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Supplementary Figure 1: Projections on the length scale and time scales accessible by large scale
molecular dynamics simulations. (Reproduced with permission from Germann, Timothy C. Exascale Co-
design for Modeling Materials in Extreme Environments. No. LA-UR-14-25062. Los Alamos National
Laboratory (LANL), Los Alamos, NM (United States), 2014.)
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Supplementary Figure 2: Comparisons of the predictions by the ML-BOP models with those of other
popular force fields. Predictive power is evaluated in terms of the ability to capture the density anomaly,
diffusion coefficients, structural and other thermodynamic properties. Comparison data are extracted for
mW!, (TIP3P, TIP4P, TIP4P/2005, TIP5P)?, and (SPC/E, TIP4P/ice)**. The predictive power of ML-BOP
models rival state-of-the-art atomistic model (TIP4P/2005) and outperforms most existing water models
including coarse-grained models (mW). Melting point of water (T=273K), temperature of maximum
density (T=277K), and room temperature (T=298K) are marked by a vertical solid black line, dotted black
line, and solid green line, respectively. (a) The ML-BOP models correctly predict the melting point of water
and the densities of ice and liquid water at pressure P = 1 bar over a wide range of temperature. A cross on
the liquid density curve of each model marks their predicted melting points. (b) Diffusion coefficient of
liquid water over a wide temperature range calculated using different models, and compared with
experiments. The y-axis is shown in log scale.
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Supplementary Figure 3: Scaling data comparing the performance of the ML-BOP and ML-BOPyg;,
model with that of TIP4P/2005 water model, which is the next most accurate potential model for
water. The comparison is made for a system size of 256,000 water molecules and 1,000 MD time steps.
The actual time step for comparable integration accuracy for the TIP4P/2005 potential is 5-10 times smaller
than that of the ML-BOP4» model owing to the former’s inclusion of high-frequency O-H vibrations.
Therefore, to integrate to an equal amount of time, the ML-BOPg4i, model is ~ 120 times faster than
TIP4P/2005 due to the factor of ~ 17 speed-up per time step (shown in the graph), and the additional factor
of ~ 7 for larger time step that can be taken. ML-BOP is ~ 1.6 times faster than ML-BOPqj.
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Supplementary Figure 4: Stress-strain curves (strain rate = 1 x 108 ps!) at 240 K for polycrystalline ice
for samples with average grain sizes of 5 nm (blue circles), 10 nm (green circles) and 20 nm (red circles).
We observe increased sample stiffness with increasing grain sizes, due to the small size of grains and
consequently the large fraction of grain boundary atoms. This is consistent with studies of nanocrystalline
copper with small grain sizes®. Inset shows snapshots of the samples showing the grain boundary mediated
deformation.
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Supplementary Figure 5: Comparison of the structure and dynamical properties predicted by the
ML-BOP models with those of other popular force fields. Comparison data are calculated or extracted
for mW! and TIP4P/2005% ®. Melting point of water (T=273 K), temperature of maximum density (T=277
K), and room temperature (T=298 K) are marked by vertical solid black line, dotted black line, and solid
green line, respectively. (a) Comparison plot showing the radial distribution functions of ice at T=77 K and
liquid water at T=298 K. (b) Comparison plot showing the angular distribution functions liquid water at
T=298 K. (¢) Comparison plot showing the relative heat capacity of water. The equation f (a,b,c) = a (T/b
-1)'9+ ¢ is used to extrapolate the data. All curves are offset by their values at T=309 K (Exp: 75.77, ML-
ML-BOPgi: 35.17, ML-BOP: 37.54, mW: 32.55, TIP4P/2005: 87.39 J K'! mol'!). (d) Plot showing the
temperature-dependent, pressure-driven diffusion anomaly predicted by the ML-BOP models. The curves
are cubic interpolation of the data points, which only serve as visual guides to show the overall trends. The
dotted line shows the temperature dependent shift of the maximum.
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Supplementary Figure 6: Pressure dependence of O-O pair distribution functions at 298 K. Data for
coarse-grained water models, ML-BOP (b) and mW (c), are calculated in the 32 to 3,620 bar pressure range
and compared to experimentally measured data (a). The inset of each plot shows a magnified view of the 3
— 5.2 A region and the arrows indicate the direction of increasing pressure.
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Supplementary Figure 7: Color coding to distinguish the local structure of the various molecules (a)
Completely and partially hexagonal ice (b) Completely and partially cubic ice. Dark blue spheres represent
completely cubic whereas turquoise and cyan represent partially cubic environments. Turquoise molecules
represent partially cubic structures wherein the molecules are connected to at least one other cubic molecule
in their first coordination. Cyan molecules represent partially cubic structures wherein the molecules are
connected to at least one cubic molecule up to their second coordination. Orange spheres represent
completely hexagonal while yellow and green represent partially hexagonal environments. Yellow
molecules represent partially hexagonal structures wherein the molecules are connected to at least one other
hexagonal molecule in their first coordination. Green molecules represent partially hexagonal structures
wherein the molecules are connected to at least one hexagonal molecule up to their second coordination.
White spheres represent amorphous or liquid like molecules.



Supplementary Table 1: Comparison between the parameters of ML-mW and mW models.

ML-mW
€(eV) o (A) a yl y cosfo
0.297284 1.884015 2.124872 24.673877  1.207943 -0.279667
A B p q tol
7.111598 1.991526 4.011214 0.0 0.0
mW
€(eV) o (A) a yl y cosfo
0.268376 2.3925 1.8 23.15 1.2 -0.333333
A B P q tol
7.04955628 0.602224558 4 0 0.0

Functional form of Stillinger-Weber:
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Supplementary Table 2: Hierarchy of the property classes used in HOGA optimization.

#  Hierarchy of property classes Convergence Criteria

1 3 Minimized structure of ice I, , equation of state RMSD<0.7A,AE<0.1 eV

2 ¢ Time averaged density of Ice I, at T= 273 K and P = 1 bar (plh,273K,lbar) \ppredmd - pexp| <2%, SD <0.01%
3 ¢ Time averaged density of Ice I, at T=253 K and P =1 bar (pIh,ZSSK,lbar) \ppredimed - pexp| <2%, SD < 0.01%,
4 ¢ Time averaged density of Ice [LatT=213K and P =1 bar (pIh,ZBK,lbar) \ppredimed - pexp| <2%, SD <0.01%

5 "Relative ordering of Pin e & T=213,253,273 K P73k tbar < Prn2s3k.ibar < Pin213K, 1bar
6 ¢ Time averaged density of liquid at T=338 K and P = 1 bar (p“q’mK’le) \ppredmd - pexp| <2%, SD <0.01%
7 ¢ Time averaged density of liquid at T=273 K and P = 1 bar (p“qng,lbar) \ppredimd - pexp| <1.5%, SD <0.01%
8 d Stability of ice In-liquid interface, melting point of ice In (T) T within 20 K

9 " Enthalpy of melting of ice I, (AH_) AH_ oiea — AH | < 30%

10 ¢ Time averaged density of liquid at T=300 K and P = 1 bar (pliq,SOOK,lbar) \ppredimed - pexp| <1.5%, SD <0.01%
11 © Time averaged density of liquid at T=277 K and P = 1 bar (p“qng,lbar) \ppredimd - pexp| < 1%, SD < 0.01%
12 ¢ Time averaged density of liquid at T=263 K and P = 1 bar (phq,zém’lbar) \ppredmed - pexp| <3.5%, SD < 0.02%
13 ¢ Time averaged density of liquid at T=253 K and P = 1 bar (pliq,253K,1bar) \ppredimed - pexp| <4%, SD < 0.02%
14 P Relative ordering of P tbar at T =253, 263, 273, 277, 300, 338 K no more than 1 wrong order

15  ©Enthalpy and free energy difference between ice I, and I (for ML-BOPuin only)

2 TIP4P/2005 data; ® Experiment data; © ab initio data, Ref. 7; 9 indirectly fitted;

¢ TIP4P/2005 equilibrated starting configurations, experiment targets (see Table 6)



Supplementary Note 1: Pseudo code of the hierarchical objective function used in our machine
learning workflow (HOGA).

# Define a list of properties to evaluate (with/without conditions)

properties = list (  structure of ice I, at T=273K P=1bar (RMSD) to within 0.7 A,
density of ice I at T=273K P=1bar to within 0.02 g/cm3,
density of ice I at T=253K P=1bar to within 0.02 g/cm3,

correct relative ordering of ice densities at different T,

density of liq at T=300K P=1bar to within 0.05 g/cm3,
RDF of liq at T=300K P=1bar,

density of liq at T=277K P=1bar to within 0.005 g/cm3,
RDF of liq at T=277K P=1bar,

density of liq at T=273K P=1bar to within 0.01 g/cm3,
RDF of'liq at T=273K P=1bar,

correct relative ordering of liq at different T,
density maximum at 277K,

melting point of water at P=1bar to within 3 K,
enthalpy of melting to within 0.3 kcal/mol,
diffusion coefficient of liq at T=373K P=1bar,
diffusion coefficient of liq at T=300K P=1bar,

)

# Set reward points and a maximum objective_value
reward = 1000 # arbitrary reward points for each property
max_objective_value = total number_of properties * reward

# Initialize objective value and counter
objective value =0
property counter =0

# Loop over the list of properties

for property in properties

{

run_necessary MD_simulations()

sample MD _trajectories()

calculate averaged property()

penality = calculate_score based of fitness() # ideally less than reward
objective_value += penalty

if there is a condition and condition is not met

{

return max_objective value - property counter * reward + objective_value
terminate_objective evaluation()

}

property counter += 1

}

# Passed all evaluations! Return the final objective value.
return objective value
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