## Effects of point mutations in the binding pocket of the mouse major urinary

## protein MUP20 on ligand affinity and specificity

J. Ricatti, L. Acquasaliente, G. Ribaudo, V. De Filippis, M. Bellini, R. Esteban Llovera, S. Barollo, R. Pezzani, G. Zagotto, K. C. Persaud, C. Mucignat-Caretta

# **Supplementary Material S1**

#### Structural analysis and in silico comparison of MUP20 WT and mutants

Structural comparison, including sequence alignment, structure alignment and RMSD statistics was carried out using SuperPose Version 1.0 [Rajarshi Maiti. Gary H. Van Domselaar. Haiyan Zhang. and David S. Wishart "SuperPose: a simple server for sophisticated structural superposition" Nucleic Acids Res. 2004 July 1; 32 (Web Server issue): W590W594]. The resulting 3D superimpositions between MUP20 WT and the 7 mutants are reported in the stereographic figures below, together with RMSD data.



Stereographic 3D superimposition of MUP20 WT and V59T (RMSD = 0.05).



Stereographic 3D superimposition of MUP20 WT and L88Q (RMSD = 0.04).



Stereographic 3D superimposition of MUP20 WT and Y103D (RMSD = 0.06).



Stereographic 3D superimposition of MUP20 WT and Y103R (RMSD = 0.05).



Stereographic 3D superimposition of MUP20 WT and N107L (RMSD = 0.01).



Stereographic 3D superimposition of MUP20 WT and L124V (RMSD = 0.01).



Stereographic 3D superimposition of MUP20 WT and E137K (RMSD = 0.09).

#### Calculated 2D interaction pattern of the ligands with MUP20 mutants



Color key of the represented interactions. Residue name and number of the interacting residues are shown in the pictures below, together with the distance between the ligand and the residue (expressed in Å). Pictures were obtained using Discovery Studio (Dassault Systèmes BIOVIA. San Diego).



MUP20 WT



#### MUP20 WT



2D interaction pattern of PYR.



#### MUP20 WT



2D interaction pattern of L-ADR.





2D interaction pattern of OCT.











2D interaction pattern of L-ADR.





L88Q

2D interaction pattern of PYR.



2D interaction pattern of OCT.













2D interaction pattern of L-ADR.



2D interaction pattern of 2,4-DMP.



Y103D





2D interaction pattern of OCT.





2D interaction pattern of MEN.



Y103D



2D interaction pattern of L-ADR.









2D interaction pattern of OCT.



#### Y103R



2D interaction pattern of MEN.











#### N107L







2D interaction pattern of OCT.









2D interaction pattern of LIN.

N107L



2D interaction pattern of L-ADR.



#### L124V







2D interaction pattern of OCT.



















2D interaction pattern of 2,4-DMP.









2D interaction pattern of OCT.













2D interaction pattern of L-ADR.



### Analysis of interacting residues

| Protein | Ligand    | Energy<br>(-kcal/mol) | Interacting residues | Distance<br>(Å) | Ligand-residue<br>interaction |
|---------|-----------|-----------------------|----------------------|-----------------|-------------------------------|
|         |           |                       |                      |                 |                               |
|         | ОСТ       | 4.7                   | lle168               | 4.20            | hydrophobic                   |
|         |           |                       |                      |                 |                               |
|         |           |                       | Met57                | 5.48            | hydrophobic                   |
|         |           |                       | Val59                | 4.79            | hydrophobic                   |
|         | MEN       | 7.5                   | Leu124               | 3.37            | π-σ                           |
|         |           |                       | Leu135               | 3.74            | hydrophobic                   |
|         |           |                       | Phe75                | 5.04            | π-π                           |
|         |           |                       |                      |                 |                               |
|         |           |                       | Asn107               | 3.37            | van der Waals                 |
|         |           |                       | Val59                | 4.90            | π-alkyl                       |
|         |           |                       | Leu124               | 3.82            | π-σ                           |
|         |           |                       | Met57                | 5.20            | π-sulfur                      |
|         | PYR       | 5.9                   | Leu135               | 4.52            | hydrophobic                   |
|         |           |                       | Tyr103               | 4.61            | hydrophobic                   |
|         |           |                       | Val101               | 4.87            | hydrophobic                   |
|         |           |                       | Leu88                | 4.66            | hydrophobic                   |
|         |           |                       | Phe75                | 3.90            | π-alkyl                       |
| MUP20   |           |                       |                      |                 |                               |
|         |           | 6.0                   | Val101               | 4.95            | hydrophobic                   |
|         |           |                       | Leu124               | 4.65            | hydrophobic                   |
|         | LIN       |                       | Tyr103               | 4.52            | hydrophobic                   |
|         |           |                       | Phe75                | 4.10            | π-alkyl                       |
|         |           |                       | Leu88                | 4.07            | hydrophobic                   |
|         |           |                       |                      |                 |                               |
|         |           |                       | Arg58                | 2.54            | van der Waals                 |
|         |           |                       | Asn174               | 2.08            | Hydrogen bond                 |
|         | L-ADR     | 5.7                   | Leu43                | 2.56            | Hydrogen bond                 |
|         |           |                       | lle51                | 5.45            | hydrophobic                   |
|         |           |                       | Ala173               | 4.79            | hydrophobic                   |
|         |           |                       |                      |                 |                               |
|         |           |                       | Met57                | 4.78            | hydrophobic                   |
|         |           |                       | Leu124               | 3.77            | π-alkyl                       |
|         |           | 6.4                   | Val59                | 4.96            | hydrophobic                   |
|         | 2,4-DIVIP | 0.4                   | Tyr103               | 4.98            | π-π                           |
|         |           |                       | Leu88                | 4.46            | hydrophobic                   |
|         |           |                       | Phe75                | 4.23            | π-π                           |
|         |           |                       |                      |                 |                               |
|         |           |                       | lle168               | 3.84            | Hydrogen bond                 |
| VEOT    | ОСТ       | 5.2                   | Leu43                | 4.13            | Hydrogen bond                 |
| V291    |           |                       | lle51                | 4.76            | hydrophobic                   |
|         |           |                       |                      |                 |                               |

|      |         |     | Met57  | 4.65              | hydrophobic   |  |
|------|---------|-----|--------|-------------------|---------------|--|
|      | MEN     | 7.7 | Leu124 | 5.19              | π-σ           |  |
|      |         |     | Leu135 | 4.75              | hydrophobic   |  |
|      |         |     |        |                   |               |  |
|      |         |     | Leu43  | 4.42              | hydrophobic   |  |
|      |         |     | Glu52  | Hydrogen bond     |               |  |
|      | PYR     | 5.1 | lle51  | 5.29              | π-alkyl       |  |
|      |         |     | Ala173 | 4.84              | hydrophobic   |  |
|      |         |     | Leu170 | 4.46              | hydrophobic   |  |
|      |         |     |        |                   |               |  |
|      |         |     | Arg58  | 5.15              | Hydrogen bond |  |
|      |         | 5.0 | lle51  | 4.75              | hydrophobic   |  |
|      | LIN     | 5.0 | lle168 | 4.34              | hydrophobic   |  |
|      |         |     | Arg48  | 4.77              | hydrophobic   |  |
|      |         |     |        |                   |               |  |
|      |         |     | Arg58  | 3.83              | Hydrogen bond |  |
|      | L-ADR   | 5.4 | lle51  | 3.37              | Hydrogen bond |  |
|      |         |     | Leu43  | 5.14              | π-alkyl       |  |
|      |         |     |        |                   |               |  |
|      |         |     | Thr59  | 3.65              | Hydrogen bond |  |
|      |         |     | Leu124 | 5.87              | π-alkyl       |  |
|      |         |     | Val101 | 4.93              | hydrophobic   |  |
|      | 2,4-DMP | 6.4 | Tyr103 | 5.72              | π-π           |  |
|      |         |     | Leu88  | 5.29              | hydrophobic   |  |
|      |         |     | Phe75  | 4.51              | π-alkyl       |  |
|      |         |     |        |                   |               |  |
|      |         |     | lle168 | 2.94              | Hydrogen bond |  |
|      | ОСТ     | 5.0 | Leu43  | 4.21              | Hydrogen bond |  |
|      |         |     | lle51  | 4.46              | hydrophobic   |  |
|      |         |     |        |                   |               |  |
|      |         |     | Leu43  | 4.46              | hydrophobic   |  |
|      | MEN     | 6.4 | Arg58  | 5.20              | Hydrogen bond |  |
|      |         |     | Leu170 | 4.34              | hydrophobic   |  |
|      |         |     |        |                   |               |  |
|      |         |     | Leu43  | 4.31              | hydrophobic   |  |
| 1000 | DVD     | F 4 | lle51  | 5.29              | π-alkyl       |  |
| 188Q | PYR     | 5.1 | Ala173 | 4.90              | hydrophobic   |  |
|      |         |     | Leu170 | 4.72              | hydrophobic   |  |
|      |         |     |        |                   |               |  |
|      |         |     | Leu73  | 4.31              | hydrophobic   |  |
|      | LIN     | 5.8 | Val101 | Val101 4.78 hydro |               |  |
|      |         |     | Tyr103 | 4.22              | π-alkyl       |  |
|      |         |     |        |                   |               |  |
|      |         | F 0 | Tyr103 | 3.54              | π-π           |  |
|      | L-AUK   | 5.9 | Phe75  | 5.26              | π-π           |  |
|      |         |     |        |                   |               |  |

|       |           |     | Leu135 | 4.86 | hydrophobic   |
|-------|-----------|-----|--------|------|---------------|
|       |           | 6.2 | Leu124 | 4.71 | π-alkyl       |
|       | 2,4-DIVIP | 0.3 | Val59  | 4.68 | hydrophobic   |
|       |           |     | Phe75  | 4.17 | π-alkyl       |
|       |           |     |        |      |               |
|       | тоо       | 4 7 | lle168 | 3.68 | Hydrogen bond |
|       | 001       | 4.7 | Asn166 | 5.41 | Hydrogen bond |
|       |           |     |        |      |               |
|       |           |     | Ala173 | 5.50 | π-alkyl       |
|       | NAENI     | 6.4 | Arg58  | 5.21 | Hydrogen bond |
|       | IVILIN    | 0.4 | Leu170 | 4.33 | hydrophobic   |
|       |           |     | Leu43  | 4.42 | hydrophobic   |
|       |           |     |        |      |               |
|       |           |     | leu124 | 4.52 | π-alkyl       |
|       |           |     | Leu135 | 5.25 | hydrophobic   |
|       | PYR       | 5.2 | Leu88  | 4.88 | hydrophobic   |
|       |           |     | Phe75  | 3.91 | π-alkyl       |
|       |           |     | Val59  | 4.30 | van der Waals |
| Y103D |           |     |        |      |               |
|       |           |     | Leu73  | 3.09 | Hydrogen bond |
|       | LIN       | 4.7 | lle168 | 4.78 | Hydrogen bond |
|       |           |     | Ala173 | 4.88 | hydrophobic   |
|       |           |     |        |      |               |
|       |           | 5.2 | Leu43  | 3.93 | Hydrogen bond |
|       | L-ADR     |     | lle168 | 3.79 | Hydrogen bond |
|       |           |     | Glu52  | 5.21 | Hydrogen bond |
|       |           |     | lle51  | 5.25 | Hydrogen bond |
|       |           |     |        |      |               |
|       |           |     | Asn107 | 4.24 | Hydrogen bond |
|       | 2 4-DMP   | 5.6 | Leu124 | 5.14 | π-alkyl       |
|       | 2,4-01011 | 5.0 | Val59  | 4.82 | hydrophobic   |
|       |           |     | Phe75  | 5.15 | hydrophobic   |
|       |           |     |        |      |               |
|       | ОСТ       | 18  | Arg103 | 3.19 | Hydrogen bond |
|       | 001       | 4.0 | Phe109 | 4.80 | hydrophobic   |
|       |           |     |        |      |               |
|       | MEN       | 61  | Leu71  | 5.06 | π-alkyl       |
|       |           | 0.1 | lle111 | 5.10 | hydrophobic   |
|       |           |     |        |      |               |
| Y03R  |           |     | lle111 | 4.93 | π-alkyl       |
|       | DVR       | 45  | lle34  | 5.25 | hydrophobic   |
|       |           | ч.5 | lle64  | 5.11 | hydrophobic   |
|       |           |     | Leu71  | 4.40 | hydrophobic   |
|       |           |     |        |      |               |
|       | LIN       | 4 8 | lle111 | 4.28 | hydrophobic   |
|       | LIIN      | 4.0 | lle34  | 5.30 | hydrophobic   |

|        | L-ADR     | 4.5 | lle111 | 5.26 | Hphp          |
|--------|-----------|-----|--------|------|---------------|
|        |           |     |        |      |               |
|        |           |     | lle111 | 4.33 | hydrophobic   |
|        |           |     | lle122 | 4.37 | hydrophobic   |
|        |           | 4.0 | lle120 | 5.28 | hydrophobic   |
|        | 2,4-DIVIP | 4.9 | lle64  | 5.03 | hydrophobic   |
|        |           |     | Leu71  | 4.08 | hydrophobic   |
|        |           |     | Leu43  | 4.89 | hydrophobic   |
|        |           |     |        |      |               |
|        |           |     | lle168 | 3.99 | Hydrogen bond |
|        | ОСТ       | F 1 | Leu43  | 4.13 | Hydrogen bond |
|        | UCI       | 5.1 | Arg58  | 3.93 | hydrophobic   |
|        |           |     | Phe60  | 4.73 | hydrophobic   |
|        |           |     |        |      |               |
|        |           |     | Arg58  | 5.20 | Hydrogen bond |
|        | MEN       | 6.4 | Leu170 | 4.34 | hydrophobicb  |
|        |           |     | Leu43  | 4.45 | hydrophobic   |
|        |           |     |        |      |               |
|        |           |     | Glu52  | 4.22 | Hydrogen bond |
|        | PYR       | 5.1 | lle51  | 5.28 | hydrophobic   |
|        |           |     | Ala173 | 4.85 | hydrophobic   |
|        |           |     | Leu43  | 4.36 | hydrophobic   |
|        |           |     | Leu170 | 4.70 | hydrophobic   |
|        |           |     |        |      |               |
| N107L  |           |     | Tyr103 | 4.62 | π-alkyl       |
|        |           |     | Leu88  | 5.37 | hydrophobic   |
|        |           |     | Phe109 | 4.70 | hydrophobic   |
|        | LIN       | 5.8 | Val101 | 4.50 | hydrophobic   |
|        |           |     | Leu73  | 4.94 | hydrophobic   |
|        |           |     | Phe75  | 3.94 | π-alkyl       |
|        |           |     |        |      |               |
|        |           |     | Tyr103 | 5.40 | π-π           |
|        | L-ADR     | 5.3 | Val59  | 5.40 | π-alkyl       |
|        |           |     | Leu124 | 5.49 | π-alkyl       |
|        |           |     |        |      |               |
|        |           |     | Leu135 | 4.83 | hydrophobic   |
|        |           |     | Leu124 | 4.70 | π-alkyl       |
|        | 2,4-DMP   | 6.5 | Tyr103 | 4.67 | π-alkyl       |
|        |           |     | Phe75  | 5.23 | π-π           |
|        |           |     | Val59  | 5.06 | hydrophobic   |
|        |           |     |        |      |               |
|        | ОСТ       | 6.3 | Val101 | 5.08 | hydrophobic   |
| 142414 |           |     |        |      |               |
| LIZ4V  |           | 7 5 | Val101 | 4.85 | hydrophobic   |
|        | IVIEN     | 7.5 | Val124 | 4.86 | hydrophobic   |

|       |           |     | Tyr103      | 4.86          | hydrophobic   |
|-------|-----------|-----|-------------|---------------|---------------|
|       |           |     |             |               |               |
|       |           |     | Val124      | 5.14          | π-alkyl       |
|       |           |     | Phe75       | Phe75 4.21    |               |
|       | PYR       | 6.0 | Val101      | 5.03          | hydrophobic   |
|       |           |     | Tyr103 4.30 |               | hydrophobic   |
|       |           |     | Val59       | 4.94          | π-alkyl       |
|       |           |     |             |               |               |
|       |           |     | Arg58       | 4.38          | Hydrogen bond |
|       | LIN       | 5.2 | lle168      | 4.35          | hydrophobic   |
|       |           |     | lle51       | 4.32          | hydrophobic   |
|       |           |     |             |               |               |
|       |           |     | Tyr103      | 3.55          | Hydrogen bond |
|       | L-ADR     | 6.1 | Asn107      | 4.74          | Hydrogen bond |
|       |           |     | Val124      | 5.21          | π-alkyl       |
|       |           |     |             |               |               |
|       |           |     | Val59       | 4.73          | hydrophobic   |
|       |           | 6.1 | Tyr103      | 4.57          | π-π           |
|       | 2,4-DIVIP | 0.1 | Phe75       | 4.95          | π-π           |
|       |           |     | Val101      | 4.97          | hydrophobic   |
|       |           |     |             |               |               |
|       | OCT       | 5.3 | Phe60       | 4.58          | hydrophobic   |
|       |           |     |             | 4.00          |               |
|       | MEN       | 7.4 | Leu124      | 4.99          | π-аку         |
|       |           |     | Leu135      | 4.50          | nydrophobic   |
|       |           |     | IVIELS7     | 4.57          | ηγατορησοις   |
|       |           | 5.8 | Leu124      | 5.40          | π-alkvl       |
|       | PYR       |     | Val59       | 5.10          | hvdrophobic   |
|       |           |     | Tvr103      | 4.30          | hydrophobic   |
|       |           |     | Val101      | 5.17          | hydrophobic   |
|       |           |     | Phe75       | 5.04          | π-alkyl       |
|       |           |     |             |               |               |
|       |           |     | lle51       | 3.71          | Hydrogen bond |
| E137K |           | F 0 | Arg58       | Arg58 4.49 Hy |               |
|       | LIN       | 5.0 | Arg48       | 4.56          | hydrophobic   |
|       |           |     | lle168      | 4.54          | hydrophobic   |
|       |           |     |             |               |               |
|       |           |     | lle168      | 3.96          | Hydrogen bond |
|       | I-ADR     | 52  | Leu43       | 3.95          | Hydrogen bond |
|       | L / IBN   | 5.2 | Arg58       | 4.76          | Hydrogen bond |
|       |           |     | Leu170      | 5.43          | hydrophobic   |
|       |           |     |             |               |               |
|       |           |     | Leu135      | 4.88          | hydrophobic   |
|       | 2,4-DMP   | 6.2 | Leu124      | 4.68          | π-alkyl       |
|       |           |     | Tyr103      | 5.25          | π-alkyl       |
|       |           |     | Phe75       | 4.15          | π-alkyl       |

#### **Supplementary Material S2**

#### S2a. List of selected aminoacids for mutation and mutation scheme

V59, L88, Y103, N107, L124, E137.

#### Mutation and alignment Scheme

7 mutated proteins: MUP20V59T, MUP20L88Q, MUP20Y103D, MUP20Y103R, MUP20N107L, MUP20L124V, MUP20E137K.

| CLUSTAL format | alignment by MAFFT (v7 | .243)                                   |
|----------------|------------------------|-----------------------------------------|
|                |                        |                                         |
| MUP20wt        | MHHHHHHMKLLVLLLCL      | GLTLVCVHAEEASSMERNFNVEKINGEWYTIMLATDKRE |
| MUP20V59T      | MMGSSHHHHHHIE          | GREEASSMERNFNVEKINGEWYTIMLATDKRE        |
| MUP20L124V     | MMGSSHHHHHHIE          | GREEASSMERNFNVEKINGEWYTIMLATDKRE        |
| MUP20E137K     | MMGSSHHHHHHIE          | GREEASSMERNFNVEKINGEWYTIMLATDKRE        |
| MUP20L88Q      | MMGSSHHHHHHIE          | GREEASSMERNFNVEKINGEWYTIMLATDKRE        |
| MUP20N107L     | MMGSSHHHHHHIE          | GREEASSMERNFNVEKINGEWYTIMLATDKRE        |
| MUP20Y103R     | MMGSSHHHHHHIE          | GREEASSMERNFNVEKINGEWYTIMLATDKRE        |
| MUP20Y103D     | MMGSSHHHHHHIE          | GREEASSMERNFNVEKINGEWYTIMLATDKRE        |
|                | * *****::              | *****                                   |
| MUP20wt        | KIEEHGSMRVFVEYIHVLENS  | LALKFHIIINEECSEIFLVADKTEKAGEYSVTYDGSNTF |
| MUP20V59T      | KIEEHGSMRTFVEYIHVLENS  | LALKFHIIINEECSEIFLVADKTEKAGEYSVTYDGSNTF |
| MUP20L124V     | KIEEHGSMRVFVEYIHVLENS  | LALKFHIIINEECSEIFLVADKTEKAGEYSVTYDGSNTF |
| MUP20E137K     | KIEEHGSMRVFVEYIHVLENS  | LALKFHIIINEECSEIFLVADKTEKAGEYSVTYDGSNTF |
| MUP20L88Q      | KIEEHGSMRVFVEYIHVLENS  | LALKFHIIINEECSEIFQVADKTEKAGEYSVTYDGSNTF |
| MUP20N107L     | KIEEHGSMRVFVEYIHVLENS  | LALKFHIIINEECSEIFLVADKTEKAGEYSVTYDGSNTF |
| MUP20Y103R     | KIEEHGSMRVFVEYIHVLENS  | LALKFHIIINEECSEIFLVADKTEKAGEYSVTRDGSNTF |
| MUP20Y103D     | KIEEHGSMRVFVEYIHVLENS  | LALKFHIIINEECSEIFLVADKTEKAGEYSVTDDGSNTF |
|                | ******** • **********  | ****************                        |
| MUP20wt        | TILKTDYDNYIMIHLINKKDG  | ETFQLMELYGREPDLSSDIKEKFAQLSEEHGIVRENIID |
| MUP20V59T      | TILKTDYDNYIMIHLINKKDG  | ETFQLMELYGREPDLSSDIKEKFAQLSEEHGIVRENIID |
| MUP20L124V     | TILKTDYDNYIMIHVINKKDG  | ETFQLMELYGREPDLSSDIKEKFAQLSEEHGIVRENIID |
| MUP20E137K     | TILKTDYDNYIMIHLINKKDG  | ETFQLMKLYGREPDLSSDIKEKFAQLSEEHGIVRENIID |
| MUP20L88Q      | TILKTDYDNYIMIHLINKKDG  | ETFQLMELYGREPDLSSDIKEKFAQLSEEHGIVRENIID |
| MUP20N107L     | TILKTDYDLYIMIHLINKKDG  | ETFQLMELYGREPDLSSDIKEKFAQLSEEHGIVRENIID |
| MUP20Y103R     | TILKTDYDNYIMIHLINKKDG  | ETFQLMELYGREPDLSSDIKEKFAQLSEEHGIVRENIID |
| MUP20Y103D     | TILKTDYDNYIMIHLINKKDG  | ETFQLMELYGREPDLSSDIKEKFAQLSEEHGIVRENIID |
|                | ****** **********      | *****                                   |
| MUP20wt        | LTNANRCLEARE           |                                         |
| MUP20V59T      | LTNANRCLEARE           |                                         |
| MUP20L124V     | LTNANRCLEARE           |                                         |
| MUP20E137K     | LTNANRCLEARE           |                                         |
| MUP20L88Q      | LTNANRCLEARE           |                                         |
| MUP20N107L     | LTNANRCLEARE           |                                         |
| MUP20Y103R     | LTNANRCLEARE           |                                         |
| MUP20Y103D     | LTNANRCLEARE           |                                         |
|                | * * * * * * * * * * *  |                                         |
|                |                        |                                         |

Figure S2a Clustal alignment of amino acid sequences

#### S2b. Expression Procedure

For the heterologous expression 100µl of DE3 BL21 *E. coli* cells strains were used, after the preparation of competent bacteria, followed by a heat shock transformation with 10µl of ligation product containing the plasmid including the ampicillin resistance gene. Transformants carrying the plasmid for wild-type or mutant MUP20 were plated in LB-agar 100µg/ml ampicillin Petri dishes and incubated overnight at 37°C. In order to proceed with the small scale expression of the recombinant proteins, a set of single antibiotic resistant colony was selected to inoculate 5 ml of ampicillin-LB media and incubated with shaking 250 rpm at 37°C. The turbid liquid cultures (positives) were selected for the bacterial growing step.

From each liquid culture 750 µl were mixed with 75 ml of ampicillin-LB media, shaken at 300 rpm at 37°C until the OD600 reached 0.4-0.6. Subsequently, for transcription of the gene of interest, the protein expression was induced by isopropyl-b-D-thiogalactoside (0.4mM, BioChemica, EuroClone, Milan, Italy) and shaken at 350 rpm at 37°C for 3 hours. The liquid culture was centrifuged at 5000 rpm for 10', and pellets were collected and sampled to confirm the presence of the protein via SDS-page.

Figure S1b shows an example of MUP expression, SDS-PAGE (15% acrylamide) analysis of recombinant MUP under reducing conditions. Lane 1 depicts MUP20 L88Q before induction and lane 2 after induction. Lane 3 shows MUP20 L124V before induction and lane 4 after induction. On the right, molecular weight markers are shown. The original gel is shown in Figure S1c.



Figure S2b SDS-PAGE of recombinant MUPs



Figure S2c. Unmodified scanning of the gel showed in Fig. S1b.

## Supplementary Material S 3

# MUP MW (experimental) – a.m.u MW (theoretical) – a.m.u. WT 20625.2 21883.97 L88Q 20621.4 20682.16 L124V 20653.5 20653.16 Y103R 20628.3 20660.20

## Measured molecular weights from Mass Spectrometry and theoretical values

## Supplementary Material S4. Measured Kd ( $\mu$ M)

|         | WT   |     | V59T |      | L88Q  |      | Y103D | )    | Y103R |      | N107I | -    | L124V |      | E137K | [    |
|---------|------|-----|------|------|-------|------|-------|------|-------|------|-------|------|-------|------|-------|------|
| Ligand  | Kd   | SD  | Kd   | SD   | Kd    | SD   | Kd    | SD   | Kd    | SD   | Kd    | SD   | Kd    | SD   | Kd    | SD   |
| PYR     | 1.29 | 0.0 | 1.9  | 0.00 | 1.39  | 0.01 | 0.84  | 0.04 | 0.74  | 0.00 | 1.40  | 0.01 | 0.07  | 0.01 | 1.52  | 0.02 |
|         |      | 1   | 3    |      |       |      |       |      |       |      |       |      |       |      |       |      |
| LIN     | 2.82 | 0.0 | 1.6  | 0.00 | 2.21  | 0.01 | 2.17  | 0.06 | 5.93  | 0.11 | 1.37  | 0.02 | 0.29  | 0.01 | 1.85  | 0.05 |
|         |      | 4   | 0    |      |       |      |       |      |       |      |       |      |       |      |       |      |
| 2,4-DMP | 4.24 | 0.0 | 1.4  | 0.02 | 5.08  | 0.29 | 4.68  | 0.09 | 11.92 | 0.09 | 1.99  | 0.03 | 1.30  | 0.06 | 4.05  | 0.04 |
|         |      | 7   | 4    |      |       |      |       |      |       |      |       |      |       |      |       |      |
| ОСТ     | 0.78 | 0.0 | 1.5  | 0.02 | 1.45  | 0.03 | 0.92  | 0.01 | 1.88  | 0.01 | 2.67  | 0.08 | 0.36  | 0.00 | 3.20  | 0.01 |
|         |      | 0   | 4    |      |       |      |       |      |       |      |       |      |       |      |       |      |
| MEN     | 0.61 | 0.0 | 1.8  | 0.06 | 1.31* | 0.06 | 0.82* | 0.10 | 1.33* | 0.06 | 1.23  | 0.05 | 0.07* | 0.01 | 2.14  | 0.29 |
|         | *    | 4   | 5    |      |       |      |       |      |       |      |       |      |       |      |       |      |
| L-ADR   | 5.31 | 0.0 | 0.8  | 0.01 | 11.24 | 0.58 | 3.34  | 0.25 | 7.06  | 0.23 | 0.90  | 0.03 | 1.33  | 0.06 | 4.07  | 0.45 |
|         |      | 6   | 7    |      |       |      |       |      |       |      |       |      |       |      |       |      |

\*data from Scorsone et al., IEEE Sensors Journal 2016, 16, 6543, Tab. 1.

## Supplementary Material S5. Binding data

| 1.00 uM<br>1.60 uM | MUP20x6HisWT<br>Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2-4-dimethylphenol<br>2-butyl-1-octanol<br>MEN<br>L-ADR                                       | first se<br>Kd Kd<br>2.85<br>4.20<br>0.78<br>0.64<br>5.36 | cond<br>1.28<br>2.80<br>4.29<br>0.78<br>0.59<br>5.27 | mean Kd SD<br>1.29 0.01<br>2.82 0.04<br>4.24 0.07<br>0.78 0.00<br>0.61 0.04<br>5.31 0.06                                                                                                    | Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>MEN<br>L-ADR              | first         second           Ka - 1         Ka - 2           0.77         0.78           0.35         0.36           0.24         0.23           1.28         1.28           1.56         1.71           0.19         0.19 | Ka mean Ka SD<br>0.78 0.01<br>0.35 0.01<br>0.24 0.00<br>1.28 0.00<br>1.63 0.10<br>0.19 0.00   | =(IC-50/(1+1-NPNfree/1-NPNkd)<br>Kd 1-NPN 0.65<br>1+1-NPNfree/Kd 2.43  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 1.00 uM<br>1.60 uM | MUP20x6HisV59T<br>Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2-4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline                        | Kd Kd<br>1.93<br>1.60<br>1.42<br>1.55<br>1.89<br>0.86     | Kd<br>1.94<br>1.60<br>1.45<br>1.52<br>1.80<br>0.88   | mean Kd SD<br>1.93 0.00<br>1.60 0.00<br>1.44 0.02<br>1.54 0.02<br>1.85 0.06<br>0.87 0.01                                                                                                    | Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline | Ka - 1 Ka - 2<br>0.52 0.52<br>0.63 0.62<br>0.70 0.69<br>0.64 0.66<br>0.53 0.55<br>1.16 1.14                                                                                                                                  | Ka mean Ka SD<br>0.52 0.00<br>0.62 0.00<br>0.70 0.01<br>0.65 0.01<br>0.54 0.02<br>1.15 0.02   | =(IC-50/(1+1-NPN/ree/1-NPNkd)<br>Kd 1-NPN 0.46<br>1+1-NPN/ree/Kd 3.09  |
| 1.00 uM<br>1.60 uM | MUP20x6HisL88Q<br>Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2-4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline                        | Kd Kd<br>1.39<br>2.21<br>5.28<br>1.48<br>1.27<br>11.65    | Kd<br>1.40<br>2.20<br>4.88<br>1.43<br>1.36<br>10.83  | mean         Kd SD           1.39         0.01           2.21         0.01           5.08         0.29           1.45         0.03           1.31         0.06           11.24         0.58 | Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline | Ka - 1 Ka - 2<br>0.72 0.71<br>0.45 0.45<br>0.19 0.21<br>0.68 0.70<br>0.79 0.74<br>0.09 0.09                                                                                                                                  | Ka mean Ka SD<br>0.72 0.00<br>0.45 0.00<br>0.20 0.01<br>0.69 0.02<br>0.76 0.04<br>0.09 0.00   | =(IC-50/(1+1-NPNlfree/1-NPNkd)<br>Kd 1-NPN 2.07<br>1+1-NPNfree/Kd 1.46 |
| 1.00 uM<br>1.60 uM | MUP20x6HisY103D<br>Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline | Kd Kd<br>0.87<br>2.21<br>4.61<br>0.91<br>0.75<br>3.17     | Kd<br>0.82<br>2.13<br>4.74<br>0.92<br>0.89<br>3.52   | mean Kd SD<br>0.84 0.04<br>2.17 0.06<br>4.68 0.09<br>0.92 0.01<br>0.82 0.10<br>3.34 0.25                                                                                                    | Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline | Ka - 1 Ka - 2<br>1.15 1.22<br>0.45 0.47<br>0.22 0.21<br>1.09 1.08<br>1.32 1.12<br>0.32 0.28                                                                                                                                  | Ka mean Ka SD<br>1.18 0.05<br>0.46 0.01<br>0.21 0.00<br>1.09 0.01<br>1.22 0.15<br>0.30 0.02   | =(IC-50/(1+1-NPNfree/1-NPNkd)<br>Kd 1-NPN 1.57<br>1+1-NPNfree/Kd 1.55  |
| 1.00 uM<br>1.60 uM | MUP20x6HisY103R<br>Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline                       | Kd Kd<br>0.74<br>5.86<br>11.86<br>1.88<br>1.37<br>7.22    | Kd<br>0.74<br>6.01<br>11.98<br>1.88<br>1.29<br>6.90  | mean         Kd SD           0.74         0.00           5.93         0.11           11.92         0.09           1.88         0.01           1.33         0.06           7.06         0.23 | Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline | Ka - 1 Ka - 2<br>1.36 1.36<br>0.17 0.17<br>0.08 0.08<br>0.53 0.53<br>0.73 0.77<br>0.14 0.14                                                                                                                                  | Ka mean Ka SD<br>1.36 0.00<br>0.17 0.00<br>0.08 0.00<br>0.53 0.00<br>0.75 0.03<br>0.14 0.00   | =(IC-50/(1+1-NPNfree/1-NPNkd)<br>Kd 1-NPN 4.39<br>1+1-NPNfree/Kd 1.21  |
| 1,00 uM<br>1,60 uM | MUP20x6HisN107L<br>Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline                       | Kd Kd<br>1.40<br>1.39<br>1.97<br>2.73<br>1.19<br>0.92     | Kd<br>1.39<br>1.36<br>2.01<br>2.62<br>1.27<br>0.88   | mean Kd SD<br>1.40 0.01<br>1.39 0.02<br>1.99 0.03<br>2.67 0.08<br>1.23 0.05<br>0.90 0.03                                                                                                    | Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline | Ka - 1 Ka - 2<br>0.71 0.72<br>0.51 0.50<br>0.51 0.50<br>0.37 0.38<br>0.84 0.79<br>1.09 1.14                                                                                                                                  | Ka mean Ka SD<br>0.72 0.00<br>0.73 0.01<br>0.50 0.01<br>0.81 0.03<br>1.11 0.03                | =(IC-50/(1+1-NPNfree/1-NPNkd)<br>Kd 1-NPN 0.85<br>1+1-NPNfree/Kd 2.05  |
| 1.00 uM<br>1.60 uM | MUP20x6HisL124V<br>Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline                       | Kd Kd<br>0.06<br>0.30<br>1.34<br>0.36<br>0.06<br>1.29     | Kd<br>0.07<br>0.29<br>1.26<br>0.36<br>0.07<br>1.37   | mean         Kd SD           0.07         0.01           0.29         0.01           1.30         0.06           0.36         0.00           0.07         0.01           1.33         0.06  | Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline | Ka - 1 Ka - 2<br>17.00 13.42<br>3.34 3.46<br>0.74 0.79<br>2.79 2.76<br>17.49 13.34<br>0.78 0.73                                                                                                                              | Ka mean Ka SD<br>15.21 2.53<br>3.40 0.09<br>0.77 0.03<br>2.78 0.02<br>15.42 2.93<br>0.75 0.03 | =(IC-50/(1+1-NPNfree/1-NPNkd)<br>Kd 1-NPN 0.22<br>1+1-NPNfree/Kd 5.03  |
| 1.00 uM<br>1.60 uM | MUP20x6HisE137K<br>Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline                       | Kd Kd<br>1.51<br>1.82<br>4.02<br>3.19<br>1.93<br>3.75     | Kd<br>1.54<br>4.07<br>3.20<br>2.34<br>4.39           | mean         Kd SD           1.52         0.02           1.85         0.05           4.05         0.04           3.20         0.01           2.14         0.29           4.07         0.45  | Ligand<br>2-isobutyl-3-methoxypyrazine<br>Linalool<br>2.4-dimethylphenol<br>2-butyl-1-octanol<br>Menadione<br>L-Adrenaline | Ka - 1 Ka - 2<br>0.66 0.65<br>0.55 0.53<br>0.25 0.25<br>0.31 0.31<br>0.52 0.43<br>0.27 0.23                                                                                                                                  | Ka mean Ka SD<br>0.66 0.01<br>0.54 0.01<br>0.25 0.00<br>0.31 0.00<br>0.47 0.06<br>0.25 0.03   | =(IC-50/(1+1-NPNfree/1-NPNkd)<br>Kd 1-NPN 1.36<br>1+1-NPNfree/Kd 1.65  |