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1 Choice of distance function and omega

In choosing the form and parameter values for the decay function in (2), we considered three

different functions:

δ(p, q;βbq, ω) =


βbq × (d(p, q) + 1)ω (A)

(βbq)
−d(p,q)∗ω (B)

βbq × exp−d(p, q) ∗ ω (C)

where d(p, q) is the absolute distance between the midpoints of fragments p and q.

We empirically determined the best function by fitting our model (3) with different choices of

δ(p, q) to a subset of input data and considering the properties of the residuals from this model.

Statistically, these should be i.i.d. with mean 0 and unit variance. To assess this, a consensus fit

was constructed for each bait b using the posterior expectations of βbp, β̂bp. The mean and variance

of the residuals from these fitted models were calculated across overlapping sliding windows over

250 prey fragments, and subsequently aggregated. Residuals most closely resembling N(0, 1) were

obtained for option (C) with ω = 10−4.7 (Figure 1). Finally, we confirmed that this value of ω

produced similar distributions of residual mean and variance across all baits (Figures 2).

Code may be found in sliding window.R and sliding window visualize.R at https://github.

com/chr1swallace/hic.

2 Determining computationally efficient sampling whilst main-

taining RJMCMC convergence

RJMCMC approximates a posterior distribution by stochastically sampling candidate models. How

many candidate models we generate overall, and how we sample them, determines how accurately

these samples reflect the posterior distribution and hence how reliable our inference of coefficient
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Figure 1: Sliding window means and variance of residuals from our joint model fitted using different
values of ω. We chose the value of ω that gave means and variances closest to 0 and 1 respectively.
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Figure 2: Distribution of mean and variance of residuals from our model, calculated within non-
overlapping windows of 250 preys, are concentrated around the target values of mean=0 and vari-
ance=1. Each histrogram shows the distribution across all windows across all baits for each exper-
iment.
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values is. To find a balance between minimizing computational cost and maximizing the reliability

of the results, we asked three questions:

1. How many models should we generate?

2. At which point do we start sampling?

3. What must the sampling density be?

First, we obtained “gold standard” MPPC values for a single, hand-picked bait (with a complex

PCHi-C signal) by generating an extremely large number of models (N = 20 × 106) and sampling

an impractically large number of them (n = 100, 000) from the last 10 × 106. The first 10 × 106

models are thereby considered to be biased by the initial candidate model –almost certainly a

conservative overestimate– and discarded as “burn-in”. We repeated this procedure 10 times with

different random seeds, yielding 10 sets of gold standard MPPC values. To answer our questions

above, we repeatedly resampled smaller subsets under different conditions from the 20×106 models

(using the same 10 seeds) and gauged how similar the MPPC from these smaller samples were to

the gold standard MPPC according to their correlation, ρ.

To answer 1., we fixed burn in at 10 × 106 and considered sampling from 200 to 5,000 models

thereafter with a constant sampling density (sampling 1 in 2000). Sampling more models did

consistently increase ρ, so we chose to sample 5,000 models total (Fig. 3). To answer 2, we fixed

the sampling density (1 in 2000) and number of models (5,000) and varied the length of burn-in.

We found ρ remains similar regardless of length of burn-in, so decided we could set burn-in length

to 0 (Fig. 4). However, even with no burn-in, this type of sampling requires 2000×5000 = 10×106

models to be generated in total. To answer 3, we fixed burn-in to 0, and number of sampled models

to 5000, and varied the sampling density. We found that we could obtain ρ > 0.75 reducing the

sampling density to the point where models for MPPC calculations where drawn from the first

5×106 models proposed (Fig. 5). Thus, we end up having to generate only 5×106 models in total,

and sampling 5,000 of them with no burn-in.

In practice, we always run two parallel chains and confirm correlation of MPPC values produced

is > 0.75, otherwise we extend the runs.
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Figure 3: MPPC values obtained from a greater subset of models, sampled at a constant interval,
correlate more closely with gold-standard MPPC values. As the number of models obtained before
subsampling stops is raised (top, x-axis), the trend in correlation values between all possible pairs of
gold-standard MPPC values (from 10 sets of 100, 000 models, distinguished by shapes) and MPPC
values obtained through subsampling (of the same 10 sets, distinguished by colors) is upward. The
bottom pane shows the subsampling strategy, with the selection of models (horizontal blue bar)
increasing in size (brightness) while still excluding ”burn-in” models (the first 100, 000). We decide
to calculate MPPC values based on a minimum of 5000 models.

5



Figure 4: The sample of models from which MPPC values are calculated can be obtained from
models proposed early on, given that subsampling of (an equal amount of) models proposed later
does not yield MPPC values (10 sets, marked by colors) that correlate more closely with gold-
standard MPPC values (10 sets, marked by shapes). The bottom pane shows the subsampling
strategy, with equally-sized (same brightness) selections of 5, 000 models (horizontal blue bar) being
subsampled from those proposed early or late (left and right on the x-axis, respectively) during
the MCMC procedure. We decide that no ”burn-in” phase must be waited out until sampling can
begin.
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Figure 5: Decreasing the rate at which models are sampled increases the correlation between MPPC
values obtained from those models (10 sets, marked by colors) and gold-standard MPPC values
(10 sets, marked by shapes). When we begin subsampling immediately, increasing the range of
proposed models from which a subsample of a given size (5000) is taken (bottom pane, blue bars
representing model selections extend further but are ultimately equally bright) is helpful. We choose
the sampling density such that we sample from a range of models extending to the 50,000th in this
example, originally generated after 5 million proposals.
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