Cell Reports, Volume 26

Supplemental Information

Impaired LXR^a Phosphorylation Attenuates

Progression of Fatty Liver Disease

Natalia Becares, Matthew C. Gage, Maud Voisin, Elina Shrestha, Lucia Martin-Gutierrez, Ning Liang, Rikah Louie, Benoit Pourcet, Oscar M. Pello, Tu Vinh Luong, Saioa Goñi, Cesar Pichardo-Almarza, Hanne Røberg-Larsen, Vanessa Diaz-Zuccarini, Knut R. Steffensen, Alastair O'Brien, Michael J. Garabedian, Krista Rombouts, Eckardt Treuter, and Inés Pineda-Torra

Figure S1. Related to Figures 1 & 2

(a) Alignment of the murine LXR α and LXR β showing differences in S196 phosphorylation motifs. (b) LXR α phosphorylation at Ser198 and total LXR α levels in human liver lysates (n=2) by immunoblotting. (c) WT and S196A genomic and protein sequence alignment of the murine LXR α depicting the single-site mutation at S196A. (d) Targeting construct containing the loxP and FRT sites, the predicted homologous recombinant alleles and the resulting WT and LXR α knock-in locus incorporating the mutated sequence. Diagram also shows oligos used for genotyping and product size. (e) Gel electrophoresis of DNA amplified products using the corresponding primers.

(f) Total LXR α and Hsp90 detected by immunoblotting in WT, S196A and LXR α knock-out livers. Densitometry quantification on LXR α levels normalised to Hsp90 loading control (n=3). (g) Plasma non-esterified fatty acids (NEFAs) and triglycerides (TGs) levels from WT and S196A mice on HFHC diet (n=5-6). Data are means ± SEM. (h) Hepatic gene expression of lipid droplet proteins from WT or S196A mice (n=6). Results shown normalized to cyclophilin and relative to WT set as 1. Data represents means ± SEM. * p < 0.05 or ** p < 0.005 relative to WT determined by Student's t-test. (i) Representative image of H&E-stained liver of WT and S196A mice fed a HFHC diet for 6 weeks. Arrows are pointing several inflammatory loci in WT liver. Scale bar at 50 μ M. (j) Representative images of Picrosirius Red-stained liver sections from WT and S196A mice on a HFHC diet for 12 weeks. Images are at 200x magnifications. Quantification of Picrosirius red-stained areas on three independent areas per section (n=6). Data represent means ± SEM.

Figure S2. Related to Figures 2 & 3.

(a) Hepatic cell apoptosis assessed *in situ* by Direct DNA Fragmentation (TUNEL) Assay (n=6/group) (*Right*). Representative images of TUNEL-stained liver sections from WT and S196A mice at 200x magnification (*Left*). (b) Hepatic lipid peroxidation shown as MDA levels in WT and S196A livers (n=6) normalised to protein levels in tissue homogenates. (c) Quantification of F4/80-positively stained areas in liver sections of WT and S196A mice (n=4) at 200x magnification. Dots represent average of three independent areas per animal. (d) Hepatic bile acid levels from WT and S196A mice fed a HFHC diet for 6 weeks (n=6). Values normalized to protein levels in liver homogenates. (e) Total cholesterol levels of faeces from WT and S196A mice (n=4). Values are shown per 100 g of dried faeces and normalized to animal body weight. (f) Small intestine and (g) (i) hepatic gene expression from WT or S196A mice fed a HFHC diet for 6 weeks (n=6). Results shown normalized to cyclophilin levels and relative to WT. (h) LDL-Receptor (LDLR) and α-Tubulin levels detected by immunoblotting in WT and S196A livers. Densitometry was performed on the levels of LDLR and normalised to the levels of the housekeeping α-Tubulin (n=4). Data represent means ± SEM. * p < 0.05 or ** p < 0.005 relative to WT determined by Student's t-test.

Figure S3. Related to Figure 4.

(a) Clustered heatmap of hepatic RNAseq normalised gene counts in WT and S196A mutant mice (n=3/genotype) of regulated genes in response to a HFHC diet. (b) Heatmaps of hepatic RNAseq normalised gene counts (n=3/genotype) for fibrosis (left) and mouse hepatic expression of genes previously identified to be part of a signature that distinguishes human NAFLD (right).

Figure S4. Related to Figure 4.

(a) Fold change of hepatic RNAseq gene counts of fatty acid genes in response to the HFHC diet compared to chow (set as 1) in WT mice (n=3/group). Adjusted p values (FDR 0.05) are shown. (b) Venn diagram of genes induced (red) or reduced (blue) in response to HFHC diet in WT or S196A mice. Significance set at $p \le 0.05$. (b,c) Pathway analysis considering group of genes induced (b) or repressed (c) by HFHC diet only in S196A mice. Bar graphs shows top ten KEGG Pathways with enrichment score between brackets. (d) Fold change of hepatic RNAseq normalised gene counts of top upregulated genes in S196A compared to WT mice (from Fig. 4) on chow or HFHC diet (n=3/genotype). Shown are p values of genes differentially expressed between WT and S196A mice on chow. All genes shown are significantly regulated on the HFHC diet (p<0.05). Red bar set at fold change=1 indicates no change in gene expression between WT and S196A mice. (e) Fold change of hepatic RNAseq normalised gene counts of top downregulated genes in S196A compared to WT mice (from Fig. 4) fed chow or HFHC diet (n=3/genotype). For gene expression on chow, p values of genes differentially expressed between WT and S196A are shown. Data is not shown for those genes minimally expressed in chow. For gene expression on the HFHC diet, all genes depicted are significantly reduced (p<0.05). (g) Fold change of hepatic RNAseq normalised gene counts for Ces gene family members comparing WT and S1986A genotypes by diet (n=3/group). Shown are p values of genes differentially expressed on a HFHC diet. Red bar set at fold change=1 indicates no change in gene expression between WT and S196A mice. (h) Heatmap of hepatic RNAseq normalised gene counts in WT and S196A mutant mice (n=3/genotype) of Ces family genes on a HFHC diet. Red and grey bars indicate positively regulated or unchanged genes, respectively. Highest regulated Ces member (Ces1f) is shown boxed.

(a-b) Proportion of genes that are up-(a) or down- (b) regulated in S196A vs WT fatty livers showing changes in H3K27Ac by ChIPseq analysis. Number of genes are shown inside the graph. Bar graphs shows top ten KEGG Pathways (FDR<0.05) with enrichment scores between brackets. (c) Representative H3K27Ac ChIP-seq read alignment tracks in WT and S196A HFHC-fed livers for up-regulated (*ElovI3*) and down-regulated (*Abcg1* and *Fabp5*) genes in S196A livers.

Figure S6. Related to Figure 6.

(a) Total spectral counts obtained from immunoprecipitates of wild-type human LXRα (LXRα), phospho-mutant (S198A) and control cells (expressing only the empty retroviral vector, VO) identified by mass spectroscopy. **(b)** Immunoprecipitation assays with cells expressing FLAG-tagged wild-type human LXRα (LXRα) and S198A (SA) mutant or vector only (VO). Wild-type and mutant LXRα were immunoprecipitated with anti-FLAG agarose beads followed by immunoblotting with specific TBLR1 antibodies. Expression of TBLR1 and LXRα in protein extracts prior to immunoprecipitation analysis (input) are shown. **(c)** Hepatic triglycerides (TGs) from WT and S196A mice treated with vehicle (Veh) or 50 mg/kg T0901317 (T1317). Values shown normalised to protein levels. **(d)** Representative H3K27Ac ChIP-seq read alignment tracks in WT and S196A HFHC-fed livers for genes shown to be reduced in S196A mice.

Table S1. Related to Figure 1.

Biometric and metabolic parameters of mice fed a chow diet.

Parameter	Genotype	Mean ± SEM	р	
Body weight	WT	23.63 ± 0.6	0 122	
(grams)	S196A	21.70 ± 0.75	0.132	
% Liver weight	WT	4.69 ± 0.25	0.241	
(Liver g/Body g)	S196A	4.41 ± 0.07	0.241	
Plasma glucose	WT	5.35 ± 0.10	0.268	
(mmol/L)	S196A	4.63 ± 0.22	0.200	
Plasma insulin	WT	0.34 ± 0.05	0 102	
(ng/ mL)	S196A	0.87 ± 0.24	0.103	
Hepatic triglycerides	WT	51.95 ± 5.06	0.116	
(µg / mg protein)	S196A	37.63 ± 4.50	0.110	
Hepatic total cholesterol	WT	98.96 ± 10.48	0.688	
(µg / mg protein)	S196A	104.43 ± 4 .05	0.000	

Table S2. Related to Figure 1.

Biometric and metabolic parameters of mice fed a high fat and high cholesterol diet.

Parameter	Genotype	Mean ± SEM	p-value
Body weight	WT	21.36 ± 0 .41	0.012
(grams)	S196A	19.89 ± 0.35	0.012
% Liver weight	WT	9.30 ± 0.17	3 06E-12
(Liver g/Body g)	S196A	6.41 ± 0.18	3.00E-12
Plasma glucose	WT	4.49 ± 0.30	0.762
(mmol/L)	S196A	4.61 ± 0.24	0.762
Plasma insulin	WT	0.60 ± 0.10	0.408
(ng/ mL)	S196A	0.87 ± 0.33	0.496
Hepatic triglycerides	WT	106.66 ± 10.04	0.033
(µg/ mg protein)	S196A	170.41 ± 23.85	0.000
Hepatic total cholesterol	WT	207.79 ± 23.28	0 00006
(µg/ mg protein)	S196A	53.33 ± 2.76	

	Forward primer (5' to 3')	Reverse primer (5' to 3')	
Adipophilin	GACCGTGCGGACTTGCTC	GCCATTTTTTCCTCCTGGAGA	
Abca1	GGACATGCACAAGGTCCTGA	CAGAAAATCCTGGAGCTTCAAA	
Abcg1	CCTTCCTCAGCATCATGCG	CCGATCCCAATGTGCGA	
Abcq5	TGGATCCAACACCTCTATGCTAAA	GGCAGGTTTTCTCGATGAACTG	
Abcg8	TGCCCACCTTCCACATGTC	ATGAAGCCGGCAGTAAGGTAGA	
a-Sma	CCCAGACATCAGGGAGTAATGG	TCTATCGGATACTTCAGCGTCA	
Atf3	GAGGATTTTGCTAACCTGACACC	TTGACGGTAACTGACTCCAGC	
Atp6v0d2	GTGCAGTGTGAGACCTTGGA	GCCAGGAAGTTGCCATAGTC	
Bex1	ATGGAGTCCAAAGATCAAGGCG	CTGGCTCCCTTCTGATGGTA	
Cd36	GCCAAGCTATTGCGACATGA	TCTCAATGTCCGAGACTTTTCAAC	
Ces1f	TGGAGAGTCAGCAGGAGGTT	ATGAAGGCCACACCACTCTC	
Chop	CTGGAAGCCTGGTATGAGGAT	CAGGGTCAAGAGTAGTGAAGGT	
Col1a1	GCTCCTCTTAGGGGCCACT	CCACGTCTCACCATTGGGG	
Cyclophylin	GGCCGATGACGAGCCC	TGTCTTTGGAACTTTGTCTGCAA	
Cyp17a1	ACCAGCCAGATCGGTTTATG	AGGGCAAATAACTGGGTGTG	
Cyp2b13	ATGCTCATGTACCCCCATGT	GCCGATCACCTGATCAATCT	
Cyp2b9	CTGGCCACCATGAAAGAGTT	CATTGGGCCTCCTCCTTAT	
Cyp2c69	CACAGTGGCTCATGAAGGAA	GATGAATTGGGGATCACAGG	
Cyp7a1	CATACCTGGGCTGTGCTCTG	CCAAATGCC TTCGCAGAAGATG	
Cx3cr1	TGAGTGACTGGCACTTCCTG	AAGGAGGTGGACATGGTGAG	
Dgat2	CTGGCTGATAGCTGCTCTCTACTT	TGTGATCTCCTGCCACCTTTC	
Elovl6	TGAACAAGCGAGCCAAGTTTG	GAGCACCGAATATACTGAAGACG	
Fabp5	AGGATGGGAAGATGATCGTG	CTGGCAGCTAACTCCTGTCC	
Fas	GCTGCGGAAACTTCAGGAAAT	AGAGACGTGTCACTCCTGGACTT	
Fsp27	GTGTCCACTTGTGCCGTCTT	CTCGCTTGGTTGTCTTGATT	
Hamp2	AGAAAGCAGGGCAGACATTG	GCAGATGGGGAAGTTGATGT	
Idol	ATGCTGTGCTATGTCACGAGG	TCGATGATCCCTAGACGCCTG	
Ldlr	GCATCAGCTTGGACAAGGTGT	GGGAACAGCCACCATTGTTG	
L-Fabp	ATGAACTTCTCCGGCAAGTACC	CTGACACCCCCTTGATGTCC	
Lpcat3	CCTTCACGGGCCTCTCAATT	CCATGAGTCGCAGGATGAGG	
Lxra	GGTTGCTTTAGGGATAGGGTT	TTCCGCTTTTGTGGACGAAG	
Nnmt	TGTGCAGAAAACGAGATCCTC	TGTGCAGAAAACGAGATCCTC	
Ncp1I1	GAGAGCCAAAGATGCTACTATCTT	CCCGGGAAGTTGGTCATG	
Osbpl3	AGACACGGAGGAGCACATCT	CGGTACATTCTGTGGTGACG	
Osm	GCAGCTGTGGCTTTCTCTGG	TCGTCCCATTCCCTGAAGAC	
Ppp1r3g	CTGAGACCCCGATCCCTGAT	GAGAGCGGCGATATTCCTGT	
Scara3	GCTGGTGAAGACGAGGACAT	CAAAATCCGCACTGATGTGT	
Scd1	CCGGAGACCCCTTAGATCGA	TAGCCTGTAAAAGATTTCTGCAAA	
Slc22a26	ACAGAGCCCTGTATGGATGG	AGATCCACACACCAGGTTCC	
Srebp1c	CAGGAGGACATC TTGCTGCTTC	TTGGGAGGCTGGTTTTGACC	
Syngr1	CTGGTTCGTGGGTTTCTGCTT	GTCCCTTCGTTCAGAGGGTTG	
Tgfb2	TTTGCTCCAGACAGTCCCAG	ATCTCCAGACATGCCAAGCC	
Timp1	GTGGATATGCCCACAAGTCC	CTCAGAGTACGCCAGGGAAC	
Thrsp	GCGGAAATACCAGGAAATGA	CGGGGTCTTCATCAGTCTTC	
spl Xbp1	GAGTCCGCAGCAGGTG	GTGTCAGAGTCCATGGGA	
Stk25	ACGTT CCTCCAACCATCCG	CTTCTGTGAGCTGTGCA	
Wfdc3	CTTGGGTAGCTGCAGGAGAG	ATTCGTCTCCGGTACACAGC	

Table S3. Related to STAR Methods.

Table S4. Related to STAR Methods.

	Forward primer (5' to 3')	Reverse primer (5' to 3')
Ces1f DR4	GGTGGTGGCCATTCAATATC	TGTCCACAAACCCTACCTGA
Ces1f TSS	CATTGACTTGGGAGCCTGTC	ACTCACCGCAAATCACACAG
Srebp1c LXRE	AGGCTCTTTTCGGGGATGG	TGGGGTTACTGGCGGTCAC
Srebp1c TSS	GTGGGCCTAGTCCGAAGC	ATCTCGGCCAGTGTCTGTTC