
Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Wang et al. present a new tool "MuSIC" for determining cell type compositions in bulk RNA-seq data 
based on reference single-cell expression profiles. Their method outperforms a number of existing 
approaches on simulated data sets, and recovers some known biological features in real data. The 
manuscript is clear, concise and addresses a relevant problem in data integration across different 
transcriptomic assays. The method is interesting and the use of the guide tree to resolve similar cell 
types is novel. However, I have a few concerns with the general applicability of the tools as well as 
some of the statistical justifications. I have provided more details in my comments below.  
 
1. One obvious concern lies in the differences in the protocols between scRNA-seq and bulk RNA-seq. 
For example, the TruSeq protocol is commonly used for bulk RNA-seq, which provides full-length 
strand-specific transcript coverage. In comparison, other common protocols for scRNA-seq (e.g., CEL-
seq2, MARS-seq, 10X Genomics) use unique molecular identifiers and do not provide full-length 
coverage. Even the Smart-seq2 protocol (as used in the Segerstople study) differs from TruSeq in that 
it is oligo-dT primed, not strand-specific, and involves a larger number of PCR cycles that can 
introduce a different set of amplification and length biases.  
 
It is easy to see how the presence of different biases between protocols can pose problems with 
deconvolution. Consider two genes - one long, one short - that have the same number of molecules in 
a particular cell type. With TruSeq, the longer gene would have more coverage in the bulk expression 
profile ($Y_{jg}$). On the other hand, with UMI-based scRNA-seq protocols, the two genes would 
have the same number of UMIs ($X_{jgc}$). Trying to force the latter to fit the former will 
compromise the accuracy of the deconvolution.  
 
Now, it may be the case that these protocol discrepancies are not a big factor in the performance of 
MuSIC. Certainly, the kidney scRNA-seq data set was generated using a droplet-based protocol with 
UMIs, and the one example in Figure 3 suggests that it still gives good performance in deconvolving 
bulk data sets. Nonetheless, it seems necessary to address this issue more explicitly. I would like to 
see a more comprehensive examination of the robustness to protocol differences, in addition to that 
offered in Figure 2b. Namely, how much bias can be tolerated (relative to the biological signal) before 
MuSIC fails?  
 
I would further suggest that the authors consider an additional gene-specific term for protocol bias, to 
scale $\theta^k_{jg}$ in Equation 3 to model differences in the bulk and single-cell protocols. These 
parameters could conceivably be estimated by taking advantage of assumption A1 on page 9. If the 
scRNA-seq and bulk RNA-seq data are obtained from individuals of the same population (and 
assuming that no major cell populations are lost during dissociation), the scaling differences between 
the grand average of the single-cell and bulk expression profiles should provide a suitable estimate of 
the biases between protocols.  
 
2. The unqualified use of the library size as an estimate of the RNA content (i.e., cell size) is naive. If 
cDNA quantification was performed prior to multiplexing, there will be little association between library 
size and RNA content. Similarly, droplet-based technologies often exhibit saturation whereby further 
increases in RNA content do not manifest as (linear) increases in the total UMI count. There are also 
complicating issues with differences in sequencing depth between subjects or batches in large data 
sets. All of these factors mean that, in many cases, the library size is a poor estimate of the RNA 
content.  
 



Inaccurate estimation of the cell size will compromise the interpretation of the estimated proportions 
$p^k_j$. The proportions would become some intermediate between the percentage of cells of a 
particular type and the percentage of RNA originating from that cell type. Now, I do not think this is a 
critical problem, as the proportions can still be compared between conditions. Nonetheless, it should 
be discussed in some more detail in the manuscript. The authors may also consider using spike-in 
information to provide a more accurate estimate of the relative RNA content per cell, see the 
discussion in https://doi.org/10.1101/gr.222877.117.  
 
3. I found the choice of distributions to be highly irregular. For example, $\theta^k_{jg}$ is assumed 
to follow a F-distribution in Equation 5. Notwithstanding the odd notation (the F-distribution is typically 
characterized in terms of its two d.f., not its mean and variance), the F-distribution is defined across 
the range of positive real numbers. However, $\theta^k_{jg}$ is bounded in [0, 1], which is quite 
different from the F-distribution's support! Similarly, in Equation 8, the error is defined as being 
normally distributed, but $Y_{jg}$ is defined as a proportion that should lie within [0, 1].  
This is only justified if $\delta^2_{jg}$ is so small that the bounds on the proportion are irrelevant. 
The authors should show that their estimates of $\delta^2_{jg}$ satisfy this criterion.  
 
4. It is seems to me that W-NNLS is not guaranteed to converge to a global minimum. For example, 
consider two genes $g_1$ and $g_2$ with the same properties. I will assume that 
$\delta^2_{jg}$ (and thus the  
weight) is estimated from the error between $Y_{jg}$ and the first term of the LHS of Equation 8 
computed with the starting values of $p_{jk}$.  
If the starting conditions yield a slightly smaller error for gene $g_1$ than $g_2$, then (all else being 
equal) the weight for $g_1$ will be increased relative to that for $g_2$. This means that $g_1$ will 
have a greater influence over the re-estimation of $p_{jk}$, and would naturally aim to minimize its 
error. Over multiple reweighting iterations, the final result will be fully driven by $g_1$. However, with 
a different set of starting conditions, $g_2$ might end up being dominant, which would be problem if 
the two genes support different values of $p_{jk}$!  
 
The sensitivity of the results to the starting conditions is a common problem in feature reweighting 
approaches such as sparse clustering. An ad hoc solution might be to perform multiple runs with 
different starting values for the W-NNLS algorithm, to provide a measure of confidence in the 
proportion estimates. A more statistically rigorous approach would be to constrain the re-weighting. 
This could be achieved, for example, by estimating a single variance parameter for each gene; or 
taking the variance for each observation from a fitted mean-variance trend (see 
https://doi.org/10.1186/gb-2014-15-2-r29) based on the value of the LHS in Equation 8.  
 
 
Reviewer #2 (Remarks to the Author):  
 
This paper introduces a machine learning approach that is proposed as a means to identify the cellular 
make up of a mixed tissue sample. It uses examples from pancreatic islets and kidney. The method 
works better for islets becasue they are made up of a limited number of cell types. It seemingly does 
not take into account many cell types represented in kidney samples. The following are 
recommendations for improvement of the kidney part of the manuscript.  
 
Recommendations:  
 
A. For clarity, authors should describe limitations of method from a biological perspective:  
1. requires pre-specification of cell types.  
2. assumes that mRNA abundances for cell selective genes are not affected by physiological state or 



pathophysiological state. (Presumably the index or signature transcripts are not measured in all 
possible alternative physiological or pathophysiological states.)  
 
A1. --- With regard to the cell types assumed (n=13), this falls far below the number of cell types 
actually in the kidney. So there is a kind of transcriptomic 'dark matter' that is ignored in the 
calculations. It seems likely that these un-accounted for cells make up as much as a third of the total 
mRNA. Same problem exists with CIBERSORT and other algorithms.  
 
A2. --- supplementary resource material should be included which enumerates the transcripts that the 
program identified for each cell types as discriminators. This actually could be the most valuable 
aspect of the paper if done and would certainly increase the likelihood that it will be cited.  
 
B. It is not clear how well the different measures of mRNA abundance interconvert, e.g. TPM, RPKM, 
drop-seq counts.  
 
C. There is a danger of overfitting when running the model. Authors should add additional sensitivity 
analysis to assure reader that the cell number estimates are not sensitive to small changes in 
assumptions.  
 
D. scRNA-Seq data are highly variable for a given cell type and tend not to be normally distributed. 
Were mean values used. Would it come out the same if medians were used.  
 
E. DCT is far from the second most abundant epithelial cell type in kidney. Thick ascending limb cells 
are at least three times more plentiful. Authors ignore their own warning that cell isolation for scRNA-
Seq is biased toward certain cell type.  
 
F. The authors' conclusion that DCT is similar to PCT does not measure up to knowledge about the 
structure and function of these two cell types. This is based on dichotomous clustering that does not 
really tell how close they are. K-means clustering should be better since cell types are prespecified. 
Also, for the reader it would be good to pull out the transcript values that are the basis of this 
classification.  
 
G. The authors coin a term 'stable' to describe variability. An explicit definition is needed. This is 
probably a bad term because biologist that investigate mRNA abundance regulation use the term 
'stability' to refer to mRNA half life.  
 
H. The analysis of the rat data from Lee et al. describes the measurements as "bulk rat RNA-seq data". 
Although the Lee samples are multicellular, they are made up of a single cell type. So Lee's DCT 
samples were already 100 percent DCT cells. Authors should remove the word 'bulk' and explain that 
these are essentially heterogeneous samples. The interpretation is stated as, "knowledge about the 
dominant cell type at its  
mapped position, e.g. DCT cells come from the DCT region". 'Region' is the wrong word here. 
'Segment' is more appropriate for microdissected tubules.  
 
Minor. The GitHub link seems to be poorly organized. It needs a more extensive 'read-me' file that 
gives the reader a guide to the files available and how to use them.  
 
 
 
 
 



Reviewer #3 (Remarks to the Author):  
 
This manuscript presents a new statistical method and an open source R package call MuSiC, to 
identify and estimate the proportion of individual cell types in bulk RNA-seq sample, using multiple 
single-cell RNA-seq data sets as a reference. The key innovative ideas in this methodology include: (1) 
using cross-subject and cross-cell stability as a measure to identify good cell-type specific markers; 
and (2) a recursive tree-guided deconvolution scheme, which is helpful in discovering and estimating 
low-frequency cell types. The authors have shown the applicability of their method using two case 
studies - pancreatic islets in humans, and a cross-species analysis of kidney cells. The paper is well 
written, the method is logical and clearly presented, and the experiment results seem solid. I like the 
authors' idea of using scRNA-seq data as reference for deconvolution of bulk RNA-seq data. This paper 
clearly contains methodological innovation.  
 
Nonetheless, to fully evaluate the real-life applicability of MuSiC, I have the following questions:  
 
1. scRNA-seq data are known to contains a high proportion of signal dropouts and measurement 
variability. I suspect it is difficult to use multiple scRNA-seq data with different dropout rate as a 
reference. Do the authors have any experimental data (using simulation data, for example) to show 
that MuSiC is robust to different level of noise in the scRNA-seq data?  
 
2. Have you considered the impact of normalisation and batch effect correction to the performance of 
MuSiC?  
 
3. The detail for performing the cross-species analysis (end of page 7) was missing. Did the authors 
assume there is a 1-1 mapping of homologous genes between two species? How did they deal with 
complex homology relationships? I suspect the claim about 'cross-species applicability' probably only 
extend to mammals, but not other organisms that are further away in the evolutionary tree.  



Response to Reviewer #1
Wang et al. present a new tool ”MuSiC” for determining cell type compositions in bulk RNA-seq data based on 
reference single-cell expression profiles. Their method outperforms a number of existing approaches on simulated 
data sets, and recovers some known biological features in real data. The manuscript is clear, concise and addresses a 
relevant problem in data integration across different transcriptomic assays. The method is interesting and the use of 
the guide tree to resolve similar cell types is novel. However, I have a few concerns with the general applicability of the 
tools as well as some of the statistical justifications. I have provided more details in my comments below.

1. One obvious concern lies in the differences in the protocols between scRNA-seq and bulk RNA-seq. For example,
the TruSeq protocol is commonly used for bulk RNA-seq, which provides full-length strand-specific transcript cov-
erage. In comparison, other common protocols for scRNA-seq (e.g., CEL-seq2, MARS-seq, 10X Genomics) use
unique molecular identifiers and do not provide full-length coverage. Even the Smart-seq2 protocol (as used in
the Segerstople study) differs from TruSeq in that it is oligo-dT primed, not strand-specific, and involves a larger
number of PCR cycles that can introduce a different set of amplification and length biases.

It is easy to see how the presence of different biases between protocols can pose problems with deconvolution.
Consider two genes - one long, one short - that have the same number of molecules in a particular cell type. With
TruSeq, the longer gene would have more coverage in the bulk expression profile (Yjg). On the other hand, with
UMI-based scRNA-seq protocols, the two genes would have the same number of UMIs (Xjgc). Trying to force the
latter to fit the former will compromise the accuracy of the deconvolution.

Now, it may be the case that these protocol discrepancies are not a big factor in the performance of MuSiC.
Certainly, the kidney scRNA-seq data set was generated using a droplet-based protocol with UMIs, and the one
example in Figure 3 suggests that it still gives good performance in deconvolving bulk data sets. Nonetheless, it
seems necessary to address this issue more explicitly. I would like to see a more comprehensive examination of
the robustness to protocol differences, in addition to that offered in Figure 2b. Namely, how much bias can be
tolerated (relative to the biological signal) before MuSiC fails?

I would further suggest that the authors consider an additional gene-specific term for protocol bias, to scale θkjg
in Equation 3 to model differences in the bulk and single-cell protocols. These parameters could conceivably be
estimated by taking advantage of assumption A1 on page 9. If the scRNA-seq and bulk RNA-seq data are obtained
from individuals of the same population (and assuming that no major cell populations are lost during dissociation),
the scaling differences between the grand average of the single-cell and bulk expression profiles should provide a
suitable estimate of the biases between protocols.

Response: Thanks for raising these questions, which are indeed very important for the general applicability of
this method. Base on our reading, we believe that you asked 3 questions:

(a) What is the estimation accuracy when using cross-protocol single-cell reference?

(b) How much bias can be tolerated (relative biological signal) by MuSiC?

(c) Should we add an additional gene-specific term for protocol bias to scale θkjg so that differences in bulk and
single-cell protocols can be modeled?

Below we address each of these three questions in turn:

(a) We want to point out that the results in Figures 2 and 3 in the maintext are obtained using different protocols.
The Segerstolpe et al. and Xin et al. data, in Figure 2, used Smart-seq2, and the Park et al. data in Figure
3 used 10X. Furthermore, we used the 10X data from Park et al. to deconvolve three bulk RNA-seq data sets
from different labs (Figure 3, maintext). To further examine the impact of cross-protocol single-cell reference
on the performance of MuSiC, we added one more single cell dataset from Baron et al. (GSE84133), which
sequenced pancreas islet from 3 healthy subjects via InDrop, an UMI-based approach. Using Baron et al. data as
reference, we redid the deconvolution analysis of the bulk data from Fadista et al. Those results have been added



as Supplementary Figure 7a and b in the maintext. The new deconvolution results are also shown below
in Figures 1, 2 and Table 1.

delta acinar ductal

alpha beta gamma

0.00

0.05

0.10

0.15

0.20

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.0

0.2

0.4

0.6

0.8

0.25

0.50

0.75

1.00

0.00

0.05

0.10

0.15

P
ro

p

Method MuSiC NNLS BSEQ−sc CIBERSORT Healthy T2D

Figure 1: Jitter plots of estimated proportions of the 6 major cell types in pancreatic islet. Bulk data is from
Fadista et al. and the UMI-based single cell data from Baron et al. is used to derive the reference. Results here
are consistent with the deconvolution of this same bulk data set using the data from Xin et al. and Segerstolpe et
al., which use the non-UMI Smart-Seq technology as the single-cell reference. Specifically, MuSiC recovered more
reasonable beta cell proportions that decrease with HbA1c, while the other methods severely under estimate the
beta cell proportions and miss this known negative relationship.
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Figure 2: HbA1c level v.s. estimated beta cell proportions by MuSiC, NNLS, BSEQ-sc and CIBERSORT. P-
values of single variable linear regression of beta cell proportions ∼ 1 + HbA1c are also shown in this figure. The
coefficients and p-values of multivariable regression are shown in Table 1. Consistent with our results when using
Segerstolpe and Xin et al. as single-cell reference, we recovered the expected negative relationship between HbA1c
level and beta cell proportions.

Method Coefficients P-value

MuSiC −2.84× 10−2 0.027
NNLS −4.71× 10−3 0.111

BSEQ-sc −3.70× 10−5 0.987
CIBERSORT −5.72× 10−3 0.279

Table 1: Coefficients and p-value of HbA1c level to estimated beta cell proportion, adjusted by age, bmi and
gender.

Remark:

Baron et al. provides single cell data via InDrop in only 3 healthy subjects. Due to the limited sample size, cross-
subject variances are not reliably estimated. However, it is encouraging to see that even with such inaccurate
estimates of cross-subject variance, MuSiC still detects a significant negative association of beta cell proportion
with HbA1c level (p-value 0.027 after adjusting for age, bmi and gender.), improving upon the results of existing
approaches.

We also want to point out that, in the Fadista-Baron analysis, we added a gene-specific and subject-specific
intercept account for protocol bias in MuSiC estimation (for details please see Response 1(c)).

We describe the new Fadista-Baron analysis in the revised maintext on page 4, line 159-162 and added Sup-
plementary Figure 7 and Supplementary Table 2 in the Supplementary Information.

(b) To investigate the effect of bias between protocols on MuSiC, we added bias to the single cell reference θkjg (the
cell type specific relative abundance values) for data analyzed in Figure 2b in the maintext.

Technically, for relative abundance, there is a constraint
∑G

g=1 θ
k
jg = 1. Due to this constraint, we choose to use

Dirichlet distribution to add bias, and the biased version of the relative abundance is denoted as θk
′

jg. For a fixed
cell type and subject (drop subscript j and superscript k for simplicity)

(θ′1, . . . , θ
′
G) ∼ Dirichelet(t× (θ1, . . . , θG)), (1)



where t is a scaling factor. The mean and variance of θ′g are

E[θ′g] = θg, Var[θ′g] =
θg(1− θg)

t+ 1
.

We set t = 999, 1332, 1999 and 3999 (corresponding to Var[θ′g]/E2[θ′g] ≈ (θg(1 + t))−1 ≥ 2, 1.5, 1 and 0.5) with

decreased variance of θg. We simulated 100 sets of biased θkjg and computed the RMSD, mAD, and correlation
(R) of the estimated cell type proportions with real values. These results are shown in Figure 3. Larger value of
R and smaller values of RMSD and mAD indicate higher accuracy.
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Figure 3: Evaluation of estimation accuracy of MuSiC by mAD, RMSE and R in the present of bias in the relative
abundance vectors derived from single cell reference. Larger values of the scale parameter reflects smaller total
bias, which should lead to higher estimation accuracy. We wish to point out that, compared to the existing
methods of NNLS, BSEQ-sc and CIBERSORT, MuSiC estimation with biased relative abundance is still much
more accurate: for example, the R value of BSEQ-sc is 0.788, but when bias t = 999, the median R value of MuSiC
is 0.8514.

We have included this robustness analysis in the revised maintext on page 6, line 246-249. We also added
Supplementary Figure 8c and Supplementary Note 4 in the Supplementary Information.

(c) Thanks for your helpful suggestion on adding gene-specific protocol bias, which is a good idea. We have carefully
considered your suggested approach, however, we feel that it may not be appropriate due to the following reason.
The reviewer’s suggested approach is based on the assumption that ‘If the scRNA-seq and bulk RNA-seq data are
obtained from individuals of the same population, the scaling differences between the grand average of the single-
cell and bulk expression profiles and difference can exist should provide a suitable estimate of the biases between
protocol’. However, we wish to point out that the protocol biases, the difference between cell type proportions
can also lead to difference in addition to grand average of the single-cell and bulk expression profiles, and such
difference can exist even if there is no protocol biases. For example, suppose the majority of cell type A is lost
during scRNA-seq process. The bulk expression of cell type A marker genes would differ tremendously from the
grand average of the single-cell expression, but this difference has nothing to do with protocol biases. Due to this
reason, we feel that the approach suggested by the reviewer may not be appropriate.

Instead, we found a more direct way of adjusting for gene-specific protocol bias by simply adding an intercept
term αjg in Equation 8 in the revised maintext.

Yjg = Cj(αjg +

K∑
k=1

pjkSkθgk + εjg). (2)

By adding the intercept term αjg, MuSiC can accurately estimate cell type proportions when protocol biases are
present. The new results using the Baron et al. reference to deconvolve the Fadista et al. pancreatic islets data
(see Response 1(a)) is an example of how adding αjg effectively removes bias. Baron et al. is a single cell dataset



via InDrop while Fadista et al. is a bulk dataset, in which the protocol is very different from InDrop. Without
adding the intercept term αjg, we can not detect the association between HbA1c level and beta cell proportions.
After adjusting protocol bias by adding αjg, we detected the negative correlation between beta cell proportions
and HbA1c levels(Figure 1 and 2, Table 1). Interestingly, note that in the deconvolution of the three bulk kidney
data sets using an UMI-based single cell data (Park et al.) was pretty accurate without this intercept term.

We have included the Fadista-Baron analysis in the revised maintext on page 4, line 159-162 and added
Supplementary Figure 7 and Supplementary Table 2 in the Supplementary information. We also added a
discussion of the difference between protocols in Method section on page 10, line 384-393.

2. The unqualified use of the library size as an estimate of the RNA content (i.e., cell size) is naive. If cDNA
quantification was performed prior to multiplexing, there will be little association between library size and RNA
content. Similarly, droplet-based technologies often exhibit saturation whereby further increases in RNA content
do not manifest as (linear) increases in the total UMI count. There are also complicating issues with differences
in sequencing depth between subjects or batches in large data sets. All of these factors mean that, in many cases,
the library size is a poor estimate of the RNA content.

Inaccurate estimation of the cell size will compromise the interpretation of the estimated proportions pkj . The
proportions would become some intermediate between the percentage of cells of a particular type and the percentage
of RNA originating from that cell type. Now, I do not think this is a critical problem, as the proportions can still
be compared between conditions. Nonetheless, it should be discussed in some more detail in the manuscript. The
authors may also consider using spike-in information to provide a more accurate estimate of the relative RNA
content per cell, see the discussion in https://doi.org/10.1101/gr.222877.117.

Response: Thanks for pointing out this ambiguity. Your concern is because we didn’t explain Assumption (A2),
and our use of library size, clearly: We don’t require that cell size be estimated from the data, and we are not
using library size to directly estimate cell size. Assumption (A2) states that the ratio of the average cell size Sj

k

between pairs of cell types are constant across subjects

Sk
j

Sk′
j

=
Sk
j′

Sk′
j′
, for all j, j′ ∈ {1, . . . , N} and k, k′ ∈ {1, . . . ,K}.

This seems reasonable, as, for example, if cell type A is on average twice the size of cell type B in subject 1, it
should also be on average twice the size of cell type B in subject 2. Importantly, this assumption only assumes
that the ratio is held fixed, and thus, if we assume that cell size is equal to library size multiplied by an unknown
cell-specific efficiency parameter, this assumption only requires that the average efficiency be constant across cell
types. Furthermore, if our goal is only to recover the relative trends in cell type proportions across subjects in
the bulk data, and not to estimate the absolute proportions (for example, to detect the negative association of
beta cells with HbA1c instead of estimating absolute beta proportion), then all we need is for the ratio of average
efficiencies between cell types to be constant across subjects. This is why we added a constant scalar C in the
revised maintext Equation 8.

Of course using spike-in will increase estimation accuracy when spike-in counts are available. We incorporate the
spike-in estimated library size ratio obtained from other studies to increase deconvolution accuracy.

We have added more explanations on assumption (A2) in the revised maintext on page 8, line 331-333. We
have also added new assumptions (A3) and (A3’) to explain the difference and interconversion between cell size
and library size in the revised maintext, on page 8-9, lines 335-362.

3. I found the choice of distributions to be highly irregular. For example, θkjg is assumed to follow a F-distribution
in Equation 5. Notwithstanding the odd notation (the F-distribution is typically characterized in terms of its two
d.f., not its mean and variance), the F-distribution is defined across the range of positive real numbers. However,
θkjg is bounded in [0, 1], which is quite different from the F-distribution’s support! Similarly, in Equation 8, the
error is defined as being normally distributed, but Yjg is defined as a proportion that should lie within [0, 1]. This
is only justified if δ2jg is so small that the bounds on the proportion are irrelevant. The authors should show that

their estimates of δ2jg satisfy this criterion.



Response: We apologize for the ambiguity in our notation. The ‘F’ in Equation 5 does not represent F-distribution,
but is rather an arbitrary distribution with mean θgk and variance σ2gk. We have clarified this in the revised
maintext Methods section.

As for Equation 8, constant C is a scaling constant,

Yjg = C
( K∑
k=1

pjkSkθgk + εjg
)
, (3)

where εjg ∼ N(0, δ2jg) represents bulk tissue RNA-seq gene expression measurement noise.

We have updated Equation (8-10) in the revised maintext on page 9-10.

4. It is seems to me that W-NNLS is not guaranteed to converge to a global minimum. For example, consider two
genes g1 and g2 with the same properties. I will assume that δ2jg (and thus the weight) is estimated from the error
between Yjg and the first term of the LHS of Equation 8 computed with the starting values of pjk. If the starting
conditions yield a slightly smaller error for gene g1 than g2, then (all else being equal) the weight for g1 will be
increased relative to that for g2. This means that g1 will have a greater influence over the re-estimation of pjk,
and would naturally aim to minimize its error. Over multiple reweighting iterations, the final result will be fully
driven by g1. However, with a different set of starting conditions, g2 might end up being dominant, which would
be problem if the two genes support different values of pjk!

The sensitivity of the results to the starting conditions is a common problem in feature re-weighting approaches
such as sparse clustering. An ad hoc solution might be to perform multiple runs with different starting values
for the W-NNLS algorithm, to provide a measure of confidence in the proportion estimates. A more statistically
rigorous approach would be to constrain the re-weighting. This could be achieved, for example, by estimating a
single variance parameter for each gene; or taking the variance for each observation from a fitted mean-variance
trend (see https://doi.org/10.1186/gb-2014-15-2-r29) based on the value of the LHS in Equation 8.

Response: Thanks for taking note of the convergence issue, and we agree that it is worth checking.

To examine the convergence of W-NNLS, we re-analyzed the data in Figure 2b in the maintext to test
convergence with different starting points, shown in Table 2 below:

celltype EQ Sp1 Sp2 Sp3 Sp4 Sp5 Sp6 Sp7 Sp8

alpha 0.25 0.4 0.2 0.2 0.2 0.7 0.1 0.1 0.1
beta 0.25 0.2 0.4 0.2 0.2 0.1 0.7 0.1 0.1
delta 0.25 0.2 0.2 0.4 0.2 0.1 0.1 0.7 0.1

gamma 0.25 0.2 0.2 0.2 0.4 0.1 0.1 0.1 0.7

Table 2: Note: EQ represents equal starting point of alpha, beta, delta and gamma are the same: (0.25, 0.25,
0.25, 0.25); Sp represents starting point.

The MuSiC estimates for the four cell types in this example are shown in Figure 4.
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Figure 4: Estimated cell type proportions with different starting points. The colors represent cell types while line
types represent starting point.

The plots show that W-NNLS converges to the same value regardless of the starting point.

We also considered your suggestion of adding a constraint on the mean-variance relation, which seemed like a
good idea. You suggested voom, where genes with low mean expression have high variance. But we checked
the empirical mean-variance relation by plotting fitted values versus residuals, shown in Figure 5. However, we
didn’t observe the expected mean-variance relationship of the voom paper. Given this, we are not clear how to
use the voom-based approach to add a constraint in the estimation. Also, the plots seem to show that there is
a pretty tight relationship between mean and variance, and so if we were to do some sort of shrinkage, or add a
constraint, it wouldn’t have a big effect. Due to these considerations, we decided to leave this direction for future
investigation.



−15 −10 −5 0
−

15
−

10
−

5
0

Non T2D 1

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−15 −10 −5 0

−
15

−
10

−
5

0

Non T2D 2

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−15 −10 −5 0

−
15

−
10

−
5

0

Non T2D 3

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−15 −10 −5 0

−
15

−
10

−
5

0

Non T2D 4

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−15 −10 −5 0

−
20

−
10

−
5

0

Non T2D 5

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−15 −10 −5 0

−
20

−
15

−
10

−
5

0

Non T2D 6

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−15 −10 −5 0

−
15

−
10

−
5

0

Non T2D 7

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−15 −10 −5 0

−
15

−
10

−
5

0

Non T2D 8

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−20 −15 −10 −5 0

−
20

−
15

−
10

−
5

0

Non T2D 9

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−15 −10 −5 0

−
15

−
10

−
5

0

Non T2D 10

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−15 −10 −5 0

−
15

−
10

−
5

0

Non T2D 11

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

−20 −15 −10 −5 0

−
15

−
10

−
5

0

Non T2D 12

log(fitted RA)

lo
g(

|r
es

id
 R

A
|)

Figure 5: Scatter plot of log-scaled fitted relative abundance and log-scaled residuals. Bulk data is constructed
by Xin et al. and the single cell reference is from Segerstolpe et al. Fitted value and residuals are estimated by
MuSiC.

According to reviewer’s suggestion, we added discussion on the convergence in the Method section on page 10,
line 381-382. We also added Supplementary Note 6 and Supplementary Figure 8.

Response to Reviewer #2
This paper introduces a machine learning approach that is proposed as a means to identify the cellular make

up of a mixed tissue sample. It uses examples from pancreatic islets and kidney. The method works better for
islets because they are made up of a limited number of cell types. It seemingly does not take into account many
cell types represented in kidney samples. The following are recommendations for improvement of the kidney part
of the manuscript.

1. For clarity, authors should describe limitations of method from a biological perspective:
1. requires pre-specification of cell types.
2. assumes that mRNA abundances for cell selective genes are not affected by physiological state or pathophysiolog-
ical state. (Presumably the index or signature transcripts are not measured in all possible alternative physiological
or pathophysiological states.)

(a) —With regard to the cell type assumed (n = 13), this falls far below the number of cell types actually in the kidney.
So there is a kind of transcriptomic ‘dark matter’ that is ignored in the calculations. It seems likely that these
un-accounted for cells make up as much as a third of the total mRNA. Same problem exists with CIBERSORT
and other algorithms.

Response: Thanks for raising this question. Yes, the cell type assumed is far below number of cell types actually
in the kidney in two ways: (i). Not all cell types in the kidney can be detected via single cell technique. This
part has been addressed by missing cell type analysis in Supplementary Note 3 and Supplementary Figure



3. (ii). Sub-cell types can not be identified and separated via provided single cell data. However, our method
aims at the overall trend of proportions and has already achieve the goal of trend recover of immune cells. We
can benefit higher resolution from the tree-based recursive estimation when sub-cell types are provided.

(b) supplementary resource material should be included which enumerates the transcripts that the program identified
for each cell types as discriminators. This actually could be the most valuable aspect of the paper if done and
would certainly increase the likelihood that it will be cited.

Response: Thanks for raising up this question.The list of genes with high weights are provided in Table 3.



Rank Segerstolpe Xin Fadista Rank Segerstolpe Xin Fadista

1 GCG GCG MALAT1 51 ITM2B EIF4A2 RPS3A
2 TTR MALAT1 EEF1A1 52 ENPP2 CTSD RPL9
3 MALAT1 INS TTR 53 ATP1A1 RBP4 SOD2
4 SERPINA1 TTR FTH1 54 ANXA4 HNRNPH1 EIF4B
5 SPP1 FTL GCG 55 HNRNPH1 BSG HSPA8
6 B2M PPP1CB CPE 56 ALDOB EEF2 PKM
7 FTH1 PCSK1N GNAS 57 CD164 RPS3 SCG2
8 CHGA CHGB RPL4 58 HLA-A PDK4 RPS24
9 PIGR PSAP APP 59 RIN2 SSR1 CD74
10 IAPP CHGA CTSD 60 ASAH1 SCD SQSTM1
11 SST EGR1 HSP90AA1 61 TMSB10 DNAJC3 TMBIM6
12 FTL SRSF6 RPLP0 62 BSG SAR1A TXNRD1
13 CALM2 FTH1 RPL7A 63 CLDN4 GPX4 LCN2
14 CHGB HSP90AB1 HSP90AB1 64 TMEM59 PLD3 RPL14
15 SERPINA3 SPINT2 HSP90B1 65 PPY ATP6AP1 PDIA3
16 ACTG1 MAP1B UBC 66 C10orf10 ANP32E HDLBP
17 SCG5 RIN2 CANX 67 HSPA8 TBL1XR1 HNRNPK
18 ALDH1A1 GNAS PAM 68 REG1B GNB2L1 SCARB2
19 TM4SF4 SCG5 RPS6 69 P4HB SLC22A17 RPL13A
20 REG3A CSNK1A1 SERPINA3 70 LCN2 PAFAH1B2 LINC00657
21 GAPDH PTEN EIF4G2 71 PKM RTN4 DSP
22 PPP1CB TSPYL1 RPS4X 72 ATP6V0B TMED4 SPINT2
23 ACTB C6orf62 HSPA5 73 PSAP CST3 REG1B
24 PRSS1 RPL3 ITGB1 74 LRRC75A-AS1 CD63 HNRNPC
25 RBP4 DPYSL2 IAPP 75 S100A11 TOB1 RPL15
26 GDF15 UBC TPT1 76 MUC13 HLA-A ENO1
27 COX8A SCG2 RPL5 77 MAP1B CLU RPS11
28 ALDOA ALDH1A1 SLC7A2 78 CD59 TTC3 GANAB
29 PDK4 PFKFB2 HNRNPA1 79 SLC30A8 RPS11 CDH1
30 RPL8 CPE ANXA2 80 CPE G6PC2 PEG10
31 H3F3B C10orf10 RPL7 81 CLPS GRN CLDN4
32 IGFBP7 TMBIM6 RPS18 82 CTSD SERPINA1 GSTP1
33 S100A6 CRYBA2 PCSK1 83 ATP1B1 SSR4 TUBA1A
34 EEF2 FTX ATP1A1 84 OLFM4 RPS6 RPS27A
35 TIMP1 HSPA8 IDS 85 TAGLN2 OAZ1 PRPF8
36 CFL1 HSP90AA1 GDF15 86 SCGN MARCKS HSPB1
37 GRN H3F3B RPS3 87 SERPING1 RPL15 RPS8
38 SPINT2 SLC30A8 RPSA 88 WFS1 SQSTM1 RPS12
39 SQSTM1 TLK1 CSDE1 89 LAPTM4A RASD1 ACLY
40 KRT19 ETNK1 CLTC 90 TAAR5 DSP MSN
41 CD63 B2M RPL10 91 SLC22A17 COX8A HNRNPA2B1
42 SLC40A1 DDX5 YWHAZ 92 RPL3 TIMP1 CTNNB1
43 G6PC2 FOS RPL3 93 HERPUD1 ATP1B1 MORF4L1
44 REG1A MAFB SLC30A8 94 CD24 WFS1 SERINC1
45 DDX5 CD59 RPL6 95 CALR PRDX3 KRT19
46 PCBP1 TM4SF4 TMSB10 96 CLDN7 CHP1 NCL
47 C6orf62 TMEM33 CD44 97 LAMP2 YWHAE GPX4
48 CRYBA2 CAPZA1 NPM1 98 CST3 FAM46A GNB1
49 CD74 CALM2 B2M 99 TMBIM6 RUFY3 RPS7
50 HLA-E GPX3 PABPC1 100 CTSB C4orf48 SEP2

alpha beta delta gamma acinar ductal

Table 3: Top 100 Genes with highest weights in the pancreatic islet analysis. The bulk/artificial bulk data are
from Segerstolpe et al., Xin et al. and Fadista et al. and the single cell reference is obtained from 6 healthy
subjects from Segerstolpe et al. This table is color-coded by well-known marker genes.



Rank Beckerman Craciun Arvaniti Rank Beckerman Craciun Arvaniti

1 Kap Malat1 Malat1 51 Cycs Dbi Rps14
2 mt-Atp6 Kap Kap 52 Rplp1 Rps18 Cox4i1
3 Gpx3 mt-Atp6 Gpx3 53 Rpl23 Rps14 Rpl26
4 mt-Co1 Gpx3 S100g 54 Gatm Cycs Cox5a
5 mt-Cytb mt-Co1 Ftl1 55 Rpl32 Cox4i1 Rps19
6 S100g mt-Cytb Fth1 56 Cyb5a Uqcrb Rpl10
7 mt-Co3 S100g Rps29 57 Acsm2 Ndrg1 Ttc36
8 mt-Co2 mt-Co3 Xist 58 Guca2b Rpl10 Rpl35
9 mt-Nd4 mt-Co2 Rpl37a 59 Uqcrb Rpl26 Gm8730
10 mt-Nd1 mt-Nd4 Rpl41 60 Rps14 Rps19 Dnase1
11 Ftl1 mt-Nd1 Fxyd2 61 Cox4i1 Acsm2 Itm2b
12 Fth1 Ftl1 Rpl38 62 Rpl26 Rpl35 Rpl35a
13 Rps29 Fth1 Rpl37 63 Cox5a Cyb5a Rps24
14 mt-Nd2 Rps29 Miox 64 Rps19 Miox Gm10260
15 mt-Nd3 mt-Nd2 Eef1a1 65 Ttc36 Itm2b Atp5l
16 Rpl37a mt-Nd4l Rpl39 66 Rpl10 Rpl35a Slc34a1
17 Rpl41 mt-Nd3 Cox6c 67 Dnase1 Atp5l Aldob
18 Fxyd2 Rpl37a Rps28 68 Rpl35 Gm8730 Cela1
19 Rpl38 Rpl41 Rps27 69 Rpl35a Akr1c21 Ass1
20 Rpl37 Xist Cndp2 70 Atp5l Rpl28 Prdx1
21 Miox Fxyd2 Cyp4b1 71 Rps24 Slc34a1 Rpl28
22 Eef1a1 Rpl37 Ndufa4 72 Slc34a1 Prdx1 Rpl23a
23 Rpl39 Rpl38 Akr1c21 73 Gm8730 Aldob Rpl6
24 Cox6c Eef1a1 Atp1a1 74 Itm2b Rps27a Pck1
25 Rps28 Spink1 Acy3 75 Aldob Cox6a1 Gm10709
26 mt-Nd5 Rpl39 Atp5k 76 Cela1 Rps24 2010107E04Rik
27 Rps27 Rps28 Cox7c 77 Ass1 Rpl23a Cox6a1
28 Cndp2 Cox6c Klk1 78 Prdx1 Rps4x Slc25a5
29 Cyp4b1 Rps27 Ubb 79 Rpl28 Gm10709 Rps4x
30 Ndufa4 mt-Nd5 Atp5e 80 Rpl6 Slc25a5 Rps27a
31 Akr1c21 mt-Atp8 Rps2 81 Rpl23a Ppia Ldhb
32 Atp1a1 Atp1a1 Ndrg1 82 Pck1 Cox5a Cox6b1
33 Acy3 Cox7c Rps23 83 2010107E04Rik Rpl13 Rpl18a
34 Atp5k Ubb Gm10076 84 Cox6a1 Cox6b1 Calb1
35 Cox7c Atp5e Prdx5 85 Gm10709 Cox7a2 Rpl13
36 Klk1 Atp5k Rps1 8 86 Slc25a5 Gatm Atp5b
37 Atp5e Ndufa4 Tpt1 87 Rps27a Ass1 Rpl13a
38 Ubb Rps2 Chchd10 88 Rps4x Ndufa3 Cox7a2
39 Rps2 Rps23 Rplp0 89 Ldhb Rpl18a Ndufa3
40 Ndrg1 Gm10076 Dbi 90 Cox6b1 Cyp4b1 Slc27a2
41 Rps23 Klk1 Rpl29 91 Calb1 Atp5j Actb
42 Gm10076 Rps21 Rps21 92 Atp5b Cox8a Ppia
43 Prdx5 Rpl29 Rplp1 93 Cox7a2 Acy3 Rpl36a
44 Chchd10 Prdx5 Cycs 94 Rpl18a Rpl36a Atp5j
45 Tpt1 Rplp1 Rpl23 95 Ndufa3 Actb Chpt1
46 Rps18 Tpt1 Rpl32 96 Slc27a2 Ndufa13 Rps15a
47 Dbi Rpl23 Gatm 97 Rpl13 Rpl13a Hrsp12
48 Rps21 Rpl32 Acsm2 98 Rpl36a Ttc36 Ndufa13
49 Rplp0 Chchd10 Guca2b 99 Ppia 2010107E04Rik Cox8a
50 Rpl29 Rplp0 Uqcrb 100 Atp5j Gm10260 Ugt2b38

PT DCT CD-IC Podo T lymph

Table 4: Top 100 genes with highest weights in the mouse kidney analysis in Step 1 of the tree-guided deconvolution
procedure. The bulk/artificial bulk data are from Beckerman et al., Craciun et al. and Arvaniti et al. and the
single cell reference is obtained by 7 healthy mice from Park et al. This table is color-coded by marker genes.



Immune Rank Beckerman Craciun Arvaniti Rank Beckerman Craciun Arvaniti

1 Cd74 Apoe Cd74 26 C1qb Npc2 C1qb
2 Lyz2 S100a6 Lyz2 27 Nkg7 Gzma Nkg7
3 Ccl5 S100a4 Ccl5 28 Ccl4 Capza2 Vim
4 H2-Aa Psap H2-Aa 29 Vim Ly6e Ccl4
5 H2-Ab1 Nkg7 H2-Ab1 30 Ly6c2 Ly6c2 Ly6c2
6 Tmsb10 Crip1 Tmsb10 31 Ms4a4b Serinc3 Ms4a4b
7 Gzma Cd3g Gzma 32 Sat1 Fos Sat1
8 H2-Eb1 Ccl3 H2-Eb1 33 C1qc Pou2f2 C1qc
9 Plac8 Ccnd2 Plac8 34 S100a10 Ctsz S100a10
10 Cst3 Slpi Cst3 35 H3f3a Cd74 H3f3a
11 Ifi27l2a Gm2a Ifi27l2a 36 Ctss Il7r Ctss
12 Slpi Ssr4 Slpi 37 Gngt2 H2afy Gngt2
13 Ifitm3 Lck Ifitm3 38 S100a6 Ctsb S100a6
14 Apoe Spi1 Apoe 39 S100a4 Ifngr1 S100a4
15 Tyrobp Fxyd5 Tyrobp 40 Lst1 Tgfb1 Lst1
16 Actg1 Ccl4 Actg1 41 Klf2 Sub1 Klf2
17 Crip1 Gzmb Crip1 42 Msrb1 Socs2 Msrb1
18 Fcer1g Cnn2 Fcer1g 43 H2afz Ifitm3 H2afz
19 Cebpb Id2 Cebpb 44 Wfdc17 Itgb7 Wfdc17
20 C1qa Cybb C1qa 45 Arpc1b Cd79a Arpc1b
21 AW112010 Sep1 AW112010 46 Ifitm2 Ltb Ltb
22 Ly6e Hsp90b1 Ly6e 47 Ltb Fyb Ifitm2
23 Id2 Itgb2 Id2 48 S100a11 Tspan32 S100a11
24 Psap Ccl6 Psap 49 Lgals3 Sat1 Mzb1
25 Lgals1 Lsp1 Lgals1 50 Mzb1 Xbp1 Lgals3

Epithelial Rank Beckerman Craciun Arvaniti Rank Beckerman Craciun Arvaniti

1 Hbb-bs Hbb-bs Hbb-bs 26 Gm5424 Slc12a3 Slc22a28
2 Hba-a1 Hba-a1 Hba-a1 27 Slc12a3 Slc22a28 Slc22a29
3 Umod Slco1a1 Slco1a1 28 Nrp1 Slc22a29 Emcn
4 Slco1a1 Slc22a6 Slc22a6 29 Igfbp5 Ly6c1 Car12
5 Slc22a6 Pvalb Nat8 30 Ehd3 Car12 Aspdh
6 Pvalb Nat8 Pvalb 31 Slc22a28 Aspdh Akr1c14
7 Nat8 Umod Mep1a 32 Slc12a1 Igfbp5 Ly6c1
8 Mep1a Mep1a Umod 33 Slc22a29 Akr1c14 Hexb
9 Egf Slco1a6 Slco1a6 34 Car12 Atp6v1g3 BC035947
10 Slco1a6 Ces1f Ces1f 35 Aspdh Ehd3 Igfbp5
11 Ces1f Hbb-bt Hbb-bt 36 Akr1c14 Hexb Atp6v1g3
12 Hbb-bt Egf Snhg11 37 Kdr Slc12a1 Nrp1
13 Snhg11 Snhg11 Tmigd1 38 Atp6v1g3 BC035947 Slc13a1
14 Tmigd1 Tmigd1 Egf 39 Hsd11b2 Slc13a1 Slc12a1
15 Acsm3 Acsm3 Acsm3 40 Hexb Col6a6 Col6a6
16 Slc22a30 Slc22a30 Slc22a30 41 Eng Gm4450 Gm4450
17 Gm11128 Cyp2a4 Gm11128 42 BC035947 Kdr Adamts15
18 Aqp2 Hba-a2 Cyp2a4 43 Pi16 Adamts15 Ehd3
19 Cyp2a4 Aqp2 Hba-a2 44 Slc13a1 Hsd11b2 Aspa
20 Fxyd4 Aqp1 Gm5424 45 Col6a6 Aspa Mogat1
21 Emcn Gm5424 Slc17a1 46 Gm4450 Apela D630029K05Rik
22 Aqp1 Slc17a1 Aqp1 47 Egfl7 Mogat1 Gm15638
23 Hba-a2 Plpp1 Aqp2 48 Adamts15 D630029K05Rik Hsd11b2
24 Ly6c1 Fxyd4 Slc12a3 49 Meis2 Eng Akr1c18
25 Slc17a1 Emcn Fxyd4 50 Aspa Gm15638 Smlr1

PT DCT CD-IC LOH CD-PC Endo Podo
Neutro T lymph Macro Fib B lymph NK

Table 5: Top 100 genes with highest weights in the mouse kidney analysis in Step 2 of the tree-guided deconvolution
procedure (separated by epithelial and immune cells). The bulk data are from Beckerman et al., Craciun et al.
and Arvaniti et al. and the single cell reference is obtained by 7 healthy mice from Park et al. This table is
color-coded by marker genes.



MuSiC selected well-known marker genes from deconvolution, highlighted with colors. However, some of the
high-weight genes are not necessarily marker genes. We emphasize that the cross-subject variation and cross-cell-
type variation are very different concepts. The cross-subject variation measures the consistence of genes across
subjects while the cross-cell-type variation measures the cell type specificity of genes. We examine further on
those high-weight non-markers genes, we found that those genes tend to be consistently expressed across subjects,
and are usually highly expressed genes. Although they are not exclusively expressed in a certain cell type hence
not marker genes, they are differentially expressed across cell types, thus offering power to differentiate different
cell types. We believe that MuSiC benefit from those genes and hence yield accurate cell type proportions than
methods that only use marker genes in deconvolution.

We added Table 3-5 to the Supplementary Information as Supplementary Table 5-7 and the discussion of
weight on page 11, line 412-425.

2. It is not clear how well the different measures of mRNA abundance interconvert, e.g. TPM, RPKM, drop-seq
counts.

Response: Thanks for bringing up this problem. Below, we provide explanation of each measure and how
different measures are connected. Drop-seq counts, as we understood, are UMI read counts, which does not
require interconversion and can be treated as read counts in MuSiC deconvolution.

MuSiC links bulk and single-cell gene expression by mRNA molecule counts. There are many measures of
mRNA abundance, such as read counts, UMI counts, RPKM and TPM. As molecule counts are not observed
in real studies, we approximate the molecule counts by read counts and estimate cell type proportions based on
assumptions (A1-A3) in the revised maintext. The interconversion between other gene expression measures
and read count determines if MuSiC can utilize other measures as the input for deconvolution. One step in MuSiC
estimation is the use of average library size as a proportional measure of average cell size for a given cell type,
which is absent in normalized measurements of mRNA abundance such as RPKM and TPM. For RPKM, we
would need the average library size for each cell type to be provided, or the average cell size for each cell type
to be obtained from other sources. Cell type proportions cannot be estimated by MuSiC with TPM information
alone. Below, we derive the relationships of various types of gene expression measures in detail.

Let Lg denote the length of gene g, and the corresponding RPKMs of bulk and single-cell data are denoted by

X̂jg and X̂jgc, respectively. For simplicity, we omit the 103 scaler for now. By definition,

X̂jg =
X̃jg/Lg∑G
g′=1 X̃jg′

, X̂jgc =
X̃jgc/Lg∑G
g′=1 X̃jg′c

, (4)

where X̃jg and X̃jgc denote the bulk and single cell read counts, respectively.

Based on the model set-up described earlier, we can show that the relationship between bulk and single-cell
RPKM is We can show that

X̂jg ∝
X̃jg

Lg
=

K∑
k=1

∑
c∈Ck

j

( X̃jgc/Lg∑G
g′=1 X̃jg′c

·
G∑

g′=1

X̃jg′c

)
=

K∑
k=1

∑
c∈Ck

j

X̂jgcS̃jc, (5)

where S̃jc is the library size of cell c. Equation (5) can be further approximated by

X̂jg ∝
K∑
k=1

∑
c∈Ck

j

X̂jgcS̃jc ≈
K∑
k=1

mk
j θ̂

k
jgS̃

k
j , (6)

where θ̂kjg =

∑
c∈Ck

j
X̂jgc

mk
j

is the average RPKM of gene g in subject j for cell type k.

To utilize multi-subject information, we assume θ̂kjg follows the same assumption as (A1), that is, individuals
with scRNA-seq and bulk RNA-seq are from the same population, with their cell-type specific average RPKM

θ̂kjg following the same distribution with mean θ̂kg and variance σ̂2gk,

θ̂kjg ∼ F̃ (θ̂kg , σ̂
2
jg).



Assumption (A2) states that the ratio of average library size is consistent across subjects and studies, which

justified the use of S̃k
j from other studies if there quantities are no available for the same data set. The linear

relation between bulk RPKM and average cell-type specific single cell RPKM is approximated by formula (6).
Since this is an approximation, MuSiC estimates using RPKM may not be as accurate as those using read or UMI
count. In our test of MuSiC using RPKM values for the pancreatic islets bulk mixture experiment, we found that
it is not as accurate as MuSiC estimates using read count, but still higher than NNLS, BSEQ-sc, and Cibersort
(Figure 6).
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Figure 6: The Heatmap of MuSiC deconvolution with RPKM as the input. Single cell and bulk data are from
Segerstolpe et al. and the ratio of library size are borrowed from Segerstolpe et al. read counts.

Another widely used normalized mRNA measure is TPM. let Ẑjg and Ẑjgc denote the bulk and single-cell TPM
values, respectively. By definition,

Ẑjg =
X̃jg/Lg∑G

g′=1 X̃jg′/Lg′
, Ẑjgc =

X̃jgc/Lg∑G
g′=1 X̃jg′c/Lg′

. (7)

Let Zjg and Zjgc be the gene length normalized read counts in bulk and single cell, that is, Zjg = X̃jg/Lg and

Zjgc = X̃jgc/Lg. The link between bulk and single-cell TPM is

Ẑjg ∝ Zjg =

K∑
k=1

∑
c∈Ck

j

Zjgc =

K∑
k=1

∑
c∈Ck

j

( Zjgc∑G
g′=1 Zjg′c

·
G∑

g′=1

Zjg′c

)
=

K∑
k=1

∑
c∈Ck

j

ẐjgcŜjc, (8)

where Ŝjc is the summation of normalized read counts in cell c for subject j.

Equation (8) suggests that it is difficult to make assumptions or approximation to express relative abundance as
a function of TPM.

We have put the interconversion discussion in the Discussion (on page 7, line 275-280) and Method section:
Interconversion of different gene expression measurements (on page 12-14, line 471-519). We also added the
example of RPKM deconvolution to Supplementary Figure 8d.

3. There is a danger of overfitting when running the model. Authors should add additional sensitivity analysis to
assure reader that the cell number estimates are not sensitive to small changes in assumptions.

Response: Thanks for raising this question. To address the reviewer’s concern, we have conduct additional
sensitivity analysis below.

Our method makes two assumptions:



(A1) the relative abundance θkjg follows the distribution with mean θkg and variance σ2gk.
We not that we do not assume the distribution to be of any functional form, therefore, this assumption generally
holds.

(A2) the ratio of average cell size Sk
j across cell types are the same across different subjects

Sk
j

Sk′
j

=
Sk
j′

Sk′
j′
, for all j, j′ ∈ {1, . . . , N} and k, k′ ∈ {1, . . . ,K}. (9)

To show that this assumption is reasonable, Figure 7 shows the library size ratio (relative to alpha cells) of single
cell data from Segerstolpe et al.

Figure 7: Library size ratio of the 6 major cell types in pancreatic islet. Single cell data is from Segerstolpe et
al. The ratio is calculated as the library size of a cell type as the library size of the alpha cell library size. The
errorbar represents S.E. of estimated library size ratio across subjects.

Figure 7 shows the library ratio (relative to alpha) of 6 major cell types from Segerstolpe et al. The errorbars
show that the ratio is not strictly the same and assumption (A2) is not strictly held. Even though, MuSiC
provides accurate estimations and is not sensitive to assumption (A2). The numerical bias analysis are provided
in Response to Reviewer 1, Comment 1.

We added more explanation of assumption (A2) in the revised maintext on page 8, line 331-333.

4. scRNA-Seq data are highly variable for a given cell type and tend not to be normally distributed. Were mean
values used, would it come out the same if medians were used.

Response: In MuSiC, the bulk and single cell data are linked together based on relationship derived in Equation
(1-3) in the maintext. This relationship is based on cross-subject mean and variance. To improve robustness,
we can either use trimmed mean in MuSiC, or apply median to our method through the use of quantile regression
rather than ordinary regression.

5. DCT is far from the second most abundant epithelial cell type in kidney. Thick ascending limb cells are at least
three times more plentiful. Authors ignore their own warning that cell isolation for scRNA-Seq is biased toward
certain cell type.

Response: Thanks for your note. In our reading of the literature the true cell composition of the kidney is yet to
be defined. We agree that the loop of Henle is the longest segment of the kidney, but cell number and segment
length will not necessarily fully correlate.



While single cell sequencing has been paradigm shifting improving our understanding of cell types, all currently
available methods have significant limitations including cell drop-out. Therefore single cell methods cannot fully
recapitulate the composition of solid organs as some cell types are not covered well. The loop of Henle and some
other cells that presumed to reside in the renal medulla were not covered well in the large dataset generated by
Park et al. The kidney is a highly complex organ with multiple highly different cell types, once larger and better
datasets are generated MuSiC can be rerun to refine the cell composition in the kidney. Another possibility could
be that the whole kidney dataset we downloaded from GEO did not cover the kidney medulla and the loop of
Henle cell well, reflected by our cell composition analysis. We acknowledge this bias of scRNAseq.

On the other hand, we would like to emphasize that our method has performed extremely well, even in a tissue
with more than a dozen different cell types.

6. The authors’ conclusion that DCT is similar to PT does not measure up to knowledge about the structure and
function of these two cell types. This is based on dichotomous clustering that does not really tell how close they
are. K-means clustering should be better since cell types are pre-specified. Also, for the reader it would be good to
pull out the transcript values that are the basis of this classification

Response: Thanks for raising this question. First, we want to clarify that the similarity is a relative concept,
that is, when compared to immune cells, PT and DCT cells are more similar to each other. Also, the similarity
measures the gene expression of DCT and PT cells, not their structure nor function. The similarity of gene
expression leads to collinearity issue in regression. The main purpose of the recursive tree procedure is not to
determine clusters, but rather to get rid of collinearity in regression. We also did further analysis of gene expression
similarity without mitochondrial genes. The mitochondrial free similarity analysis is shown in Figure 8.
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Figure 8: Clustering of mouse single cell data by design matrix, which is generated without mitochodrial genes.

Without mitochondrial genes, DCT and PT cells are still the most similar in design matrix and cross-subject
variation. Although, DCT and PT are not similar in structure and function, they share similar pattern in
gene expressions. The similarity in gene expression require extra efforts to distinguish when deconvolving with
expression.

7. The authors coin a term ‘stable’ to describe variability. An explicit definition is needed. This is probably a bad
term because biologist that investigate mRNA abundance regulation use the term ’stability’ to refer to mRNA half
life.

Response: Thanks for your suggestion. To avoid confusion, we have changed ‘stable’ to ‘consistent’ in the



Maintext and Supplementary Information. We define consistent genes to be these showing low variable genes
across subjects.

8. The analysis of the rat data from Lee et al. describes the measurements as “bulk rat RNA-seq data”. Although
the Lee samples are multicellular, they are made up of a single cell type. So Lee’s DCT samples were already 100
percent DCT cells. Authors should remove the word ‘bulk’ and explain that these are essentially heterogeneous
samples. The interpretation is stated as, “knowledge about the dominant cell type at its mapped position, e.g.
DCT cells come from the DCT region”. ‘Region’ is the wrong word here. ‘Segment’ is more appropriate for
microdissected tubules.

Response: Follow the reviewer’s suggestion, we have changed ‘bulk’ to ‘microdissected aggregated’ and ‘Region’
to ‘Segment’ in the maintext and in the Supplementary Information.

Response to Reviewer #3
This manuscript presents a new statistical method and an open source R package call MuSiC, to identify and

estimate the proportion of individual cell types in bulk RNA-seq sample, using multiple single-cell RNA-seq data
sets as a reference. The key innovative ideas in this methodology include: (1) using cross-subject and cross-cell
stability as a measure to identify good cell-type specific markers; and (2) a recursive tree-guided deconvolution
scheme, which is helpful in discovering and estimating low-frequency cell types. The authors have shown the
applicability of their method using two case studies - pancreatic islets in humans, and a cross-species analysis of
kidney cells. The paper is well written, the method is logical and clearly presented, and the experiment results seem
solid. I like the authors’ idea of using scRNA-seq data as reference for deconvolution of bulk RNA-seq data. This
paper clearly contains methodological innovation.

Thanks for your encouragements!
Nonetheless, to fully evaluate the real-life applicability of MuSiC, I have the following questions:

1. scRNA-seq data are known to contains a high proportion of signal dropouts and measurement variability. I suspect
it is difficult to use multiple scRNA-seq data with different dropout rate as a reference. Do the authors have any
experimental data (using simulation data, for example) to show that MuSiC is robust to different level of noise in
the scRNA-seq data?

Response: This is a good suggestion. In the revision, we simulated scRNA-seq reference with different dropout
rates from real single cell dataset. As in Figure 2a and b from the main text, the artificial bulk data is constructed
from single cell data from Segerstolpe et al. and Xin et al. The reference scRNA-seq data is simulated by adding
noise to Segerstolpe et al. single cell data, with dropout rate πgc is generated following the model in Jia et al.
(2017) [1],

πgc =
1

1 + exp{k ln(Xgc)}
, (10)

where Xgc is the observed read counts, k is the dropout rate parameter. The simulated read count X ′cg is generated
by

P (X ′cg = Xcg) = πgc, P (X ′cg = 0) = 1− πgc. (11)

We studied 4 different dropout rates with k = 1, 0.5, 0.2, 0.1, with smaller k leading to higher dropout rate. The
evaluation of Segerstolpe et al. constructed artificial bulk data are shown by Figure 9 and Table 6; the evaluation
of Xin et al. constructed artificial bulk data are shown by Figure 10 and Table 7.
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Figure 9: Heatmap of real and estimated cell type proportions. Artificial bulk data is constructed by Segerstolpe
et al. while the single cell reference is obtained from 6 healthy subject from Sgerstolpe et al. with different dropout
rate: k = 1, 0.5, 0.2, 0.1.

Real k = 1 k = 0.5 k = 0.2 k = 0.1

alpha

beta

delta

gam
m

a

alpha

beta

delta

gam
m

a

alpha

beta

delta

gam
m

a

alpha

beta

delta

gam
m

a

alpha

beta

delta

gam
m

a

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

D1

D2

D3

D4

D5

D6

CellType

S
ub

je
ct

0.00

0.25

0.50

0.75

1.00

Est Prop

Heatmap of Real and Est. Proportion from Xin et al.
 Ref: Segerstolpe healthy, with dropout

Figure 10: Heatmap of real and estimated cell type proportions. Artificial bulk data is constructed by Xin et al.
while the single cell reference is obtained from 6 healthy subject from Segerstolpe et al. with different dropout
rate: k = 1, 0.5, 0.2, 0.1.



Dropout RMSD mAD R

k = 1 0.040 0.030 0.973
k = 0.5 0.042 0.031 0.970
k = 0.2 0.051 0.039 0.955
k = 0.1 0.050 0.037 0.957

Table 6: Evaluation of estimated cell type proportions. Artificial bulk data is constructed by Segerstolpe et al.
while the single cell reference is obtained from 6 healthy subject from Sgerstolpe et al. with different dropout rate:
k = 1, 0.5, 0.2, 0.1.

Dropout RMSD mAD R

k = 1 0.100 0.064 0.936
k = 0.5 0.105 0.067 0.925
k = 0.2 0.123 0.078 0.896
k = 0.1 0.123 0.080 0.895

Table 7: Evaluation of estimated cell type proportions. Artificial bulk data is constructed by Xin et al. while
the single cell reference is obtained from 6 healthy subject from Sgerstolpe et al. with different dropout rate:
k = 1, 0.5, 0.2, 0.1.

From the evaluations above, we found that in general, adding more dropout noise leads to lower MuSiC estimation
accuracy, but the effect is quite small. Comparing with evaluations in Figure 2 in the maintext, MuSiC attained
consistently higher accuracy than current methods even with dropout noise.

We have added the robustness analysis of dropout in the revised maintext on page 6, line 251-254 and Sup-
plementary Note 5. We also added Figures 9-10 as Supplementary Figure 8a-b.

2. Have you considered the impact of normalization and batch effect correction to the performance of MuSiC?

Response: Yes. There are two key factors in MuSiC model, the cell type specific cross-subject mean and cross-
subject variance of relative abundance θkjg. When batch effect is present, the variance of relative abundance will
generally increase for all cell types. This means that the batch effect will be absorbed in σkg, meaning that MuSiC
not only up-weighs cross-subject consistent genes, but also cross-batch consistent genes.

Thus, by down-weighting cross-batch variable genes, MuSiC effectively deals with batch effects. Batch effects may
be more of a problem for existing methods that only rely on the mean values and ignores cross sample variation.

We have added the discussion of batch effect in the revised maintext on page 10-11, lines 405-410.

3. The detail for performing the cross-species analysis (end of page 7) was missing. Did the authors assume there is
a 1-1 mapping of homologous genes between two species? How did they deal with complex homology relationships?
I suspect the claim about ’cross-species applicability’ probably only extend to mammals, but not other organisms
that are further away in the evolutionary tree.

Response: You are right. The ‘cross-species applicability’ only extends to similar species such as mouse and rat,
where we only use homologous genes between mouse and rat. We have not yet conducted a detailed study of bulk
RNA-seq deconvolution using reference data derived from a more distant species. It would be interesting, and a
big undertaking, to figure out how distant the species can be for it to work. We feel that is out of the scope of
this paper, and so we simply stressed in the revision that we have only tried very closely related species.

We have added more descriptions on the cross-species analysis in the revised maintext on page 5, line 223.
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REVIEWERS' COMMENTS:  
 
Reviewer #1 (Remarks to the Author):  
 
I am happy to say that the authors have addressed the majority of my concerns. I have only two 
minor comments:  
 
- The authors seem to have misunderstood my comment #3 about Equation 8. Equation 3 defines 
Y_{jg} to be bounded in [0, 1]; if the error in Equation 8 is normally distributed, it would be possible 
to have a non-zero probability mass outside the range of possible values for Y_{jg}. The authors 
mention C_j but this is a constant value and will not provide any protection from impossible values. 
Now, as I mentioned before, this might not be a problem if the variance of the error is so low that the 
bounds on Y_{jg} do not matter, i.e., the probability mass outside of the range is negligible. However, 
it would be best to be explicit about this; or the authors should consider error distributions that are 
more conducive to the bounds, e.g., a Gamma distribution via statmod::glmgam.fit.  
 
- For future reference, the voom mean-variance relationship is typically observed in the variance of 
the log-expression values against the log-mean for filtered bulk RNA-seq data. Without filtering, the 
curve actually dips down to zero - see, for example, Figure 8 in 
https://bioconductor.org/packages/release/workflows/vignettes/sim pleSingleCell/inst/doc/work-1-
reads.html. Of course, for the purposes of deconvolution, there is no need to be constrained to this 
mean-variance relationship; it is simple enough to empirically model the relationship from the data.  
 
 
Reviewer #2 (Remarks to the Author):  
 
Good job responding to recommendations. Software offers a useful new tool that will likely be widely 
utilized.  
 
 
Reviewer #3 (Remarks to the Author):  
 
The authors have adequately addressed all my concerns. I am pleased to see the significant 
improvement the authors have made in this revision. I think this will be a useful tool for the 
bioinformatics community. I hope the authors will commit to maintaining the R package in the future.  
 
Minor comment:  
line 408: 'no only' -> 'not only'  



Response to Reviewer #1
I am happy to say that the authors have addressed the majority of my concerns. I have only two minor 
comments:

1. The authors seem to have misunderstood my comment #3 about Equation 8. Equation 3 defines Yjg to be bounded
in [0, 1]; if the error in Equation 8 is normally distributed, it would be possible to have a non-zero probability
mass outside the range of possible values for Yjg. The authors mention Cj but this is a constant value and will
not provide any protection from impossible values. Now, as I mentioned before, this might not be a problem if the
variance of the error is so low that the bounds on Yjg do not matter, i.e., the probability mass outside of the range
is negligible. However, it would be best to be explicit about this; or the authors should consider error distributions
that are more conducive to the bounds, e.g., a Gamma distribution via statmod::glmgam.fit.

Response: Thanks for your further explanation of this problem. We agree that a more complex model, such
as Gamma, may more accurately describe the data, but in practice, the normal distribution is often used for
bounded value and gives acceptable performance. Here we rely on this mostly for simplicity and computational
convenience. In the Supplementary, we added supplementary note 7 in this regard.

2. For future reference, the voom mean-variance relationship is typically observed in the variance of the log-expression
values against the log-mean for filtered bulk RNA-seq data. Without filtering, the curve actually dips down to zero
- see, for example, Figure 8 in
https://bioconductor.org/packages/release/workflows/vignettes/simpleSingleCell/inst/doc/work-1-reads.html. Of
course, for the purposes of deconvolution, there is no need to be constrained to this mean-variance relationship; it
is simple enough to empirically model the relationship from the data.

Response: Thanks for recommend this paper. We have checked the mean-variance relationship of existing in our
previous response, and will certainly consider the constraints for future investigation.

Reviewer #2’s comments
Good job responding to recommendations. Software offers a useful new tool that will likely be widely utilized.
Response to Reviewer #3
The authors have adequately addressed all my concerns. I am pleased to see the significant improvement the

authors have made in this revision. I think this will be a useful tool for the bioinformatics community. I hope the
authors will commit to maintaining the R package in the future.

Minor comment: line 408: ’no only’ → ’not only’ Thanks for pointing out this typo. We have fixed the typo
in line 408.
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