Bulk Tissue Cell Type Deconvolution with Multi-Subject Single-Cell Expression Reference

Wang et al.

Supplementary Information

Supplementary Notes

Supplementary Note 1: Construction of artificial bulk tissue RNA-seq data

We construct artificial bulk tissue RNA-seq data by summing up read counts across all cells from the same subject in the single-cell RNA-seq data. By way of construction, the cell type proportions of the artificial bulk data are equal to the observed cell type proportions in the single-cell data, and this allows us to compare estimated cell type proportions from various methods with the true proportions. **Supplementary Figure 1b** shows that the artificial bulk tissue RNA-seq data have similar gene expression as the real bulk RNA-seq data generated from the same subjects.

Supplementary Note 2: Impact of varying cell type proportions of artificial bulk data in deconvolution

Figure 2b in the main text shows the deconvolution results from MuSiC, NNLS, BSEQ-sc and CIBERSORT, and these results indicate that the alpha cell proportion is over-estimated by all methods except for MuSiC. To evaluate the impact of different cell type proportions in the bulk data on deconvolution estimates, we generated additional artificial bulk data to show that MuSiC can still reliably estimate cell type proportions even when the true cell type proportions in the bulk data are very different from the cell type proportions in the single-cell reference. In this newly constructed benchmark data, the single-cell reference stays the same while we construct the artificial bulk data from Xin et al.¹ by combining cells from 2 subjects with 75% alpha cells dropped. In this way, beta cells become the dominant cell type in the artificial bulk data, as expected for real bulk tissue. **Supplementary Figure 2c** shows that only MuSiC recovers the true cell type composition, revealing that beta cells are the major cell type in the artificial bulk data, whereas the other methods overestimate the alpha cell proportion, indicating that these methods are more likely to be influenced by the cell type proportions in the single-cell reference. This analysis also gives the likely explanation for why, in the Fadista et al.² data, all methods that rely on CIBERSORT marker genes grossly overestimate alpha cell proportion.

Supplementary Note 3: Impact of missing cell types in single-cell reference on deconvolution

One of the limitations of single-cell RNA-seq is cell loss during cell dissociation. This not only biases cell type proportions, but also leads to failure of detecting certain cell types, especially those rare cell types. In practice, the single-cell reference dataset might be incomplete, and not every cell type present in the bulk data is included in the single-cell reference. Since the deconvolution methods rely on observed cell types in the single-cell reference, it is important to evaluate whether cell type proportions can be reliably estimated when some cell types are missing in the single-cell reference.

We evaluate MuSiC, NNLS, BSEQ-sc and CIBERSORT with missing cell types (**Supplementary Figure 3, Supplementary Table 3**). The artificial bulk data consist of 6 cell types while the single-cell reference only consists of 5 cell types. The evaluation shows that when major cell types are missed, none of the methods can give accurate estimates. However,

the cell type proportions are estimated accurately by MuSiC when the missing cell type is not the dominant cell type in the bulk tissue.

Supplementary Note 4: Tolerance of bias in single-cell relative abundance on deconvolution

The protocol discrepancies between bulk and single-cell datasets may lead to estimation bias. To evaluate the degree of bias tolerance relative to the biological signal, we manually introduce noise to cross-subject average of the single-cell obtained relative abundance θ_g^k . Because of the constraint that $\sum_{g=1}^{G} \theta_g^k = 1$, we generate biased relative abundance by Dirichlet distribution,

denoted by $\theta_g^{k'}$. Consider one cell type only. For simplicity, we drop the superscript *k* for cell type. We assume the relative abundances of *G* genes follow a Dirichlet distribution,

$$\left(\theta_{1}^{\prime},\ldots,\theta_{G}^{\prime}\right) \sim Dirichlet(t \times (\theta_{1},\ldots,\theta_{G})),$$
 (1)

where t is a scaling factor. The mean and variance of $\theta_g^{'}$ are θ_g and $\frac{\theta_g(1-\theta_g)}{t+1}$, respectively. By

setting t = 999, 1332, 1999 and 3999, corresponding to $\frac{Var[\theta_g]}{E^2[\theta_g]} \approx (\theta_g(1+t))^{-1} \ge 2, 1.5, 1$ and

0.5, we simulated 100 times the cross-subject average of relative abundance of 6 major cell types from Segerstolpe et al.³ We deconvolved the artificial bulk data constructed by Xin et al.¹ (**Supplementary Figure 8c**) and MuSiC provides accurate cell type proportions even with biased relative abundance as input.

Supplementary Note 5: Robustness to single-cell dropout noise on deconvolution

Single-cell RNA-seq data are prone to gene dropout and the dropout rates can differ across datasets. To evaluate the robustness of MuSiC, NNLS, BSEQ-sc and CIBERSORT to dropout in single-cell data, we constructed artificial bulk data from the original scRNA-seq data and deconvolve it by single-cell data with additional dropout noise. Following Jia et al.⁴, the dropout rate π_{igc} is generated by

$$\pi_{jgc} = \frac{1}{1 + k \exp(k \ln X_{jgc})}$$
(2)

where X_{jgc} is the observed read counts, k is the dropout rate parameters. The simulated read count X_{jac} follows distribution such that

$$P\left(X_{jgc}^{'}=X_{jgc}\right) = \pi_{jgc}, P\left(X_{jgc}^{'}=0\right) = 1 - \pi_{jgc}.$$
 (3)

We evaluated four different dropout rates with k = 1, 0.5, 0.2 and 0.1 (**Supplementary Figure 8a-b**). In general, adding more dropout noise leads to lower MuSiC estimation accuracy. Compared with other methods, MuSiC consistently performs better in the presence of dropout noise.

Supplementary Note 6: Convergence of MuSiC with different starting points

MuSiC estimates cell type proportions by weighted non-negative least square (W-NNLS), which might be sensitive to the choice of starting values. To examine the convergence property of

MuSiC, we re-analyzed the data in **Figure 2b** to show convergence with different starting points. The artificial bulk data is constructed by Xin et al.¹ while the single-cell reference consists of 6 healthy subjects from Segerstolpe et al.³ The cell type proportions of four cell types: alpha, beta, delta and gamma are estimated using MuSiC with different starting points are shown in **Supplementary Table 8**. W-NNLS converges to the same value regardless of the starting points (**Supplementary Figure 9**).

Supplementary Note 7: Complex models

More complex error models, such as the gamma may give better fit to data, but could be computationally more challenging to fit. Here our empirical results show that the Gaussian model already gives accurate estimates.

Supplementary Tables

Supplementary Table 1: Linear regression to examine the relationship between estimated cell type proportions (Segerstolpe et al.³ as reference) and HbA1c levels. The fitted linear model is estimated cell type proportion ~ HbA1c + Age + BMI + Gender. Significant results (p value < 0.05) are highlighted.

Cell type			MuSiC			BSEQ-sc	
		Estimate	Std.Error	P value	Estimate	Std.Error	P value
alpha	(Intercept)	0.380382	0.207754	0.07125	1.351464	0.240052	3.26E-07
	HbA1c	-0.00203	0.027737	0.941834	-0.07377	0.032049	0.024249
	Age	-0.00097	0.001935	0.617836	0.002753	0.002236	0.222198
	BMI	-0.00167	0.007945	0.834127	-0.01711	0.00918	0.066449
	Gender	0.033135	0.042881	0.442221	-0.00638	0.049548	0.897869
beta	(Intercept)	0.877022	0.190276	1.71E-05	0.065847	0.046433	0.16047
	HbA1c	-0.0614	0.025403	0.01819	-0.00295	0.006199	0.635957
	Age	0.002639	0.001772	0.140873	0.000576	0.000433	0.187339
	BMI	-0.01362	0.007276	0.065293	-0.00162	0.001776	0.365258
	Gender	-0.07987	0.039274	0.04566	-0.00541	0.009584	0.574159
gamma	(Intercept)	0.008556	0.010504	0.417988	0.102201	0.024366	7.69E-05
	HbA1c	0.001047	0.001402	0.457785	-0.00278	0.003253	0.396334
	Age	9.21E-05	9.78E-05	0.349431	-0.00013	0.000227	0.570225
	BMI	-0.00057	0.000402	0.160731	-0.00207	0.000932	0.029738
	Gender	-0.00165	0.002168	0.450416	-0.00092	0.005029	0.855252
delta	(Intercept)	0.057678	0.010592	6.81E-07	0.015539	0.018715	0.409122
	HbA1c	-0.00106	0.001414	0.455427	0.002017	0.002499	0.422131
	Age	-0.00016	9.87E-05	0.12039	9.99E-05	0.000174	0.568316
	BMI	-0.0011	0.000405	0.008142	-0.00103	0.000716	0.154263
	Gender	0.000424	0.002186	0.846817	-0.00254	0.003863	0.512616
acinar	(Intercept)	-0.10619	0.131102	0.420638	-0.14553	0.052092	0.006672
	HbA1c	0.034967	0.017503	0.049519	0.019075	0.006955	0.007684
	Age	-0.00247	0.001221	0.046841	0.00066	0.000485	0.178153
	BMI	0.00662	0.005013	0.190883	0.002008	0.001992	0.316847
	Gender	0.05332	0.02706	0.052632	-0.02338	0.010752	0.032985

ductal	(Intercept)	-0.21745	0.141008	0.127428	-0.38952	0.232841	0.098686
	HbA1c	0.028474	0.018826	0.134781	0.058397	0.031086	0.064353
	Age	0.000863	0.001313	0.513005	-0.00396	0.002169	0.072066
	BMI	0.010341	0.005392	0.059097	0.019814	0.008904	0.029191
	Gender	-0.00536	0.029105	0.854406	0.038631	0.048059	0.424144

Supplementary Table 2: Linear regression to examine the relationship between estimated cell type proportions (Baron et al.⁵ as reference) and HbA1c levels. The fitted linear model is estimated cell type proportion ~ HbA1c + Age + BMI + Gender. Significant results (p value < 0.05) are highlighted.

Cell type			MuSiC			BSEQ-sc	
		Estimate	Std.Error	P value	Estimate	Std.Error	P value
alpha	(Intercept)	1.000504	0.275906	0.000533	1.220529	0.187349	8.56E-09
	HbA1c	-0.0259	0.036835	0.48424	-0.06398	0.025012	0.012632
	Age	0.000234	0.00257	0.927855	0.001921	0.001745	0.274661
	BMI	-0.01137	0.010551	0.28475	-0.00681	0.007164	0.345275
	Gender	0.038364	0.056948	0.502676	-0.02104	0.038669	0.588048
beta	(Intercept)	0.315176	0.09427	0.001316	0.011001	0.016796	0.51455
	HbA1c	-0.02843	0.012586	0.026936	-3.70E-05	0.002242	0.986889
	Age	-0.00081	0.000878	0.361952	0.000142	0.000156	0.366396
	BMI	-0.00158	0.003605	0.661813	-0.00044	0.000642	0.498345
	Gender	-0.00927	0.019458	0.635249	-0.00079	0.003467	0.819685
gamma	(Intercept)	-0.0172	0.055935	0.759333	0.040372	0.011566	0.000827
	HbA1c	0.001227	0.007468	0.869925	7.31E-05	0.001544	0.962362
	Age	0.00085	0.000521	0.107295	-8.47E-05	0.000108	0.434521
	BMI	-0.00042	0.002139	0.843112	-0.0011	0.000442	0.015394
	Gender	-0.00998	0.011545	0.390355	-0.00048	0.002387	0.842519
delta	(Intercept)	0.043785	0.009622	2.12E-05	0.012347	0.016882	0.466922
	HbA1c	-0.00121	0.001285	0.349663	0.002763	0.002254	0.224153
	Age	-8.79E-05	8.96E-05	0.330262	5.00E-05	0.000157	0.751577
	BMI	-0.00093	0.000368	0.013618	-0.00101	0.000646	0.1226
	Gender	-0.00063	0.001986	0.753674	-0.00098	0.003484	0.780352
acinar	(Intercept)	0.002232	0.042169	0.957925	-0.23299	0.083467	0.006714
	HbA1c	0.013032	0.00563	0.023475	0.034902	0.011143	0.00251
	Age	-0.00062	0.000393	0.119068	-0.00015	0.000777	0.848086
	BMI	-0.0008	0.001613	0.621478	0.006564	0.003192	0.043362
	Gender	0.013342	0.008704	0.129687	-0.01866	0.017228	0.282488
ductal	(Intercept)	-0.3445	0.218745	0.119669	-0.05126	0.14	0.715354
	HbA1c	0.041276	0.029204	0.161852	0.026281	0.018691	0.164004
	Age	0.00043	0.002038	0.833485	-0.00188	0.001304	0.153951
	BMI	0.015109	0.008365	0.075051	0.002786	0.005354	0.604398
	Gender	-0.03183	0.04515	0.483036	0.04194	0.028896	0.151016

Supplementary Table 3: Evaluation of deconvolution methods when there are missing cell types in the single-cell reference. The missing cell type is shown in bold and the proportions in the bulk tissue data are shown in parentheses.

alpha (0.447)	RMSD	mAD	R	beta (0.137)	RMSD	mAD	R
MuSiC	0.13	0.09	0.72	MuSiC	0.04	0.03	0.98
NNLS	0.27	0.18	0.42	NNLS	0.12	0.08	0.86
BSEQ-sc	0.17	0.12	0.58	BSEQ-sc	0.12	0.08	0.87
CIBERSORT	0.12	0.09	0.77	CIBERSORT	0.09	0.06	0.91
delta (0.092)	RMSD	mAD	R	gamma (0.062)	RMSD	mAD	R
MuSiC	0.04	0.03	0.98	MuSiC	0.05	0.038	0.97
NNLS	0.12	0.08	0.82	NNLS	0.12	0.081	0.84
BSEQ-sc	0.12	0.08	0.85	BSEQ-sc	0.12	0.083	0.86
CIBERSORT	0.10	0.07	0.90	CIBERSORT	0.10	0.070	0.90
acinar (0.084)	RMSD	mAD	R	ductal (0.177)	RMSD	mAD	R
MuSiC	0.05	0.04	0.97	MuSiC	0.050	0.037	0.97
NNLS	0.11	0.07	0.85	NNLS	0.067	0.046	0.96
BSEQ-sc	0.14	0.10	0.79	BSEQ-sc	0.084	0.064	0.93
CIBERSORT	0.07	0.05	0.93	CIBERSORT	0.076	0.058	0.94

Supplementary Table 4: Summary of cell types of Park et al.⁶ single-cell dataset. Park et al. sequenced 57,979 cells from healthy mouse kidneys and identified 16 cell types. As suggested in Park et al., we limited our consideration to the 13 confidently characterized cell types and eliminated CD-Trans and 2 novel cell types in our deconvolution analyses.

Cell Type	Abbr.	# Cell	% Cell	Cell Type	Abbr.	# Cell	% Cell
Endothelial	Endo	1,001	2.29	Fibroblast	Fib	549	1.26
Podocyte	Podo	78	0.18	Macrophage	Macro	228	0.52
Proximal tubule	PT	26,482	60.54	Neutrophil	Neutro	74	0.17
Loop of Henle	LOH	1,581	3.61	B lymphocyte	B lymph	235	0.54
Distal convoluted tubule	DCT	8,544	19.53	T lymphocyte	T lymph	1,308	2.99
Collecting duct principal cell	CD-PC	870	1.99	Natural killer cell	NK	313	0.72
Collecting duct intercalated cell	CD-IC	1729	3.95	Novel cell type 1	Novel 1	601	1.37
Collecting duct transitional cell	CD- Trans	110	0.25	Novel cell type 2	Novel 2	42	0.10

Rank	Segerstolpe	Xin	GSE50244	Rank	Segerstolpe	Xin	GSE50244
1	GCG	GCG	MALAT1	51	ITM2B	EIF4A2	RPS3A
2	TTR	MALAT1	EEF1A1	52	ENPP2	CTSD	RPL9
3	MALAT1	INS	TTR	53	ATP1A1	RBP4	SOD2
4	SERPINA1	TTR	FTH1	54	ANXA4	HNRNPH1	FIF4B
5	SPP1	FTI	GCG	55	HNRNPH1	RSG	
6			CDE	56			
0		PPPICB		50			
1	FIHI	PUSKIN	GNAS	57	CD 164	RPS3	SUGZ
8	CHGA	CHGB	RPL4	58	HLA-A	PDK4	RPS24
9	PIGR	PSAP	APP	59	RIN2	SSR1	CD74
10	IAPP	CHGA	CTSD	60	ASAH1	SCD	SQSTM1
11	SST	EGR1	HSP90AA1	61	TMSB10	DNAJC3	TMBIM6
12	FTL	SRSF6	RPLP0	62	BSG	SAR1A	TXNRD1
13	CALM2	FTH1	RPL7A	63	CLDN4	GPX4	LCN2
14	CHGB	HSP90AB1	HSP90AB1	64	TMEM59	PLD3	RPL14
15	SERPINA3	SPINT2	HSP90B1	65	PPY	ATP6AP1	PDIA3
16	ACTG1	MAP1B	UBC	66	C10orf10	ANP32F	HDI BP
17	SCG5	RIN2	CANX	67	HSPA8	TBI 1XR1	HNRNPK
18		CNAS		68	REG1B	GNB2L1	SCAPB2
10		SCCE		60			
19				09			
20	REGJA	DTEN	SERPINAS	70		PAFARIDZ	
21	GAPDH	PIEN	EIF4G2	71	PKM	RIN4	DSP
22	PPP1CB	ISPYL1	RPS4X	72	ATP6V0B	IMED4	SPIN12
23	ACTB	C6orf62	HSPA5	73	PSAP	CST3	REG1B
24	PRSS1	RPL3	ITGB1	74	LRRC75A-AS1	CD63	HNRNPC
25	RBP4	DPYSL2	IAPP	75	S100A11	TOB1	RPL15
26	GDF15	UBC	TPT1	76	MUC13	HLA-A	ENO1
27	COX8A	SCG2	RPL5	77	MAP1B	CLU	RPS11
28	ALDOA	ALDH1A1	SLC7A2	78	CD59	TTC3	GANAB
29	PDK4	PFKFB2	HNRNPA1	79	SLC30A8	RPS11	CDH1
30	RPL8	CPE	ANXA2	80	CPE	G6PC2	PEG10
31	H3F3B	C10orf10	RPL7	81	CLPS	GRN	CLDN4
32	IGFBP7	TMBIM6	RPS18	82	CTSD	SERPINA1	GSTP1
33	S100A6	CRYBA2	PCSK1	83	ATP1B1	SSR4	TUBA1A
34	EEE2	FTX		84		RPS6	RPS27A
35		HSPA8		85		$\cap A71$	PRPER
36			CDE15	86	SCGN	MADOKS	
37	GPN		DDC2	97			
20				07		NELIJ COCTM1	
30	SPIN12	SLUJUAO	KPOA	00			RESIZ
39	SUSTMI			89		KASU1	
40	KRI19	EINK1		90		DSP	MSN
41	CD63	B2M	RPL10	91	SLC22A17	COX8A	HNRNPA2B1
42	SLC40A1	DDX5	YWHAZ	92	RPL3	TIMP1	CTNNB1
43	G6PC2	FOS	RPL3	93	HERPUD1	ATP1B1	MORF4L1
44	REG1A	MAFB	SLC30A8	94	CD24	WFS1	SERINC1
45	DDX5	CD59	RPL6	95	CALR	PRDX3	KRT19
46	PCBP1	TM4SF4	TMSB10	96	CLDN7	CHP1	NCL
47	C6orf62	TMEM33	CD44	97	LAMP2	YWHAE	GPX4
48	CRYBA2	CAPZA1	NPM1	98	CST3	FAM46A	GNB1
49	CD74	CALM2	B2M	99	TMBIM6	RUFY3	RPS7
50	HLA-F	GPX3	PABPC1	100	CTSB	C4orf48	SEP2
	alpha	beta	delta		gamma	acinar	ductal

Supplementary Table 5: List of top 100 high weighted genes from the pancreatic islet analysis.

Rank	Beckerman	Craciun	Arvaniti	Rank	Beckerman	Craciun	Arvaniti
1	Kap	Malat1	Malat1	51	Cycs	Dbi	Rps14
2	mt-Atp6	Kap	Kap	52	Rplp1	Rps18	Cox4i1
3	Gpx3	mt-Atp6	Gpx3	53	Rpl23	Rps14	Rpl26
4	mt-Co1	Gpx3	S100a	54	Gatm	Cvcs	Cox5a
5	mt-Cyth	mt-Co1	Ftl1	55	Rpl32	Cox4i1	Ros19
6	S100g	mt-Cyth	Fth1	56	Cyb5a	Uacrh	Rpl10
7	mt-Co3	S100g	Rns29	57	Acsm2	Ndra1	Tto36
8	mt-Co2	mt-Co3	Yiet	58	Guca2h	Pol10	Ppl35
0	mt Nd4	mt Co2	Dol27o	50	Ugerb	Dpl26	Cm9720
9	mt NId1	mt Nd4	Rpi37a Dpl41	59	Ducit	Rpi20	Draco1
10		mt Nd4	Turd2	61	Cov4i1	Acom2	Undse i
10				60	Dpl26	ACSIIIZ Dol25	Iunizo Del25a
12	Full		RPI30	02	Rpizo	Rpiso	Rpisoa Dro24
13	Rps29	Full	Rp137	03	Coxsa	Сурба	Rps24
14	mt-Nd2	Rps29	MIOX	64	Rps19	MIOX	Gm10260
15	mt-Nd3	mt-Nd2	Eef1a1	65	TtC36	Itm2b	Atp5i
16	Rpl37a	mt-Nd4I	Rpl39	66	Rpl10	Rpl35a	SIc34a1
17	Rpl41	mt-Nd3	Cox6c	67	Dnase1	Atp5l	Aldob
18	Fxyd2	Rpl37a	Rps28	68	Rpl35	Gm8730	Cela1
19	Rpl38	Rpl41	Rps27	69	Rpl35a	Akr1c21	Ass1
20	Rpl37	Xist	Cndp2	70	Atp5l	Rpl28	Prdx1
21	Miox	Fxyd2	Cyp4b1	71	Rps24	Slc34a1	Rpl28
22	Eef1a1	Rpl37	Ndufa4	72	Slc34a1	Prdx1	Rpl23a
23	Rpl39	Rpl38	Akr1c21	73	Gm8730	Aldob	Rpl6
24	Cox6c	Eef1a1	Atp1a1	74	ltm2b	Rps27a	Pck1
25	Rps28	Spink1	Acy3	75	Aldob	Cox6a1	Gm10709
26	mt-Nd5	Rpl39	Atp5k	76	Cela1	Rps24	2010107E04Rik
27	Rps27	Rps28	Cox7c	77	Ass1	Rpl23a	Cox6a1
28	Cndp2	Cox6c	Klk1	78	Prdx1	Rps4x	Slc25a5
29	Cvp4b1	Ros27	Ubb	79	Rpl28	Gm10709	Rps4x
30	Ndufa4	mt-Nd5	Atp5e	80	Rpl6	SIc25a5	Rps27a
31	Akr1c21	mt-Atn8	Rns2	81	Rpl23a	Pnia	Idhh
32	Atn1a1	Atn1a1	Ndra1	82	Pck1	Cox5a	Cox6h1
33		Cox7c	Rns23	83	2010107E04Rik	Rol13	Rol18a
34	Atn5k	Lipp	Gm10076	84	Cov6a1	Cov6h1	Calh1
35	Cov7c	Atn5e	Drdv5	85	Gm10700	Cox7a2	Dalo1 Dalo1
36		AthEk	Dnc18	86	SIc2525	Cotm	Atn5b
30		Alpok Ndufa4	Tot1	97	Dnc272	Acc1	Alpon Dol130
20	Ацьь	Doo2	Chobd10	07	Rps27a Rps4y	ASS I Ndufo2	
20	DDD Dro2	RµSZ	Deleo	00		Dulias	CUX/dZ
39	RpSZ	RµSZ3	Rpipu Dhi	09		Rpiloa Cum 4h 1	Nuulas
40	Nurg I	GIIII0070		90			SICZ/ az
41	Rps23	KIK1 Das01	Rpi29	91		Atp5j	ACID
42	Gm10076	Rps21	Rps21	92	Atpop	Cox8a	Ppia
43	Prax5	Rpi29	Rpip1	93	Cox/a2	Acy3	Rpi36a
44	Chchd10	Prax5	Cycs	94		крізба	Атры
45	1pt1	Rpip1	Rpi23	95	Nduta3	ACID	Chpt1
46	Rps18	ſpt1	Rpl32	96	Slc27a2	Ndufa13	Rps15a
47	Dbi	Rpl23	Gatm	97	Rpl13	Rpl13a	Hrsp12
48	Rps21	Rpl32	Acsm2	98	Rpl36a	Ttc36	Ndufa13
49	Rplp0	Chchd10	Guca2b	99	Ppia	2010107E04Rik	Cox8a
50	Rpl29	Rplp0	Uqcrb	100	Atp5j	Gm10260	Ugt2b38
	PT	DCT	CD-IC		Podo	T lymph	

Supplementary Table 6: List of top 100 high weighted genes from the mouse kidney, step 1 of tree-based recursive deconvolution.

-							
Rank	Beckerman	Craciun	Arvaniti	Rank	Beckerman	Craciun	Arvaniti
1	Cd74	Apoe	Cd74	26	C1qb	Npc2	C1qb
2	Lvz2	S100a6	Lvz2	27	Nka7	Gzma	Nkg7
3	Ccl5	S100a4	Ccl5	28	Ccl4	Canza2	Vim
4	H2_A2	Pean	H2-A2	20	Vim	1,160	Ccl4
5		Nka7		20			
6	Trach10	Crip1	Trach10	21	Lyucz Mododh	Lyuuz Sorino?	Lyouz Madadh
0	CTTC	Cd2a	Came	20	NIS4d4D	Sennos	NIS4d4D
<i>'</i>		Cusy		32		FUS Davi0f0	Sall
8	H2-E01	CCI3	H2-E01	33	Ciqc	Pou2t2	Ciqc
9	Plac8	Ccnd2	Plac8	34	S100a10	Ctsz	S100a10
10	Cst3	Slpi	Cst3	35	H3f3a	Cd74	H3f3a
11	lfi27l2a	Gm2a	lfi27l2a	36	Ctss	ll7r	Ctss
12	Slpi	Ssr4	Slpi	37	Gngt2	H2afy	Gngt2
13	lfitm3	Lck	lfitm3	38	S100a6	Ctsb	S100a6
14	Apoe	Spi1	Apoe	39	S100a4	lfngr1	S100a4
15	Tyrobp	Fxvd5	Tyrobp	40	Lst1	Tafb1	Lst1
16	Acta1	Ccl4	Acta1	41	Klf2	Sub1	Klf2
17	Crip1	Gzmb	Crip1	42	Msrb1	Socs2	Msrb1
18	Ecer1a	Cnn2	Ecer1a	43	H2afz	lfitm3	H2afz
19	Cebnb	ld2	Cebnb	44	Wfdc17	ltab7	Wfdc17
20	Cloa	Cybb	C1ga	45	Arnc1h	Cd79a	Arnc1h
21	AW/112010	Sen1	AW/112010	46	lfitm2	L th	Lth
21				40	L th	Eub	LIU Ifitm2
22	Lybe	Itabo	Lyoe	47	E100o11	Tanan ²²	1110112 S100o11
23	luz Deen		luz Deen	40		Soft	STUUATT Mab1
24	Psap		Psap	49	Lgais3	Sall	
 		LSPT	Lgais i	50	IVIZD I		Lgaiss
Epitne						• •	• •
Rank	Beckerman	Craciun	Arvanıtı	Rank	Beckerman	Craciun	Arvanıtı
1	Hbb-bs	Hbb-bs	Hbb-bs	26	Gm5424	SIc12a3	SIc22a28
1 0				-		0.0.120.0	CICLEGEO
2	Hba-a1	Hba-a1	Hba-a1	27	Slc12a3	Slc22a28	Slc22a29
2 3	Hba-a1 Umod	Hba-a1 Slco1a1	Hba-a1 Slco1a1	27 28	Slc12a3 Nrp1	Slc22a28 Slc22a29	Slc22a29 Emcn
2 3 4	Hba-a1 Umod Slco1a1	Hba-a1 Slco1a1 Slc22a6	Hba-a1 Slco1a1 Slc22a6	27 28 29	Slc12a3 Nrp1 Igfbp5	SIc22a28 SIc22a29 Ly6c1	SIc22a29 Emcn Car12
2 3 4 5	Hba-a1 Umod Slco1a1 Slc22a6	Hba-a1 Slco1a1 Slc22a6 Pvalb	Hba-a1 Slco1a1 Slc22a6 Nat8	27 28 29 30	Slc12a3 Nrp1 Igfbp5 Ehd3	Slc22a28 Slc22a29 Ly6c1 Car12	Slc22a29 Emcn Car12 Aspdh
2 3 4 5 6	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb	Hba-a1 Slco1a1 Slc22a6 Pvalb Nat8	Hba-a1 Slco1a1 Slc22a6 Nat8 Pvalb	27 28 29 30 31	Slc12a3 Nrp1 Igfbp5 Ehd3 Slc22a28	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh	Sic22a29 Emcn Car12 Aspdh Akr1c14
2 3 4 5 6 7	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8	Hba-a1 Slco1a1 Slc22a6 Pvalb Nat8 Umod	Hba-a1 SIco1a1 SIc22a6 Nat8 Pvalb Mep1a	27 28 29 30 31 32	Slc12a3 Nrp1 Igfbp5 Ehd3 Slc22a28 Slc12a1	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1
2 3 4 5 6 7 8	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a	Hba-a1 SIco1a1 SIc22a6 Nat8 Pvalb Mep1a Umod	27 28 29 30 31 32 33	Slc12a3 Nrp1 Igfbp5 Ehd3 Slc22a28 Slc12a1 Slc22a29	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb
2 3 4 5 6 7 8 9	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Eqf	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6	27 28 29 30 31 32 33 34	Slc12a3 Nrp1 Igfbp5 Ehd3 Slc22a28 Slc12a1 Slc22a29 Car12	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3	SIc22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947
2 3 4 5 6 7 8 9 10	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f	27 28 29 30 31 32 33 34 35	Slc12a3 Nrp1 Igfbp5 Ehd3 Slc22a28 Slc12a1 Slc22a29 Car12 Aspdh	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3	SIc22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5
2 3 4 5 6 7 8 9 10 11	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt	27 28 29 30 31 32 33 34 35 36	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3
2 3 4 5 6 7 8 9 10 11 12	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Eqf	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11	27 28 29 30 31 32 33 34 35 36 37	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1
2 3 4 5 6 7 8 9 10 11 12 13	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmiad1	27 28 29 30 31 32 33 34 35 36 37 38	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6y1g3	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1
2 3 4 5 6 7 8 9 10 11 12 13 14	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmiad1	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmiod1	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Fof	27 28 29 30 31 32 33 34 35 36 37 38 39	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2	SIc22a28 SIc22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb SIc12a1 BC035947 SIc13a1	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1
2 3 4 5 6 7 8 9 10 11 12 13 14 15	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3	27 28 29 30 31 32 33 34 35 36 37 38 39 40	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb	SIc22a28 SIc22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb SIc12a1 BC035947 SIc13a1 Col6a6	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Sic22a30	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng	SIc22a28 SIc22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb SIc12a1 BC035947 SIc13a1 Col6a6 Gm4450	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cvr2a4	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Sic22a30 Gm11128	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Agg2	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba.a2	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Sic22a30 Gm11128 Cup2a4	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamte15	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Aqp2 Cyp2c4	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba-a2	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Sic22a30 Gm11128 Cyp2a4 Hba.22	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16 SIc13a1	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamts15 Hsd11b2	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15 Ehd3
2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 5 10 10 11 12 10 10 11 12 10 10 11 10 10 10 10 10 10 10 10 10 10	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Aqp2 Cyp2a4 Exud4	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba-a2 Aqp2 Aqp1	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Sic22a30 Gm11128 Cyp2a4 Hba-a2 Cm5424	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16 SIc13a1 Col6a6	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamts15 Hsd11b2	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15 Ehd3 Aspa
2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 13 14 5 15 10 10 11 12 10 11 12 10 11 12 10 11 12 11 11	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Aqp2 Cyp2a4 Fxyd4 Eman	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba-a2 Aqp2 Aqp1 Cm5424	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Sic22a30 Gm11128 Cyp2a4 Hba-a2 Gm5424 Sia1221	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16 SIc13a1 Col6a6 Cm4450	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamts15 Hsd11b2 Aspa	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15 Ehd3 Aspa Mogat1 DS20000K0EEB#
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Aqp2 Cyp2a4 Fxyd4 Emcn Aqp1	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba-a2 Aqp2 Aqp1 Gm5424 Sico17c1	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Sic22a30 Gm11128 Cyp2a4 Hba-a2 Gm5424 Sic17a1	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16 SIc13a1 Col6a6 Gm4450 Eng7	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamts15 Hsd11b2 Aspa Apela Mocat1	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15 Ehd3 Aspa Mogat1 D630029K05Rik Cm15632
2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 4 15 6 7 8 9 10 11 23 21 22 23	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Aqp2 Cyp2a4 Fxyd4 Emcn Aqp1 Hbb. a2	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba-a2 Aqp2 Aqp1 Gm5424 Sic17a1	Hba-a1 Sico1a1 Sic22a6 Nat8 Pvalb Mep1a Umod Sico1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Sic22a30 Gm11128 Cyp2a4 Hba-a2 Gm5424 Sic17a1 Aqp1	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16 SIc13a1 Col6a6 Gm4450 Egf17 Adomte 15	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamts15 Hsd11b2 Aspa Apela Mogat1 Dc300cl/corpline	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15 Ehd3 Aspa Mogat1 D630029K05Rik Gm15638
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Aqp2 Cyp2a4 Fxyd4 Emcn Aqp1 Hba-a2	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba-a2 Aqp2 Aqp1 Gm5424 Sic17a1 Pipp1	Hba-a1 Slco1a1 Slc22a6 Nat8 Pvalb Mep1a Umod Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Slc22a30 Gm11128 Cyp2a4 Hba-a2 Gm5424 Slc17a1 Aqp1 Aqp2	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16 SIc13a1 Col6a6 Gm4450 Egf17 Adamts15	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamts15 Hsd11b2 Aspa Apela Mogat1 D630029K05Rik	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic13a1 Sic13a1 Sic13a1 Col6a6 Gm4450 Adamts15 Ehd3 Aspa Mogat1 D630029K05Rik Gm15638 Hsd11b2
2 3 4 5 6 7 8 9 10 11 12 13 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 10 11 12 3 4 5 10 11 12 3 11 12 3 11 12 3 11 12 13 11 12 13 11 12 111 12 11 12 13 14 15 16 17 11 2 2 12 2 12 2 12 2 12 2 12 2 1	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Aqp2 Cyp2a4 Fxyd4 Emcn Aqp1 Hba-a2 Ly6c1	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba-a2 Aqp2 Aqp1 Gm5424 Sic17a1 Plpp1 Fxyd4	Hba-a1 Slco1a1 Slc22a6 Nat8 Pvalb Mep1a Umod Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Slc22a30 Gm11128 Cyp2a4 Hba-a2 Gm5424 Slc17a1 Aqp1 Aqp2 Slc12a3	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16 SIc13a1 Col6a6 Gm4450 Egfl7 Adamts15 Meis2	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamts15 Hsd11b2 Aspa Apela Mogat1 D630029K05Rik Eng	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15 Ehd3 Aspa Mogat1 D630029K05Rik Gm15638 Hsd11b2 Akr1c18 Col6a6
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Aqp2 Cyp2a4 Fxyd4 Emcn Aqp1 Hba-a2 Ly6c1 Slc17a1	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba-a2 Aqp2 Aqp2 Aqp1 Gm5424 Sic17a1 Pipp1 Fxyd4 Encn	Hba-a1 Slco1a1 Slc22a6 Nat8 Pvalb Mep1a Umod Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Slc22a30 Gm11128 Cyp2a4 Hba-a2 Gm5424 Slc17a1 Aqp1 Aqp2 Slc12a3 Fxyd4	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16 SIc13a1 Col6a6 Gm4450 Egf17 Adamts15 Meis2 Aspa	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamts15 Hsd11b2 Aspa Apela Mogat1 D630029K05Rik Eng Gm15638	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15 Ehd3 Aspa Mogat1 D630029K05Rik Gm15638 Hsd11b2 Akr1c18 Smir1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Hba-a1 Umod Slco1a1 Slc22a6 Pvalb Nat8 Mep1a Egf Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Acsm3 Slc22a30 Gm11128 Aqp2 Cyp2a4 Fxyd4 Emcn Aqp1 Hba-a2 Ly6c1 Slc17a1	Hba-a1 Sico1a1 Sic22a6 Pvalb Nat8 Umod Mep1a Sico1a6 Ces1f Hbb-bt Egf Snhg11 Tmigd1 Acsm3 Sic22a30 Cyp2a4 Hba-a2 Aqp2 Aqp2 Aqp1 Gm5424 Sic17a1 Pipp1 Fxyd4 Emcn DCT	Hba-a1 Slco1a1 Slc22a6 Nat8 Pvalb Mep1a Umod Slco1a6 Ces1f Hbb-bt Snhg11 Tmigd1 Egf Acsm3 Slc22a30 Gm11128 Cyp2a4 Hba-a2 Gm5424 Slc17a1 Aqp1 Aqp2 Slc12a3 Fxyd4 CD-IC	27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 LOH	SIc12a3 Nrp1 Igfbp5 Ehd3 SIc22a28 SIc12a1 SIc22a29 Car12 Aspdh Akr1c14 Kdr Atp6v1g3 Hsd11b2 Hexb Eng BC035947 Pi16 SIc13a1 Col6a6 Gm4450 Egf17 Adamts15 Meis2 Aspa CD-PC	Sic22a28 Sic22a29 Ly6c1 Car12 Aspdh Igfbp5 Akr1c14 Atp6v1g3 Ehd3 Hexb Sic12a1 BC035947 Sic13a1 Col6a6 Gm4450 Kdr Adamts15 Hsd11b2 Aspa Apela Mogat1 D630029K05Rik Eng Gm15638 Endo	Sic22a29 Emcn Car12 Aspdh Akr1c14 Ly6c1 Hexb BC035947 Igfbp5 Atp6v1g3 Nrp1 Sic13a1 Sic12a1 Col6a6 Gm4450 Adamts15 Ehd3 Aspa Mogat1 D630029K05Rik Gm15638 Hsd11b2 Akr1c18 Smlr1 Podo

Supplementary Table 7: List of top 100 high weighted genes from the mouse kidney, step 2 of tree-based recursive deconvolution.

Cell type	EQ	SP1	SP2	SP3	SP4	SP5	SP6	SP7	SP8
alpha	0.25	0.4	0.2	0.2	0.2	0.7	0.1	0.1	0.1
beta	0.25	0.2	0.4	0.2	0.2	0.1	0.7	0.1	0.1
delta	0.25	0.2	0.2	0.4	0.2	0.1	0.1	0.7	0.1
gamma	0.25	0.2	0.2	0.2	0.4	0.1	0.1	0.1	0.7

Supplementary Table 8: Starting points for convergence analysis

Supplementary Figure 1: Exploratory analysis of single-cell RNA-seq data from Segerstolpe et al.

a. Example of cross-subject and cross-cell variation in cell type specific gene expression. The boxplot contains 4 cell types: alpha, beta, gamma, and delta cells from Segerstolpe et al. single-cell RNA-seq data. The x-axis is the log transformed average relative abundance across cells from the same cell type, and the y-axis is the subject label. The relative abundance of gene *GC* is widely spread across the x-axis while the relative abundance of gene *TTR* is more concentrated across subjects. We consider gene *GC* as non-informative and *TTR* as informative. **b**. Comparison of log transformed relative abundance levels between real bulk tissue RNA-seq data and artificially constructed bulk RNA-seq data for the same subject. Single-cell and bulk tissue RNA-seq data are both from Segerstolpe et al. Each dot represents a gene and the gray line is x=y. **c**. Heatmap of true and estimated cell type proportions. In addition to the four methods described in the main text, we also evaluated the estimates given by MuSiC and NNLS when using only the marker genes used in BSEQ-sc. Source data are provided as a Source Data file.

Segerstolpe et al. as reference

Method	RMSD	mAD	R
MuSiC	0.10	0.06	0.94
NNLS	0.17	0.12	0.81
BSEQ-sc	0.22	0.15	0.79
CIBERSORT	0.21	0.15	0.76
MuSiC .marker	0.25	0.18	0.60
NNLS .marker	0.34	0.26	0.30

Xin et al. as reference

Method	RMSD	mAD	R
MuSiC	0.05	0.033	0.98
NNLS	0.10	0.072	0.92
BSEQ-sc	0.13	0.088	0.87
CIBERSORT	0.07	0.053	0.95
MuSiC .marker	0.07	0.048	0.96
NNLS .marker	0.10	0.072	0.92

Method	RMSD	mAD	R
MuSiC	0.10	0.07	0.94
NNLS	0.25	0.19	0.23
BSEQ-sc	0.28	0.21	0.16
CIBERSORT	0.30	0.24	0.03
MuSiC .marker	0.31	0.23	0.10
NNLS .marker	0.31	0.23	0.08
1			

Supplementary Figure 2: Heatmaps of true and estimated cell type proportions of artificial bulk data constructed using single-cell RNA-seq data from Xin et al.

a. Deconvolution results when the single-cell reference is from the 6 healthy subjects of Segerstolpe et al. with leave-one-out, i.e., for each subject under deconvolution, only single-cell data from the remaining 5 subjects were used as single-cell reference. b. Deconvolution results when the single-cell reference is from the 12 healthy subjects of Xin et al. with leave-one-out, i.e., for each subject under deconvolution, only single-cell data from the remaining 11 subjects were used as single-cell reference. c. The cell type proportions for the artificial bulk data are manually adjusted so that beta cells are the dominant cell type, as expected in real bulk tissue. Alpha cells dominate in the scRNA-seq data due to dissociation and capture bias. Thus, this analysis mirrors the real data analysis scenario where cell type proportions differ substantially between scRNA-seq reference and bulk tissue. In more detail, we combined cells from two subjects as one artificial bulk tissue RNA-seq dataset, for example, H1.2 combined cells from subject H1 and H2. Then we dropped 75% of the alpha cells at random. The single-cell reference is from the 6 healthy subjects of Segerstolpe et al. Here, all methods that rely on pre-selected marker genes from CIBERSORT are heavily biased by the cell type proportions in the single cell reference, and miss the true cell type proportions in the bulk tissue data. In comparison, MuSiC is able to adjust to the difference between scRNA-seq reference and bulk data. Source data are provided as a Source Data file.

Estimated Proportion with missing cell type

Supplementary Figure 3: Heatmaps of true and estimated cell type proportions with missing cell types in single-cell reference.

The artificial bulk data and the single-cell reference are both from Segerstolpe et al. We constrained our analysis to the 6 major cell types: alpha, beta, delta, gamma, acinar and ductal cells. The artificial bulk data is constructed by summing read counts from the 6 major cell types while the single-cell reference contains only 5 cell types (the column header shows the cell type that is missing in the single-cell reference). The x-axis labels cell types used in the single-cell reference and the y-axis shows the subject label. The top panel shows the true composition, while panels below it show the results from each method. See **Supplementary Table 3** for detailed evaluation results. Source data are provided as a Source Data file.

Supplementary Figure 4: Benchmark evaluation using mouse kidney single-cell RNA-seq data from Park et al.

The artificial bulk RNA-seq data is constructed by summing read counts across cells in all 16 cell types while the single-cell reference only consists of 13 cell types. The other 3 cell types were discarded in the single-cell reference because they are too rare.

a. Heatmap of estimated cell type proportions and evaluation results. **b**. Scatter plot of real cell type proportions versus estimated cell type proportions. Source data are provided as a Source Data file.

Supplementary Figure 5: Estimated cell type proportions of the 13 cell types in three real mouse bulk RNA-seq datasets. **a**. Boxplot of estimated cell type proportions of 10 mice (4 APOL1 disease mice and 6 control mice) from Beckerman et al. **b**. Line plot of cell type proportion changes after FA induction (Craciun et al.) at 6 time points. There are 3 replicates at each time point and the average proportions are plotted. N: normal. **c**. Line plot of cell type proportions of control (Sham operated mice), 2 days and 8 days after UUO (Arvaniti et al.). Source data are provided as a Source Data file.

а

NNLS estimated cell type proportions and correlations

С

CIBERSORT estimated cell type proportions and correlations

b

Supplementary Figure 6: Estimated cell type proportions and correlation of the estimated cell type proportions across samples for bulk RNA-seq data of rat renal tubule segments (Lee et al.). Park et al. mouse single-cell RNA-seq data are used as reference. **a**. NNLS. **b**. BSEQ-sc. **c**. CIBERSORT. Source data are provided as a Source Data file.

Supplementary Figure 7: Estimated cell type proportions of the pancreatic islet bulk RNA-seq data in Fadista et al. with single cell reference from Baron et al.

The analysis is similar to **Figure 2c-d** in the main text except that the single-cell reference are based on the three healthy subjects from Baron et al. and the MuSiC estimation was adjusted for protocol bias as described in the **Methods** section. **a**. Jitter plot of the estimated cell type proportions for Fadista et al. subjects, color-coded by deconvolution methods. 77 out of the 89 subjects from Fadista et al. that have recoded HbA1c levels are plotted. T2D subjects are denoted as triangles. **b**. HbA1c levels vs beta cell type proportions estimated by each of the four methods. The reported p-values are from single variable regression β cell proportions ~ HbA1c. Multivairiable regression results adjusting for age, BMI and gender are reported in **Supplementary Table 2**. Source data are provided as a Source Data file.

Supplementary Figure 8: Benchmark evaluation of robustness of MuSiC.

a. and **b.** evaluate the impact of different dropout rate in scRNA-seq (**Supplementary Note 5**). **a.** and **b.** show heatmaps of MuSiC estimated cell type proportions. The single-cell reference is based on six healthy subjects from Segerstolpe et al. with different dropout rates. The artificial bulk data of **a.** is constructed by Segerstolpe et al. while **b.** is constructed by Xin et al. **c.** Evaluation of the impact of biased relative abundance 84 in the single-cell reference (**Supplementary Note 4**). Boxplot shows three evaluation metrics from 100 simulations of MuSiC estimated cell type proportions with biased relative abundance, color-coded by scale parameter of Dirichlet distribution. The horizontal lines show the evaluation metrics of four methods without bias in the single-cell reference are both from Segerstolpe et al. The estimation follows leave-out-one rule. We utilized the average library size ratio of the six healthy subjects from Segerstolpe et al. as the ratio of cell size. Source data are provided as a Source Data file.

Supplementary Figure 9: Convergence of MuSiC with different starting points.

The evaluation is performed on artificial bulk data, constructed by single-cell data from Xin et al. while the single -cell reference is from Segerstolpe et al. We evaluate the convergence of MuSiC with nine different starting points of four cell types in **Supplementary Table 8**. The iteration numbers are normalized between 0 and 1 for comparison. We plotted the normalized iteration against estimated proportions for each subjects in Xin et al. colored by cell types. From different starting points, estimated cell types converged to the same proportions.

Reference

- 1. Xin, Y. *et al.* RNA sequencing of single human islet cells reveals type 2 diabetes genes. *Cell metabolism* **24**, 608-615 (2016).
- Fadista, J. *et al.* Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. *Proceedings of the National Academy of Sciences* 111, 13924-13929 (2014).
- 3. Segerstolpe, Å. *et al.* Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. *Cell metabolism* **24**, 593-607 (2016).
- 4. Jia, C. *et al.* Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data. *Nucleic acids research* **45**, 10978-10988 (2017).
- 5. Baron, M. *et al.* A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. *Cell Syst* **3**, 346-360 e4 (2016).
- 6. Park, J. *et al.* Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. *Science*, eaar2131 (2018).