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I. DERIVATION OF COMPATIBILITY CONDITION AND CONSTRUCTION OF DUAL
TRIANGULATION
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FIG. 1. (A) Mechanical balance of a tension net implies that at vertex i, Ti,i−1 sin(θi,βi−1) = Ti,i+1 sin(θi,βi), as
tensions must balance along the direction perpendicular to the edge external to cell α. This construction can be
repeated on all vertices of cell α. The circular product of such ratios around a cell is defined as the ‘compatibility
condition’. (B) A diagram representing both the notation used to define the compatibility constraint and the ”dual
triangulation” of the tension plane which corresponds to the tension balanced state. Edges of the αβ1β2 triangle
represent tensions that balance at vertex i1, while angles (of the triangle) are complementary to the angles of the
corresponding vertex of the polygonal cell array (e.g. ∠αβ2β1 = π − θi1β2 . Note that compatibility condition on cell
α can be alternatively derived from applying the sine theorem to the triangles that meet at dual vertex α. (C) The
geometry of force balance in the generalized vertex model [1] allowing for non-uniform pressure, is modified as edges
between cell with unequal pressure are circular arcs with curvatures given by the Young-Laplace law. Assuming that
pressure differences are small (compared to tensions) this can be used to derive the expected non-zero value for χα.

The compatibility condition (c.f. Eq (5) in the main text) on cellular geometry is the natural result from
our model assumptions that (i) tissues are in mechanical equilibrium and (ii) tissue mechanics is dominated
by tension held in the cortical cytoskeleton. The purpose of this section is to provide a derivation of Eq. (5)
as well as our ‘dual’ tension triangulation. Consider vertex ‘i’, depicted in Fig. 1a, formed by the triplet of
cells (α, βi−1, βi). Force balance at this vertex is written Ti,ie r̂ie,i+Ti,i+1r̂i+1,i+Ti,i−1r̂i−1,i = 0. Projecting
this equation onto the red-line as shown in Fig 1a

Ti,i+1

[
r̂iei ∧ r̂i+i

]
= Ti,i−1

[
r̂i−i ∧ r̂iei

]
=⇒ Ti,i+1

Ti,i−1
=

sin
(
θi,βi−1

)
sin (θi,βi)

(1)

This construction can be done for each vertex belonging to a cellular plaquette. Indexing vertices belonging
to cell α using a CCW convention with i ∈ {1, 2, ..., zα}, as shown in Fig. 1b, we take the circular product
around the cell and define the “geometric compatibility” measure χα

χα =

zα∏
i=1

sin (θi,βi)

sin
(
θi,βi−1

) =

zα∏
i=1

Ti,i−1

Ti,i+1
= 1 (2)

The circular product over the ratios of tensions is a telescoping product and thus is equal to one for a static
tension net, which we call the compatibility condition. As noted in the main text, this geometric constraint
can be directly tested on images to assess the validity of model assumptions. A corollary to the compatability
condition is that tensions form a triangulation ‘dual’ to the cell array. Once again consider force-balance at
vertex ‘i’, but this time rotated by π/2

ẑ ∧ [Ti,ie r̂ie,i + Ti,i+1r̂i+1,i + Ti,i−1r̂i−1,i] = qβi−1βi + qβiα + qαβi−1 = 0 (3)

where qαβi−1
, qβiα, qβi−1βi are vectors that make up edges of the triangle dual to vertex i, shared by cells

α, βi, βi−1. We have qαβ = Qα−Qβ where Qα denotes the vertex of the dual triangulation that corresponds
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to cell α. Summing around vertices belonging to a cellular plaquette will cancel out internal dual vectors
and leave us with ∑

i

qβi−1βi = 0 (4)

In other words, the outside edges of all triangles made from tensions acting at vertices around a cell must
form a closed polygon, ensuring that we can build a closed triangulation out of tensions. This is equivalent
to the constraint that

∑
i θi,α = 2π. One can then see that the compatibility constraint is simply the law of

sines applied to triangles around the plaquette! Lastly, it is important to note that this construction only
defines the triangulation up to a scale reflecting the fact that at equilibrium all tensions are known up to an
overall multiplicative factor.

The compatibility constraint is a necessary condition for mechanical equilibrium under conditions of tension
dominance. Its failure would imply either that (i) the tissue is not in mechanical equilibrium or that (ii)
forces other than cortical tension contribute significantly to the balance. Observed fluctuations make it clear
that mechanical equilibrium can only be approximate. Below we shall examine the effects of deviations from
mechanical equilibrium and deviations from tension dominance on the distribution of χα. To that end, we
analytically derive χα under the assumption of weak pressure differentials and small vertex fluctuations. Note,
that while being necessary, the compatibility constraint is not sufficient to conclude tension balance. E.g.
it is conceivable that cell array has “compatible geometry” for a reason other than tension-net equilibrium,
however, we are not aware of any alternative simple physical mechanism that would explain this geometry.

We first consider the case of small pressure differences across cell-cell contacts. Consider vertex ‘i’ as
shown in Fig. 1c. Force balance now takes the form Ti,ie t̂ie,i + Ti,i+1t̂i+1,i + Ti,i−1t̂i−1,i = 0 where t̂i+1,i

denotes the unit vector pointing tangent to the circular arc of edge (i, i+ 1) at vertex i instead of along the
vertex model direction (shown as a gray dashed line). Repeating the derivation leading to Eq. (SI2), one
arrives at

Ti,i+1

Ti,i−1
=

sin
(
θ̄i,βi

)
sin
(
θ̄i,βi−1

) (5)

where θ̄ - and this is a crucial difference -denotes the angle between tangent vectors as opposed to polygon
edges. Taking a product around the cell yields:

log (χ̄α) =

z∑
i=1

log
[
sin
(
θ̄i,βi

)]
− log

[
sin
(
θ̄i,βi−1

)]
= 0 (6)

To relate χ̄α to χ defined in Eq (SI2) we relate angles θ̄ and θ. In the limit of small pressure differentials

(∆p r/T � 1), the tangent vector simplifies to t̂i+1,i = r̂i+1,i +
∆pi+1,i

2Ti,i+1
[ẑ ∧ ri+1,i], where ∆pi+1,i = pα − pβi

is the signed pressure difference across edge i, i + 1). Substituting this result in and Taylor expanding to
linear order we find

sin
(
θ̄i,βi

)
≈ sin (θi,βi)

[
1 + cot (θi,βi)

[
∆pi+1,i ri+1,i

2Ti,i+1
− ∆pie,i rie,i

2Ti,ie

]]
(7)

The expected value for the compatibility condition is obtained by summing this expression around a cell.

log(χa) ≈1

2

∑
i

[cot (θi,βi) + cot (θi+1,βi)]
ri+1,i

Ti+1,i
[pβi − pα]

−1

2

∑
i

[
cot (θi,βi) + cot

(
θi,βi−1

)] rie,i
Tie,i

[
pβi − pβi−1

]
(8)

Thus deviation of χα away from 1 is a function of local pressure differences. Interestingly, one can define a
local “angle defect” in the tension plane δθα = 2π −

∑
i θi,α = − 1

2

∑
i
ri+1,i

Ti+1,i
[pβi − pα] which quantifies the
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degree of local non-planarity (Gaussian curvature) of the tension triangulation (at dual vertex α). (This
angle defect is exactly the discrete Laplace-Beltrami operator acting on pressure [2]).

For completeness, one can also derive the expected value for the compatibility condition under small
fluctuations in vertex position δri in the same manner as above. The result is

log(χa) ≈1

2

∑
i

[cot (θi,βi) + cot (θi+1,βi)]
δri,i+1 ∧ r̂i+1,i

ri+1,i + δri,i+1 · r̂i+1,i

−1

2

∑
i

[
cot (θi,βi) + cot

(
θi,βi−1

)] δri,ie ∧ r̂ie,i
rie,i + δri,ie · r̂ie,i

(9)

II. ISOGONAL MODES AND CONFORMAL SYMMETRY.

Isogonal modes can be thought of as the discretized degrees of freedom associated to the conformal sym-
metry of the continuum description. The elastic energy associated to displacement field ua(r) (at position
r) with vanishing bulk modulus is

E =
1

2

∫
d2r

[
∂aub(r) + ∂bua(r)− 1

2
δab∂cuc(r)

]2

(10)

where {a, b, c} label spatial indices. Assuming relaxational dynamics - i.e. u̇a = − δE
δua

- the equation of

motion for field ua is found to be u̇a = ∂2ua. Any solution of the Cauchy-Riemann equations (∂xwx =
∂ywy; ∂xwy = −∂ywx) can be added to ua with no generation of additional internal stresses. That is to
say, any conformal transformation of our equilibrium displacement field is also a valid ground state. Isogonal
modes correspond to such independent local dilations.

Alternatively isogonal modes can be thought of as generalizations of the Villain’s iso-perimetric breather
modes [3] of a hexagonal lattice of domain walls. Villain’s model [3] in particular described adsorbed atoms
on a 2D substrate, where, in the incommensurable phase, ‘grain’ boundaries form between ‘out’ of register
phases. The boundary energy for regular hexagonal lattice of such domains

∑
ij T rij is unchanged under

breather modes generated by dilations of hexagons, which can be demonstrated to leave the total length
of the entire boundary

∑
ij rij invariant. Our isogonal modes are a generalization to the case of a general

lattice (satisfying ATN equilibrium constraints) when interfacial energy varies from edge to edge T → Tij .

III. MODE ANALYSIS OF THE ATN MODEL FOR A 1D CABLE

Starting from Eqs (2-4) in the main text and specializing to a one-dimensional uniform cable of active-
elements, the linearized equations become

d

dt
δrn = ν−1K ¯̀[δun − δun−1]

d

dt
δun = ν−1K [δun+1 + δun−1 − 2un]− l0W

′[1]

τ`u0
(δun − δmn)

d

dt
δmn = ατ−1

` W ′[1] (δun − δmn) (11)

We’ve defined 1D strain un ≡ (rn,n+1 − `n)/¯̀ = Tn/K ¯̀ where rn,n+1 = rn+1 − rn the length of the edge

between vertices rn+1 and rn and ¯̀ is the mean intrinsic length. We have rescaled m → aTs
K ¯̀m to make it

dimensionless. In the continuum limit, these transform to

∂t

 δr
δu
δm

 =

0 ν−1K ¯̀2∂x 0
0 ν−1K ¯̀2∂2

x − κ κ
0 ᾱ −ᾱ

 δr
δu
δm

 (12)
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x denotes the coordinate along the cable. Furthermore we’ve defined κ ≡ ¯̀W ′[1]
τ`u0

and ᾱ = ατ−1
` W ′[1]. As

was expected, all elements of the first column of the matrix are zero, implying that δr displacements along
the cable are zero modes and that their associated dynamics is slaved to the dynamics of tension and myosin
perturbations. Hence, we focus on the reduced myosin/tension system in Fourier space (define D ≡ ν−1K ¯̀2)

∂t

(
ũ
m̃

)
=

(
−Dk2 − κ κ

ᾱ −ᾱ

)(
ũ
m̃

)
(13)

The exact dispersion relation for both branches is

λ1,2 = −Dk
2 + ᾱ+ κ

2

[
1±

√
1− 4ᾱDk2

(Dk2 + ᾱ+ κ)2

]
(14)

Assuming mechanical feedback occurs on a slower time-scale than actomyosin contractility ( ᾱκ << 1) we can
expand each dispersion relation to linear order in ᾱ

κ

λ1,2 ≈ −
[
Dk2 + κ+

ᾱκ

Dk2 + κ

]
, − ᾱDk2

Dk2 + κ
(15)

We immediately see that first branch is gapped by κ while the second branch is acoustic, corresponding
to fact that a global rescaling of tension and myosin along the cable does not perturb the underlying force
balance or stall condition and thus there are phonons at long times and length scales effectively behaving as
a solid! The eigenvectors are

φ1,2 ≈
(
Dk2 + κ
−ᾱ

)
,

(
κ

Dk2 + κ

)
(16)

For ᾱ = 0 the gapped mode corresponds solely to tension perturbations that exponentially localize within
a length scale

√
D/κ - at short times isogonal/fluid deformations will occur within this ‘droplet’. This

recapitulates a passive Maxwellian viscoelasticity. Conversely, for 0 < ᾱ << κ, the gapped mode is an
admixture between both tension and myosin perturbations along the cable. Taken together, Eqns. (SI15)
and (SI16) provide the details to the argument made in the main text. At long wavelengths, and thus small
k, only the acoustic branch is non-zero. The spring constant of this mode is the second derivative of the
dispersion relation at k = 0 and thus Keff = ᾱκ−1D as reported.

To gain further insight into the rheology of this material, we now study Eq. (SI13) under sinusoidal forcing
on the boundary. We expand tension along the cable in a Fourier sine series

u = u0 + u∆

( x
L

)
+

∞∑
q=1

ũq sin
(qπx
L

)
(17)

We are only interested in symmetric longitudinal pulling and thus set u∆ = 0. A similar decomposition
exists for myosin line density m

iω ūq +

(
D
q2π2

L2
+ κ

)
ūq − κm̄q =

(1− (−1)q)

πq
F̄ext(ω) = F̄q (18)

iωm̄q + ᾱm̄q − ᾱūq =
(1− (−1)q)

πq
M̄ext(ω) = Ḡq (19)

Fext and Mext represent the time-dependent external force acting on the boundary of the 1D chain. The
dynamic boundary conditions act as a source as expected (only onto the odd modes as they respect the

left/right symmetry). Eq. (SI19) implies m̄q =
Ḡq+αūq
α+iω . Substituting this into the Eq. (SI18).

ūq

[
D
q2π2

L2
+ κ

(
1− ᾱ

ᾱ+ iω

)
+ iω

]
= iω

[
F̄q +

κ

ᾱ+ iω
Ḡq

]
(20)
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which can be simplified to obtain (we assume the forcing function on myosin is equivalent to the forcing
function on tension)

ūq(ω) = − b2(ω)

(πq)2 + b2(ω)

(1− (−1)q)

πq
F̄ext(ω) (21)

where we defined b2(ω) = iωL2D−1
[
1 + κ

ᾱ+iω

]
. The Fourier series over q can be re-summed to give ū(x, ω)

for x ∈ [−L/2, L/2].

ū(x, ω) =
cosh( bxL )

cosh( b2 )
F̄ext(ω) (22)

This immediately implies the phase relationship between strain and the external force is

r̄(ω) = −
ib2 cosh( bxL )

ωL2 cosh( b2 )
F̄ext(ω) (23)

We note this has the expected regimes of behavior discussed in the main text. For ω << ᾱ, the relationship
is r̄ ∼ D−1

[
1 + κ

ᾱ

]
F̄ and thus it behaves as a spring with stiffness ᾱD

κ+ᾱ as expected from our dispersion

relation derived above. For ᾱ << ω << κ the relationship is r̄ ∼ iκ
Dω F̄ and thus it behaves as a visco-elastic

fluid, probing the gap between acoustic and optical branch. This regime is where isogonal deformations and
localized stress patterns should exist. Lastly, if ω >> κ then r̄ ∼ D−1F̄ - i.e. we are simply pulling on the
elastic cytoskeletal network. The results provide an analytic backbone to the numerical results obtained for
a 2D network presented in the main text.

IV. MODE ANALYSIS OF THE 2D ATN NEAR EQUILIBRIUM.
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FIG. 2. (A) Labeling of edge vector rij along with vertices connected along all 4 neighboring edges used in Eq.
(SI24). (B) Definition of circular sum around a cellular plaquette for Eq. (SI25). We define the positive direction to
be counter clockwise around each cell. If the edge points ‘up-stream’ σαij = −1 as shown. (C) Vertex i can also be
labeled by the triplet of cells that meet at vertex i, in this case αβγ. Isogonal deformations act along the ‘external’
edge to the cell.

The two-dimensional dynamics near equilibrium is most naturally expressed in terms of edge vectors rij .
Equations of motion can be derived directly from Eq. 2 − 4 in the main text. Hereafter time is rescaled
t→ K

ν t to reduce the appearance of unnecessary constants.

d

dt
rij = ui1i + ui2i + ujj1 + ujj2 − 2uij (24)
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where uij ≡ K−1Tij r̂ij = uij r̂ij and neighboring vertices are defined in Fig. 2a. Parameterization in terms
of edge vectors simplifies the resultant algebra at the cost of introducing 2c additional degrees of freedom
associated to the geometric constraint that edge vectors sum to zero around each cellular plaquette∑

<i,j>∈Eα

σαij rij = 0 ∀α (25)

Eα denotes the set of all edges associated to cell α while σαij = ±1 if rij points counter-clockwise or clockwise
respectively, as graphically shown in Fig. 2b. It is easy to check that dynamics described by Eq. (SI24)
preserves the constraint defined by Eq. (SI25) - each vertex’s equation of motion will appear in the sum
twice with opposing signs. We linearize Eq. (SI24) and decompose each edge vector into transverse δθij and
longitudinal δrij components defined by

δrij = δrij r̂ij + rij δθij (ẑ ∧ r̂ij) (26)

leaving us with equations

d

dt
δrij =

∑
<k,l>

[Lij;kl δukl −Aij;kl uklδθkl] (27)

rij
d

dt
δθij =

∑
<k,l>

[Aij;kl δukl + Lij;kl uklδθkl] (28)

where we have defined

Lij;kl ≡ r̂ij · r̂kl [Akiδli +Aljδkj −Aliδki −Akjδlj ]
Aij;kl ≡ r̂ij ∧ r̂kl [Akiδli +Aljδkj −Aliδki −Akjδlj ]

Aij is the adjacency matrix of the cell array, i.e. is one only if vertex i and j are connected, and δij is the
Kronecker delta. Dynamics of small perturbations in intrinsic length is found by expanding Eq. (3) from
the main text about the fixed point

d

dt
δ`ij = κij [δuij − δmij ] (29)

where

κij ≡
ν`ijW

′(1)

τ`Kuij
(30)

Tension dynamics is easily obtained via the constitutive relation uij = rij − `ij = Tij/K

d

dt
δuij =

d

dt
δrij − κijδuij + κijδmij (31)

Lastly, the myosin dynamics is governed by

d

dt
δmij = ᾱ (δuij − δmij) (32)

where myosin has been rescaled to have units of interfacial deformation: δmij → aTsK
−1δmij and ᾱ ≡

ανK−1τ−1
` W ′(1). Isogonal modes correspond to δθ = δu = 0 which is realized by δ`ij = δrij , provided∑

<i,j>∈Eα σ
α
ij δrij r̂ij = 0. The latter constraint is satisfied for

δri = r̂ji
TjiΘγ

Si
+ r̂ki

TkiΘα

Si
+ r̂li

TliΘβ

Si
(33)
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where δri denotes displacement of vertex at which adjacent cells α, β, γ meet; Θα,Θβ ,Θγ are independent
variables associated with isogonal modes of the denoted cells and Si denotes the area of said vertex’s dual
triangular plaquette. A graphical depiction of this concept is shown in Fig. 2c. We check Eq. (SI33) leaves
edge angles unchanged.

Tij ∧ [δri − δrj ] = 2

[
Tij ∧ Ti1i

Si
Θα +

Tij ∧ Ti2i
Si

Θβ −
Tij ∧ Tj1j

Sj
Θα −

Tij ∧ Tj2j
Sj

Θβ

]
= 0

Thus, isogonal deformations have no restoring force. Eqs. (SI27-SI28) and (SI31-SI32) fully specify the
closed form linearized dynamics with matrix H that can be expressed

S = U−1HU (34)

where U ≡ diag
[
1, 1,
√
uijrij ,

√
κij
ᾱ

]
and

S ≡


0 Lij;kl −Aij;kl 0

0 Lij;kl − κijδij;kl −Aij;kl
√

ukl
rkl

√
ᾱκijδij;kl

0
√

uij
rij
Aij;kl

√
uij
rij
Lij;kl

√
ukl
rkl

0

0
√
ᾱκijδij;kl 0 −ᾱδij;kl


Because the first column of the matrix is equal to zero, δrij is slaved to other components and thus the rank
of H is at most 9c as our null space contains c isogonal modes defined above, along with the 2c geometric
constraints (see Eq. (SI25)) that are conserved by the dynamics. The left eigenvectors of isogonal modes were
numerically found to be exponentially localized around the respective cell with a length scale (κ + ᾱ)−1/2:
i.e. they are only forced with the screening length set by contractility as shown in Fig. 4(a). This reproduces
the result found in 1D.

The reduced matrix S̃ is obtained by eliminating the 1st row and 1st column of S. It is manifestly
symmetric in our chosen basis, following immediately from the fact that Lij;kl and Aij;kl are symmetric and
anti-symmetric respectively. Furthermore, it is easy to see that Lij;kl satisfies all properties of a normalized
weighted graph Laplacian defined over edges in our triangulation and thus will be negative semi-definite,
as shown in Fig. 3, ensuring stability of the tension-triangulation of the unperturbed ATN state. ᾱ > 0
introduced acoustic branches and thus phonons at long times. Thus we conclude that 2D modes will exhibit
(albeit in a more complex form) qualitatively equivalent features as that derived for the 1D cable above -
solid-like phonons with weak spring constants at long time and short-scale liquid like behavior dominated
by isogonal deformations.

Another important characterization of the normal modes is the structure of eigenmodes: are they localized
or extended? To address this question we numerically measured the distribution of participation ratios,
defined as

pn′ ≡
N∑
n=1

|φn
′

n |4 (35)

where φn
′

n represents the nth component of the flattened eigenvector
(
δrij δuij rij δθij δmij

)T
and n, n′ ∈

[1, N ] where N denotes the system size. If φn
′

is extended, then |φn′n | ∼ 1/
√
N and thus pn′ should scale

with inverse system size. Similarly, if φn
′

is localized, it should saturate to a finite number with increasing
N . We tested the localization of our modes by tracking how the distribution of pn′ scaled with increasing
number of cells within hexagonal and randomly generated voronoi lattices. Isogonal modes were excluded
from analysis as it is known a priori that each is localized to a single cell. All non-isogonal modes are fully
extended in the hexagonal case - the system is diagonalizable in a plane-wave basis - as shown numerically in
Fig. 4b. Conversely, as shown in Fig. 4c, it was found that all but one band of ‘transverse’ modes localize for
disordered Voronoi lattices. In other words, c modes are still fully extended on a disordered triangulation.
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lattices: fraction of eigenmodes (excluding isogonal modes) below a given participation ratio Npn′ (defined by Eq.
SI35)) scaled with the number of cells N . All modes are extended as indicated by the collapse of curves scale on top
of each other. (c) Repeated for random Voronoi lattices of varying size. In contrast to the case (b), only 1/7 of the
modes (highlighted in light blue) are extended, while 6/7 are localized, as indicated by the lack of curve collapse.

V. CONSTRUCTION OF THE CONTROL DISTRIBUTION OF χ AND ITS TESTS ON
SYNTHETIC DATA

The appeal of the geometric compatibility constraint (c.f. Eqn 5 in main text) is that one can directly
measure it from images of an epithelial tissue and thus immediately test the validity of force balance and
tension dominance assumptions. Alas, even if the assumptions were correct, one would not expect this
constraint to be satisfied exactly by empirical data because of i) the measurement noise (imperfect image
segmentation as well as fundamental digitization of vertex positions) and the ii) dynamical fluctuations of
cells. Hence our analysis focuses on the probability density function (PDF), P (logχ), and evaluates the
tendency towards logχ = 0 (i.e. constraint satisfaction) which manifests itself as a statistically significant
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FIG. 5. (a) A diagram depicting the construction of the control distribution. Cells are sampled from the array and
given randomized external edges consistent with the empirical angle distribution of the tissue. (b) A heatmap, in the
space of vertex model parameters σa and Γ, defined by Eq. SI36, of average edge curvature in units of the edge length,
R−1r. In a static tension-net, cell edges are straight lines hence curvature is exactly zero. This is found in the upper-
left corner. Conversely, as the area parameters become large, the lattice approaches a regime where pressure can no
longer be neglected, found in the lower right corner. (c-d) Two histograms of the compatibility condition measured
from synthetic cell arrays. Numbers match the numbered points in (b). As Γ, σa → 0 we approach our static tension
net limit. As expected, for parameters corresponding to point 1, the vertex-model generated synthetic tissue exhibits
a compatibility measure, logχ, tightly clustered around zero relative to the null distribution. Parameters for point
2 are in the regime where pressure differentials between cells are important and as can be seen, the tension network
approximation is not valid. In this case, the distribution of logχ is statistically consistent with the control. (e-f)
Representative geometry of the cell arrays corresponding to vertex model parameters used to generate the histograms
given in (c-d) respectively.

reduction of variance compared to a randomized “control distribution” that corresponds to mechanically
unconstrained cell arrays (or convex polygonal tessellations of a plane) consistent with the observed angles
of the real tissue. Below we discuss the exact construction of the control distribution and elucidate its
discriminatory power using synthetic data. Furthermore, we expand upon potential tests one can use to
analyze potential sources of the measured variation.

It is important to note that the average 〈log(χ)〉 = 1
c

∑
α log(χα) is determined entirely by χα from the

cells on the boundary of the tissue. When computing the mean, each lattice angle in the bulk will be summed
over twice with opposing signs and thus the only contribution comes from angles along the boundary. This
is just a discrete manifestation of Stokes’ law. Since the number of boundary cells scales as

√
c for c � 1,

the average goes to zero as 1/
√
c. Hence, empirically P (logχ) is approximately normal with zero average.

The control distribution is constructed as follows. A random cell is sampled from the segmented cell array.
Each vertex of the sampled cell is given a random external edge using a vertex angle sampled from the
empirical angle distribution. The remaining angle is simply the supplementary of the interior angle of the
cell plus the randomly sampled angle. To ensure convexity, the configuration is accepted provided no angle
greater than π was generated. A graphical depiction of this procedure is given in Fig. 5a. This procedure
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is repeated a sufficient number of times to ensure the distribution is well sampled (set to 10x the number of
cells in the array). Hence, the control distribution measures the ‘maximum’ variance possible in log(χ) given
just the set of observed lattice angles. We then compare the variances between the measured PDF and the
control: σdata/σnull << 1 signifies statistically significant tendency of the observed array geometry towards
small values of χ and hence approximate compatibility.

To validate the proposed statistical test, we examined synthetic data constructed by minimizing a vertex-
type model energy function which allows for variation of internal pressure of cells pα = 2Γ(Aα − Āα) while
making edges Hookean springs with randomized intrinsic lengths `ij :

E =
∑
<i,j>

(rij − `ij)2 + Γ
∑
α

(Aα − Āα)2 (36)

Intrinsic cell area Āα is to be a quenched random number sampled from a Gaussian distribution with
mean 3

√
3/2 and standard deviation σa. Furthermore, intrinsic edge length `ij is sampled from a Gaussian

distribution with mean 1 and standard deviation fixed to be .2. The external space has pressure −1 to balance
the internal tension of the vertex model. Cell arrays are obtained by minimization of E (approximately 300
cells were relaxed per iteration) under the prescribed boundary conditions. We then construct P (logχ)
distributions for the generated cell arrays for different values of Γ and σa and compare to corresponding
control distributions. This allows us to estimate the ratio σdata/σnull as a function of pressure’s contribution
to mechanical equilibrium.

To quantify the effect of pressure fluctuations (forced in the model by heterogeneity of Āα), we compute

the curvature (normalized to average edge length) R−1 ≡ ∆pr
T of each edge as defined by the Young-Laplace

Law, which relates the radius of curvature of the interface R−1 to edge tension T and the pressure difference
∆p across the edge. Average curvature 〈R−1〉 is a convenient measure of the extent of pressure contribution
to the force balance relative to tension. Fig. 5b displays a heat map showing 〈R−1〉 obtained for different
values of Γ and σa. Representative examples exhibiting the discrimination of our control distribution between
the case of a tension network (marked by the point labeled 1) and a network with non-negligible pressure
contribution (point 2) are shown in Fig 5(c-d). Examples of cell array geometries for each range of vertex
model parameters are shown in Fig. 5(e-f). As expected, while the 1st case (Fig. 5c) passes our statistical
test for compatibility, the 2nd case (Fig. 5d) fails.

The above vertex model allowed us to quantitatively study the effect of pressure differentials, captured by
〈R−1〉, and measurement error associated to the discretization of vertex positions on an image on the variance
of P (logχ). ‘Pixelation’ noise, denoted σpix, was introduced by scaling tissues obtained from minimization
of Eq. (SI36) to match the desired edge length and then rounding vertex position to the nearest integer.
Both the resultant standard deviation of the log(χ) distribution as well as the ratio σdata/σnull are reported
in Fig. 6e,f. As expected, σχ increases as pressure differences become non-negligible (〈R−1〉 > .1) and as
measurement uncertainty increases. These results provide a baseline to which to compare data.

Furthermore, as cell edge curvature can be directly measured from high quality images of epithelial tissues,
we can estimate both 〈R−1〉 and σpix parameters corresponding to real tissues. In Fig. 6e,f we place on
the heat maps the points corresponding to the pupal notum, ventral mesoderm, lateral ectoderm, and larval
wing disc epithelia (marked respectively as the triangle, square, circle and star) for comparison with results
below. Curvatures were estimated by fitting segmented edges to circles.

All four analyzed tissues are shown in Fig 6: ventral mesoderm prior to invagination, pupal notum, lateral
ectoderm during early germ band extension, and third instar larval imaginal wing disc (data kindly provided
by Ken Irvine [4]). Example images of the analyzed data are shown in Fig. 6a-d. The measured ratios
σdata/σcontrol were found to be consistent with synthetic ratios of their estimated positions on Fig. 6f and
thus we conclude both the ventral mesoderm and pupal notum are well approximated as quasistatic tissues
in tension-balance.

Lastly, we tested the prediction that the observed increase in σdata between the lateral ectoderm and
the ventral mesoderm and pupal notum is primarily due to neglected curvature. Specifically, using Eq.
(SI8) one can quantitatively analyze the fraction of the measured variance of logχ that originates solely
from the contribution of pressure differentials to mechanical equilibrium. To this end, we analyzed the
lateral ectoderm tissue and estimated the compatibility measure predicted from the small, yet non-negligible
pressure differentials between neighboring cells. We found good agreement between log(χest), the quantity
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FIG. 6. (a) An image of the ventral mesoderm (Drosophila embryo) before invagination of the ventral furrow; (b)
Pupal notum epithelium; (c) Epithelium of the wing imaginal disc at the third instar larval stage; (d) Embryonic
lateral ectoderm during early germ band extension; (e) A heatmap of the standard deviation of log(χ) (obtained
via synthetic data created minimizing the energy of Eq. (SI36)) as a function of both average edge curvature
R−1, normalized to average edge length, and measurement noise σpix, simulated by introducing rounding error in
vertex position. The triangle, square, circle, and star markers denote the estimated positions of the pupal notum,
ventral furrow, lateral ectoderm, and wing disc epithelia respectively. (f) The analogous plot to (e) showing the
ratio σdata/σnull. As curvature and measurement noise increase, the ratio tends toward 1 as expected. Again the
estimated positions of each tissue is marked. (g) Characterization of the distribution of the compatibility measures for
the four tissues. (h) A scatter plot comparing the measured log compatibility condition against the predicted value
using Eq. (SI8) and empirically measured cell edge curvatures in the lateral ectoderm. The correlation coefficient is
approximately .5 giving us confidence that half of the variance of the empirical compatibility condition comes from
a violation of our constant pressure assumption. The number of cells used in this analysis was 328.

predicted from Eq. (SI8), and the empirically measured value log(χ) (Pearson’s correlation coefficient of
∼ .5 for 328 cells) as shown in Fig. 6h . As such, we conclude that roughly half of the observed variance of
P (logχ) can be explained solely by observed curvatures, again consistent with estimates obtained from the
synthetic data.

VI. PROCEDURE USED TO FIT ISOGONAL DEFORMATION DURING VENTRAL
FURROW FORMATION

To define isogonal transformations from observed vertex displacements we use as a starting point Eqn. (6)
of the main text, reproduced here

δrαβγ = r̂αβ
TαβΘγ

Sαβγ
+ r̂βγ

TβγΘα

Sαβγ
+ r̂γα

TγαΘβ

Sαβγ
(37)

This immediately introduces two problems: (i) we must track vertices over time to measure the deformation
field δrαβγ and (ii) since Tαβ and Sαβγ are defined by the dual tension triangulation, we must infer, from
the observed cell array at a given time, the closest exactly-compatible cell array and its corresponding dual
triangulation. The latter amounts to ‘inferring’ the tensions from the observed cell array, i.e. carrying out
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a “Mechanical Inverse” [1] under the assumptions of the ATN model. This was done by exploiting the fact
that edges of the constructed tension triangulation are orthogonal to the ‘dual’ edge of the cell array - i.e.
[Qα −Qβ ] · r̂ij = 0 where cells α, β border the edge that runs between vertices i, j and Qα denotes the vertex
of the tension triangulation that corresponds to cell α. Hence the ‘closest’ possible tension triangulation is
inferred by minimizing the following energy function with respect to the dual triangulation vertices {Qα}.

E [{Qα}|r̂ij ] =
∑
<α,β>

[
[Qα −Qβ ] · r̂ij

]2

+ Λ

[
1

E

∑
<α,β>

[Qα −Qβ ]
2 − 1

]
(38)

Λ is a Lagrange multiplier used to fix the scale of tensions and exclude the trivial solution (all triangulation
vertices lying on top of each other). MATLAB’s function fmincon was used to minimize using the ‘active-
set’ algorithm (where the centroid of the graph is constrained to the origin). The resultant {Qα} provide
the geometric factors of the triangulation that directly enter the matrix entries defined by Eqn. (SI37).
Predicted tensions as well as the cumulative distribution is shown in Fig. 7 (ab) respectively for a snapshot
of the Ventral Furrow formation.
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FIG. 7. (a) A heatmap illustrating the distribution of tensions on the ventral side of the embryo minutes before
ventral furrow formation. The ‘hotter’ the color, the higher the tension. (b) A cumulative distribution function of all
estimated balanced tensions within the cell array shown in (a). Due to the assumption of force balance the scale is
unknown and thus the mean tension is set to 1. The distribution is relatively uniform. (c) Example of cell tracking
algorithm pairing segmented cells in subsequent time-points.

Vertices were tracked by tracking cells via dominant pixel overlaps and using the tracked cells to define
vertex displacements δrαβγ for successive time points by looking for vertices that share the same three
bordering cells. Deformation fields were computed over 20 second time windows. While T1 events were rare
during ventral furrow formation, a handful were observed in each of the 5 movies analyzed. In the event of
a T1 transition, unpaired vertices are ‘tracked’ using a point-matching algorithm - i.e. the vertex will get
paired with the closest unpaired vertex in the subsequent time-point. If there is no close candidate to the
vertex, a displacement vector is interpolated onto the unpaired vertex. These displacements were directly
used on the L.H.S. of Eqn. (SI37). An example of tracked cells (plotted with tracers) is shown in Fig. 7c.

Eqn. (SI37) is a rectangular (2v by c) linear system of equations defining vertex displacements corre-
sponding to an arbitrary isogonal transformation parameterized by {Θα} and can be solved by simple least
squares analyses. This problem is heavily over-constrained (2v = 4c as compared to c fitting parameters)
and thus represents a strong test of our model.
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VII. DISCUSSION OF VENTRAL FURROW ATN MODEL FOR TWIST AND SNAIL
MUTANTS
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FIG. 8. (a) Plot of the simulated active tension net with bulk medial myosin pulses within the red box. (b) A
characteristic time-course of apical area of single cell during the simulation - denoted in (a) with a green dot. Cell
contracts as a result of medial myosin pulses and subsequently stabilizes at a smaller area (until its neighbor is pulled).
Three such pulses are shown. (c) The analogous plot to (a) but in the model with reduced tension T ∼ ∆p r. As
pressure can no longer be neglected, cells by and large recover their apical area and do not show net constriction. (d)
The time-course of apical area of cell marked with green dot in (c). The constriction fails to stabilize at a smaller
area due to the influence of pressure. The result is large area fluctuations (due to small cortical tension) that do not
permanently constrict.

The main text presented the ATN model interpretation of the dynamics of apical constriction preceding
invagination of the ventral mesoderm of WT embryos as well as discussed twist and snail phenotypes in the
context of the ATN model. In particular, we interpret the “ratchet” mechanism described by [5] in terms
of a systematic drift of the cell array geometry along the manifold of tension -balanced states, driven by
the pulsatile medial acto-myosin activity. The observed VF formation defect in snail mutants is associated
with its failure to generate medial myosin pulses. Conversely, the interpretation of twist mutant is more
subtle: Martin et al [5] attributed it to the failure of cells to remodel their cortical cytoskeleton to “trap”
the transient apical constriction, which leads to the failure of the ratcheting process. In the main text we
proposed that the twist phenotype may be understood in the framework of the ATN model simply as a
consequence of lower tension in the cortical cytoskeleton resulting in non-negligible pressure heterogeneity
that lifts the degeneracy of the tension-balance manifold and thus introduces a restoring force for isogonal
deformations. Below we illustrate this scenario by a computer simulation of a vertex-type model using ATN
dynamics.

Simulation of the WT phenotype was initialized to a rectangular array of hexagonal cells with unit edge
length. Equations (2-3) were simulated on each edge under the assumption of a constant, uniform myosin

field. Each cell’s pressure was taken to be 2Γ
[
Aα − Āα

]
with Āα = 3

√
3/2 (the area of a hexagon with a
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unit edge) for all cells in the mesoderm. Effects of the medial myosin pulse were simulated via a transient
isotropic perturbation of tensions around cells (with amplitude comparable to the scale of cortical tension).
Inter-arrival times between myosin pulses were Gaussian distributed and randomly sampled for each cell in
the marked furrow (see red box in Fig. 8a). No pulses were simulated outside of the synthetic furrow. To
represent twist phenotype we carried out a similar simulation, but with the tension scale reduced by a factor
of 10 so that T ∼ ∆pr. This moved the system out of the tension-net regime, causing the area-elasticity term
to ‘force’ retraction of the cell after contractions caused by the myosin pulse. Randomizing Āα magnified the
stabilization defects - intended to simulate potential effects of the lack of a persistent medial actin network.
Plots of the final lattice as well as representative time-traces from synthetic cells are shown in Fig 8cd.

VIII. IMAGE ANALYSIS METHODS

All images were first classified using machine learning software Ilastik [7]. The resultant probability
map was passed into MATLAB and segmented using the watershed algorithm [8] after pre-filtering. Once
segmented, all relevant quantities such as vertex positions and lists of neighboring cells and edges were stored
in a custom data structure. All code is available upon request.

Myosin was measured using edges obtained from the segmentation produced via the watershed algorithm
and dilated by one pixel to account for potential segmentation error. The average intensity over the set of
pixels was used as a proxy for myosin line density for each edge. As we only cared about myosin dynamics
up to an overall scale, the relative myosin was computed and then tracked over time - i.e. we divided by the
instantaneous mean. Edges were tracked using the tracked cell data.

Tracking (matching segmentation labels between subsequent time-points) was done using point-matching
of cell centroids after correcting for PIV (Particle Image Velocimetry) estimated flow fields between time
points. PIV flow fields were estimated using cross-correlation between gridded regions defined on our image
[9] With cell’s tracked, vertices and edges can be easily tracked using their bordering cells.

IX. SIMULATION METHODS

Eqs. (2-4) in the main text were numerically integrated using MATLAB’s ODE15s solver as the large
time-scale separation resulted in a stiff system. T1 events were handled using MATLAB’s event feature, if
an edge falls below a critical user-specified value, then we flag an event which stops the integration. A T1
event is manually performed and then numerical integration is restarted.

For the 2D rheology simulation, a 15 x 15 square of cells was initialized in a slightly disordered hexagonal
lattice under constant pressure to balance against the internal tension. Sinusoidal external forces were
attached to the vertices on the vertical boundary. Strain rate was measured on vertical junctions throughout
the bulk.
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