (1)$$

$$\frac{\partial C_{\rm fb}}{\partial t} = v \frac{\partial C_{\rm fb}}{\partial x} - k_{\rm off} C_{\rm fb} + k_{\rm on} F C_{\rm f} - k_{\rm s} C_{\rm fb} + k_{\rm i} F C_{\rm ob}$$
(2)
$$\frac{\partial C_{\rm ob}}{\partial C_{\rm ob}} = p \frac{\partial^2 C_{\rm ob}}{\partial c_{\rm ob}} + k_{\rm c} C_{\rm ob} + k_{\rm c} C_{\rm ob} + k_{\rm c} C_{\rm ob} + k_{\rm c} C_{\rm ob}$$
(2)

$$\frac{\partial C_{\rm ob}}{\partial t} = D_{\rm o} \frac{\partial^2 C_{\rm ob}}{\partial x^2} + k_{\rm s} C_{\rm fb} - k_{\rm i} F C_{\rm ob} - k_{-} C_{\rm ob} + k_{+} O C_{\rm f} - k_{\rm d} C_{\rm ob} \qquad (3)$$

$$\frac{\partial O}{\partial t} = D_0 \frac{\partial^2 O}{\partial x^2} + k_s F - k_i F O - k_d O$$
(4)

where C_f , C_{fb} , and C_{ob} are respectively the concentration of free, F-actin-bound, oligomer actin-bound probes. *F* and *O* represent the concentration of F-actin and oligomer actin at 1-dimensional position *x* at time *t*, respectively. *x* ranges from 0 (lamellipodial base) from *L* (leading edge). Based on our experimental data of F(x) in XTC cells, we assumed that the concentration profile of actin, F(x), is prescribed as F(x) = ax + b. The model parameters are summarized in Supplementary Table S2.

S	up	plementar	y Ta	ble S2:	Model	parameters :	for Fig.	. S3B
---	----	-----------	------	---------	-------	--------------	----------	-------

Symbol	Meaning	Value
v	Retrograde flow speed	30 nm s ⁻¹
D_{f}	Diffusion coefficient of free Lifeact	$6.8 \ \mu m^2 \ s^{-1}$
D _o	Diffusion coefficient of oligomer actin	$1.0 \ \mu m^2 \ s^{-1}$
k _{on}	Rate at which free Lifeact associates with F-actin	$2.28 \ \mu M^{-1} \ s^{-1}$
$k_{\rm off}$	Rate at which F-actin-bound Lifeact dissociates from F-actin	30.1 s^{-1}
k_+	Rate at which free Lifeact associates with O-actin	$2.28 \ \mu M^{-1} \ s^{-1}$

<i>k</i> _	Rate at which O-actin-bound Lifeact dissociates from O-actin	30.1 s ⁻¹
k _s	F-actin severing rate	$0.25 \ {\rm s}^{-1}$
k _i	Rate at which O-actin is incorporated into F-actin	$0.002 \ \mu M^{-1} \ s^{-1}$
k _d	Disassembly rate of O-actin	$0.5 \ {\rm s}^{-1}$
а	Slope of linear F-actin concentration profile	112.5 μM μm ⁻¹
b	Base of linear F-actin concentration profile	100 µM
L	Lamellipodial length	8 µm

The boundary conditions at the steady state are

$$C_{\rm f}(0) = {\rm const.}, \frac{\partial C_{\rm f}(L)}{\partial x} = 0$$
 (5)

$$vC_{\rm fb}(L) = 0 \tag{6}$$

$$D_{\rm o}\frac{\partial \mathcal{L}_{\rm ob}(0)}{\partial x} = -v\mathcal{L}_{\rm fb}(0), D_{\rm o}\frac{\partial \mathcal{L}_{\rm ob}(L)}{\partial x} = -v\mathcal{L}_{\rm fb}(L) \quad (7)$$

$$D_{\rm o}\frac{\partial O(0)}{\partial x} = -vF(0), D_{\rm o}\frac{\partial O(L)}{\partial x} = -vF(L)$$
(8)

In Eq. (5), const. is determined by the total amount of the probe.

2 Spatial discretization

Using the standard finite difference scheme, Eqs. (1)-(4) with the boundary conditions Eqs. (5)-(8) in the steady-state are discretized in space with a step Δx as

$$0 = D_{f} \frac{c_{f(x_{i+1})-2C_{f}(x_{i})+C_{f}(x_{i-1})}{\Delta x^{2}} + k_{off}C_{fb}(x_{i}) - k_{on}F(x_{i})C_{f}(x_{i}) + k_{-}C_{ob}(x_{i}) - k_{+}O(x_{i})C_{f}(x_{i}) + k_{d}C_{ob}(x_{i}) (2 \le i \le n-1)$$
(9)

$$C_{f}(x_{1}) = \text{const.}$$
(10)

$$C_{f}(x_{n}) = C_{f}(x_{n-1})$$
(11)

$$0 = v \frac{C_{fb}(x_{i+1})-C_{fb}(x_{i})}{\Delta x} - k_{off}C_{fb}(x_{i}) + k_{on}F(x_{i})C_{f}(x_{i}) - k_{s}C_{fb}(x_{i}) + k_{i}F(x_{i})C_{ob}(x_{i}) (1 \le i \le n-1)$$
(12)

$$C_{fb}(x_{n}) = 0$$
(13)

$$0 = D_{o} \frac{C_{ob}(x_{i+1})-2C_{ob}(x_{i})+C_{ob}(x_{i-1})}{\Delta x^{2}} + k_{s}C_{fb}(x_{i}) - k_{i}F(x_{i})C_{ob}(x_{i}) - k_{-}C_{ob}(x_{i}) + k_{+}O(x_{i})C_{f}(x_{i}) - k_{d}C_{ob}(x_{i}) (2 \le i \le n-1)$$
(14)

$$C_{ob}(x_{1}) = C_{ob}(x_{2}) + \frac{v\Delta x}{D_{o}}C_{fb}(x_{1})$$
(15)

$$C_{ob}(x_{n}) = C_{ob}(x_{n-1}) - \frac{v\Delta x}{D_{o}}C_{fb}(x_{n})$$
(16)

$$0 = D_{o} \frac{O(x_{i+1})-2O(x_{i})+O(x_{i-1})}{\Delta x^{2}} + k_{s}F(x_{i}) - k_{i}F(x_{i})O(x_{i}) - k_{d}O(x_{i}) (2 \le i \le n-1)$$
(17)

$$O(x_{1}) = O(x_{2}) + \frac{v\Delta x}{D_{o}}F(x_{1})$$
(18)

$$O(x_{n}) = O(x_{n-1}) - \frac{v\Delta x}{D_{o}}F(x_{n})$$
(19)

where $x_i = (i-1)\Delta x$ $(i = 1, \dots, n)$ and $(n-1)\Delta x = L$. In the present study, we set $\Delta x = 0.01$ [µm].

Rearranging Eqs. (9)-(19) gives

$$C_{\rm f}(x_i) = \frac{C_{\rm f}(x_{i+1}) + C_{\rm f}(x_{i-1}) + c_3 C_{\rm fb}(x_i) + c_4 C_{\rm ob}(x_i)}{c_1 F(x_i) + c_2 O(x_i) + 2} \quad (2 \le i \le n-1)$$
(20)

$$C_{\rm f}(x_1) = {\rm const.}$$
 (21)
 $C_{\rm f}(x_n) = C_{\rm f}(x_{n-1})$ (22)

$$C_{\rm fb}(x_i) = \frac{1}{-} [C_{\rm fb}(x_{i+1}) + c_6 F(x_i) C_{\rm f}(x_i) + c_7 F(x_i) C_{\rm ob}(x_i)] \quad (1 \le i \le n-1)$$
(23)

$$C_{\rm fb}(x_i) = \frac{1}{c_5} [C_{\rm fb}(x_{i+1}) + c_6 F(x_i) C_{\rm f}(x_i) + c_7 F(x_i) C_{\rm ob}(x_i)] \quad (1 \le i \le n-1)$$

$$C_{\rm fb}(x_n) = 0$$
(24)

$$C_{\rm ob}(x_i) = \frac{C_{\rm ob}(x_{i+1}) + C_{\rm ob}(x_{i-1}) + c_{10}C_{\rm fb}(x_i) + c_{11}O(x_i)C_{\rm f}(x_i)}{c_8F(x_i) + c_9} \quad (2 \le i \le n-1) \quad (25)$$

$$C_{\rm ob}(x_1) = C_{\rm ob}(x_2) + c_{13}C_{\rm fb}(x_1)$$
(26)
(27)

$$C_{\rm ob}(x_n) = C_{\rm ob}(x_{n-1})$$

$$O(x_i) = \frac{O(x_{i+1}) + O(x_{i-1}) + c_{10}F(x_i)}{2} \quad (2 \le i \le n-1)$$
(28)

$$c_{8}F(x_{i}) + c_{12}$$

$$0(x_{1}) = 0(x_{2}) + c_{13}F(x_{1})$$
(29)

$$O(x_n) = O(x_{n-1}) - c_{13}F(x_n)$$
(30)

where

$$c_{1} = \frac{k_{\rm on}\Delta x^{2}}{D_{\rm f}}, c_{2} = \frac{k_{+}\Delta x^{2}}{D_{\rm f}}, c_{3} = \frac{k_{\rm off}\Delta x^{2}}{D_{\rm f}}, c_{4} = \frac{(k_{-} + k_{\rm d})\Delta x^{2}}{D_{\rm f}}, c_{5} = 1 + \frac{(k_{\rm off} + k_{\rm s})\Delta x}{v}$$
(31)

$$c_{6} = \frac{k_{\rm on}\Delta x}{v}, c_{7} = \frac{k_{\rm i}\Delta x}{v}, c_{8} = \frac{k_{\rm i}\Delta x^{2}}{D_{\rm o}}, c_{9} = 2 + \frac{(k_{-} + k_{\rm d})\Delta x^{2}}{D_{\rm o}}, c_{10} = \frac{k_{\rm s}\Delta x^{2}}{D_{\rm o}}$$
(32)

$$c_{11} = \frac{k_+ \Delta x^2}{D_0}, c_{12} = 2 + \frac{k_d \Delta x^2}{D_0}, c_{13} = \frac{\nu \Delta x}{D_0}$$
(33)

Notice that Eqs. (20)-(30) remain unsolved with respect to $C_{\rm f}(x_i)$, $C_{\rm fb}(x_i)$, $C_{\rm ob}(x_i)$ and $O(x_i)$ because the RHS of Eqs. (20)-(30) also include unknown $C_{\rm f}(x_{i+1})$, $C_{\rm fb}(x_{i+1})$, $C_{\rm ob}(x_{i+1})$, $C_{\rm ob}(x_{i-1})$, $O(x_{i-1})$ and $O(x_{i-1})$.

3 Iterative method to obtain the steady-state solution

To fully solve Eqs. (20)-(30), we used the following iterative update of $C_f(x_i)$, $C_{fb}(x_i)$, $C_{ob}(x_i)$, and $O(x_i)$:

$$C_{\rm f}^{[k+1]}(x_i) \leftarrow \frac{C_{\rm f}^{[k]}(x_{i+1}) + C_{\rm f}^{[k]}(x_{i-1}) + c_3 C_{\rm fb}^{[k]}(x_i) + c_4 C_{\rm ob}^{[k]}(x_i)}{c_1 F(x_i) + c_2 O^{[k]}(x_i) + 2} \quad (2 \le i \le n-1)$$
(34)

$$C_{\rm f}^{[k+1]}(x_n) \leftarrow C_{\rm f}^{[k+1]}(x_{n-1}) \tag{35}$$

$$C_{\rm fb}^{[k+1]}(x_i) \leftarrow \frac{1}{c_5} \Big[C_{\rm fb}^{[k]}(x_{i+1}) + c_6 F(x_i) C_{\rm f}^{[k]}(x_i) + c_7 F(x_i) C_{\rm ob}^{[k]}(x_i) \Big] \quad (1 \le i \le n-1)$$
(36)

$$C_{\rm ob}^{[k+1]}(x_i) \leftarrow \frac{C_{\rm ob}^{[k]}(x_{i+1}) + C_{\rm ob}^{[k]}(x_{i-1}) + c_{10}C_{\rm fb}^{[k]}(x_i) + c_{11}O^{[k]}(x_i)C_{\rm f}^{[k]}(x_i)}{c_8F(x_i) + c_9} \quad (2 \le i \le n-1) \quad (37)$$

$$C_{\rm ob}^{[k+1]}(x_1) \leftarrow C_{\rm ob}^{[k+1]}(x_2) + c_{13}C_{\rm fb}^{[k+1]}(x_1)$$

$$C_{\rm ob}^{[k+1]}(x_1) \leftarrow C_{\rm ob}^{[k+1]}(x_1)$$
(38)
(39)

$$C_{\rm ob}^{[k+1]}(x_n) \leftarrow C_{\rm ob}^{[k+1]}(x_{n-1}) \tag{39}$$

$$O^{[k+1]}(x_i) \leftarrow \frac{O^{[k]}(x_{i+1}) + O^{[k]}(x_{i-1}) + c_{10}F(x_i)}{c_8F(x_i) + c_{12}} \quad (2 \le i \le n-1)$$

$$\tag{40}$$

$$O^{[k+1]}(x_1) \leftarrow O^{[k+1]}(x_2) + c_{13}F(x_1) \tag{41}$$

$$O^{[k+1]}(x_1) \leftarrow O^{[k+1]}(x_2) - c_{13}F(x_1) \tag{42}$$

$$O^{[k+1]}(x_n) \leftarrow O^{[k+1]}(x_{n-1}) - c_{13}F(x_n)$$
(42)

where the superscript [k] indicates the number of iteration steps. It is clear that one can obtain the steady-state solution of Eqs. (1)-(4) after the convergence of the loop with respect to k. During the iterations, we kept $C_{\rm f}(x_1)$ constant, namely, 1, and also maintained $C_{\rm fb}(x_n) = 0$. We set the initial guess of $C_{\rm f}, C_{\rm fb}, C_{\rm ob}$, and 0 as $C_{\rm f}(x_1) = 1, C_{\rm f}(x_{2\sim n}) = 0, C_{\rm fb}(x_{1\sim n}) = 0, O(x_1) = O(x_2) + c_{13}F(x_1), O(x_{2\sim n-1}) = k_{\rm s}F(x_{2\sim n-1})/[k_{\rm i}F(x_{2\sim n-1}) + k_{\rm d}]$, and $O(x_n) = O(x_{n-1}) - c_{13}F(x_n)$. We judged convergence of the loop if all of the following conditions are satisfied: $\|C_{\rm f}^{[k+1]} - C_{\rm f}^{[k]}\|^2 \le \epsilon, \|$

 $C_{\rm fb}^{[k+1]} - C_{\rm fb}^{[k]} \parallel^2 \leq \epsilon, \parallel C_{\rm ob}^{[k+1]} - C_{\rm ob}^{[k]} \parallel^2 \leq \epsilon \quad \text{and} \quad \parallel O^{[k+1]} - O^{[k]} \parallel^2 \leq \epsilon \quad (\epsilon = 10^{-10}). \text{ After the convergence, we normalized } C_{\rm f}, C_{\rm fb} \text{ and } C_{\rm ob} \text{ such that they satisfy } \int_0^L (C_{\rm f} + C_{\rm fb} + C_{\rm ob}) dx = C_{\rm tot}$ where $C_{\rm tot}$ is the total amount of actin probes in lamellipodia. In the present study, we set $C_{\rm tot} = 1$.

Instead of Eq. (12) where the forward finite difference scheme was used, one might use the central finite difference scheme to replace Eq. (36) with

$$C_{\rm fb}^{[k+1]}(x_i) \leftarrow \frac{1}{c_5 - 1} \Big[C_{\rm fb}^{[k]}(x_{i+1}) - C_{\rm fb}^{[k]}(x_{i-1}) + c_6 F(x_i) C_{\rm f}^{[k]}(x_i) + c_7 F(x_i) C_{\rm ob}^{[k]}(x_i) \Big]$$
(43)

However, we found that iterative updating using Eq.(43) was unstable because the RHS of Eq (43) can sometimes become negative due to $-C_{fb}^{[k]}(x_{i-1})$ depending on model parameters and shape of $C_{fb}(x_i)$. To ensure positivity of C_{fb} during all updating steps, we used the forward difference scheme.

A Appendix: analytical solution

In the special case where $k_i = 0$ is satisfied, the analytical solution of O can be obtained. we used the analytical solution to check the validity of the iterative method. The steady-state model equation about O-actin and its BCs are

$$\frac{\partial^2 O}{\partial x^2} + k_s F - k_i F O - k_d O = 0$$

$$D_o \frac{\partial O(0)}{\partial x} = -vF(0), D_o \frac{\partial O(L)}{\partial x} = -vF(L), F(x) = ax + b$$
(45)

The solution of which is given by

$$O(x) = \frac{k_s}{k_d}(ax+b) + C_1 \exp\left(-\frac{x}{\lambda}\right) + C_2 \exp\left(\frac{x}{\lambda}\right)$$
(46)

$$C_{1} = \frac{\lambda}{\exp\left(-\frac{2L}{\lambda}\right) - 1} \left\{ \left(\frac{ak_{s}}{k_{d}} + \frac{bv}{D_{o}}\right) \left[\exp\left(-\frac{L}{\lambda}\right) - 1\right] + \frac{avL}{D_{o}} \exp\left(-\frac{L}{\lambda}\right) \right\}$$
(47)
$$C_{2} = C_{1} - \frac{ak_{s}\lambda}{k_{d}} - \frac{bv\lambda}{D_{o}}$$
(48)

where $\lambda = \sqrt{D_{\rm o}/k_{\rm d}}$.

Supplementary Figure S4 compares the numerical solution and analytical solution at $D_0 = 0.25$ [μ m²s⁻¹]. The numerical solution agrees well with the analytical one.

Figure S4 Comparison between analytical and numerical solutions. $D_0 = 0.25 \ [\mu m^2 s^{-1}]$ and $k_i = 0 \ [\mu M^{-1} s^{-1}]$.