Supplementary Material

Discovery of a New Natural Product and a Deactivation of a Quorum Sensing System by Culturing a "Producer" Bacterium with a Heat-Killed "Inducer" Culture

Libang Liang¹, Amanda Sproule¹, Brad Haltli^{1,2,3}, Douglas H. Marchbank^{1,3}, Fabrice Berrué¹, David P. Overy^{1,4}, Kate McQuillan³, Martin Lanteigne¹, Noelle Duncan³, Hebelin Correa³ and Russell G. Kerr^{1,2,3}*

¹ Department of Chemistry, University of Prince Edward Island, Charlottetown, PE, Canada, ² Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada,

³ Nautilus Biosciences Croda, Charlottetown, PE, Canada,

⁴ Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada

*Correspondence: Russell G. Kerr: rkerr@upei.ca

Supplementary Figure S1 | 1D and 2D (¹H 600 MHz, ¹³C 150 MHz) NMR spectra of hydrazidomycin D in DMSO-*d*₆ and CDCl₃.

(A)-(E) are ¹H, ¹³C, COSY, ¹H-¹³C HSQC (red cross-peaks are negatively phased, blue crosspeaks are positively phased), ¹H-¹³C HMBC (coupling constant 5 Hz) NMR spectra in DMSO- d_6 , respectively. (F) is ¹H-¹³C HMBC NMR spectrum (coupling constant 5 Hz) in CDCl₃. The α carbons to the double bond in the C18 alkyl chain had chemical shifts of 27.37 ppm, suggesting a *cis*-configuration of the double bond. CDCl₃ was chosen as a solvent for direct chemical shift comparison with data reported by (van Boom et al., 1977).

Supplementary Figure S2 | 1D and 2D (¹H 600 MHz, ¹⁵N 60 MHz) NMR spectra of hydrazidomycin D in CD₃CN.

(A)-(C) are ¹H, ¹H-¹⁵N HSQC (coupling constant 90 Hz), ¹H-¹⁵N HMBC (coupling constant 8 Hz) NMR spectra in CD₃CN, respectively.

Supplementary Figure S3 | Mass spectrometry characterization of hydrazidomycin D.

(A) High-resolution mass spectrum (MS¹) in ESI positive mode of hydrazidomycin D showing the parent m/z 421.3781 [M + H]⁺ adduct. (B) MS/MS spectrum (35 eV) in ESI positive mode of hydrazidomycin D with proposed fragment structures. (C) GC-EIMS spectrum of the DMDS derivatized product confirming the double bond is located between C11 and C12.

Supplementary Figure S4 | Comparison of UHPLC-HRESIMS profiles *P. aeruginosa* (ISP2, 30°C, 200 rpm, 48 h) and *M. smegmatis* liquid cultures (ISP2, 30°C, 200 rpm, 144 h) before and after autoclaving.

Chromatograms (A), (B), (C), and (D) are autoclaved *P. aeruginosa*, non-autoclaved *P. aeruginosa*, autoclaved *M. smegmatis*, and non-autoclaved *M. smegmatis* cultures, respectively. The maximum peak intensity of chromatograms (A) – (D) are 7.5E6, 5.8E6, 3.7E5, and 4.6E5, respectively.

In (**A**) and (**B**), peak 1 is HHQ (m/z 244.1696 [M + H]⁺, calcd 244.1696); peak 2 is a putative HHQ analogue with a mass difference of two methylene groups (m/z 272.2006 [M + H]⁺, calcd 272.2009; peak 3 is Rha-Rha-C10-C10 (m/z 673.3778 [M + Na]⁺, calcd 673.3770); and peak 4 is Rha-C10-C10 (m/z 527.3192 [M + Na]⁺, calcd 527.3191); peaks 5 and 6 are putative Rha-C10-C10 analogues (m/z 553.3360 [M + Na]⁺, calcd 553.3347 and m/z 555.3515 [M + Na]⁺, calcd 555.3504).

In (C) and (D), peaks between 1.5 min to 3 min are mainly media components from ISP2, except peak 7 is a *M. smegmatis* metabolite (m/z 247.10780 [M + H]⁺); peak 8 is the added 10 μ g/mL internal standard dioctyl phthalate (m/z 391.28427 [M + H]⁺, calcd 391.28429); peak 9 is a *M. smegmatis* metabolite (m/z 338.34161 [M + H]⁺).

Supplementary Figure S5 | 1D and 2D (¹H 600 MHz, ¹³C 150 MHz) NMR spectra of PQS-GlcA in CD₃OD and chromatographic characterization of stereochemistry of the glucuronic acid moiety.

(A)-(E) are ¹H, ¹³C, COSY, ¹H-¹³C HSQC (red cross-peaks are negatively phased, blue crosspeaks are positively phased), ¹H-¹³C HMBC (coupling constant 5 Hz) NMR spectra in CD₃OD, respectively. (F) is UHPLC-HRESIMS chromatograms on D-GlcA/L-cysteine methyl ester, D-GlcA/D-cysteine methyl ester and PQS-GlcA/D-cysteine methyl ester, respectively. Retention time measurement L-GlcA/D-Cys was by its enantiomer D-GlcA/L-Cys. This result suggests the glucuronic acid moiety in PQS-GlcA have a D-configuration.

Supplementary Figure S6 | ESI tandem mass spectrometry in positive mode of PQS-GlcA.

(A) High-resolution mass spectrum (MS¹) of PQS-GlcA showing the parent m/z 436.1957 [M + H]⁺ adduct. (B) MS/MS spectrum (35 eV) of PQS-GlcA with fragment ion m/z 260.1641 [M + H]⁺ that is consistent with the PQS aglycone portion of PQS-GlcA.

Supplementary Table S1 | Possible identities of the mass features of interest based on a search of AntiBase 2017. These compounds were selected based on induction, up-regulation and/or production level in culture screening.

Mass feature (m/z_RT)	Adduct	Metabolomics	Producer	Inducer	Database match (<5 ppm)	Δppm	Source Organism	Reference
368.1493_4.19		U	VI	AF_A				
382.165_4.41		U	VI	AF_A				
258.1125_2.66	$[M+H]^+$	U	VI	AF_A	carbazomycin G	0.071	Streptoverticillium ehimense	(Kaneda et al., 1988)
416.1493_4.35	[M+Na] ⁺	U	VI	AF_A	latrunculin T	2.198	Sponge	(El Sayed et al., 2006)
421.3781_5.79		U	VI	MS_A, MS_B, PA_B				
313.2848_4.62		Ι	VI	MS_A, MS_B, PA_B				
271.0602_3.59	$[M+H]^+$	U	VI	PA_B	3,8-dihydroxy-1- methoxy-9,10- anthraquinone	0.369	Xenorhabdus luminescens	(Richardson et al., 1988)
221.1262_2.46	[M+Na] ⁺	U	VI	PA_B	Maniwamycin A	1.80	Streptomyces prasinopilosus	(Takahashi et al., 1989)
467.2079_2.81	$[M+H]^+$	U	VI	BS_A	Staurosporine	0.284	Streptomyces griseolus	(Funato et al., 1994)
455.1604_4.15		Ι	VI	AF_A				
441.1447_4.06		Ι	VI	AF_A				
240.102_2.66	$[M+H]^+$	Ι	VI	AF_A	Aspergilitine	0.395	Aspergilus versicolor	(Lin et al., 2003)
314.1023_1.64		Ι	VI	AF_A				
240.1022_3.08	$[M+H]^+$	Ι	VI	AF_A, MS_A	Aspergilitine	0.395	Aspergilus versicolor	(Lin et al., 2003)
432.1443_3.77		U	VI	AF_A				
588.3439_1.93		U	VI	AF_A, PA_B				
436.1966_2.75		1	VI	PA_B				
435.3947_6.00		1	VI	MS_A				
789.7225_5.72		1	VI	MS_A				_
254.0811_2.05	[M+H] ⁺	I	VI	BS_A, MS_A	utahmycin A	0.274	Streptomyces albus J1704 + metagenoic DNA	(Bauer et al., 2010)
263.1767_3.22		U	VI	BS_B			2101	
404.3161_5.30		Ι	III	AF_A, BS_B,				
224.0919_1.71	$[M+H]^+$	Ι	III	MS_A AF_A	Christolane C	0.739	Streptomyces lydicus	(Gómez et al 2012)
275.0551_2.70	$[M+H]^+$	U	VII	MS_A, MS_B	Juglomycin A/B	0.311	Streptomyces diastatochromogenes	(牛山敬一 et al. 1971)
389.2324_4.75		Ι	Ι	BS_B, MS_A, MS_P			0	ot all, 1971)
1087.4727_4.21	$[M+H]^+$	U	v	MS_B, MS_A, MS_D	Landomycin A	1.838	Streptomyces sp.	(Henkel et al., 1990)
1109.4521_4.20		U	V	MS_B BS_B, MS_A,				
1104.4989_4.21		U	V	MS_B BS_B, MS_A, MS_B				

U: up-regulated; I: induced.

Position	δ_C/δ_N , type	$\delta_{\rm H}$, (J in Hz)	COSY	HMBC ($H \rightarrow C$)
1	171.6, C	-	-	-
2	31.6, CH ₂	2.31, 2.09, m	3	C-1, 3
3	23.9, CH ₂	1.45, m	2,4	C-1 ^a , 2 ^a
4	28.3~29.0 ^b , CH ₂	1.20, m	3	-
5	28.3~29.0 ^b , CH ₂	1.21~1.29 ^b , m	-	-
6	28.3~29.0 ^b , CH ₂	1.21~1.29 ^b , m	-	-
7	28.3~29.0 ^b , CH ₂	1.21~1.29 ^b , m	-	-
8	28.3~29.0 ^b , CH ₂	1.26, m	9	-
9	29.1, CH ₂	1.29, m	8, 10	-
10	26.6, CH ₂	1.97, m	9, 11	9, 12
11	129.7, CH	5.32, dt (9.6, 5.1)	10, 12	9, 13
12	129.7, CH	5.32, dt (9.6, 5.1)	11, 13	10, 14
13	26.6, CH ₂	1.97, m	12, 14	11, 14
14	29.1, CH ₂	1.29, m	13, 15	-
15	28.3~29.0 ^b , CH ₂	1.26, m	14	-
16	31.1, CH ₂	1.24, m	-	-
17	21.5, CH ₂	1.26, m	18	-
18	13.8, CH ₃	0.85, t (7.0)	17	C-16, 17
19	123.9, CH	7.01, d (14.1)	20	C-20, 21, N-A, N-B
20	109.6, CH	4.94, dt (14.1, 7.1)	19,21	C-19, 21, 22, N-B
21	28.6, CH ₂	1.99, m	20, 22	C-19, 20, 22, 23
22	31.6, CH ₂	1.28, m	22	-
23	21.5, CH ₂	1.26, m	24	-
24	13.9, CH ₃	0.85, t (7.1)	23	C-22, 23
25	168.1, C	-	-	-
26	20.4, CH ₃	1.97, s	-	C-25, N-A
N ^α	134.6 ^c , NH	10.38, s (broad), 8.41 ^c , s	-	N-B ^c , C-25
N^{β}	151.2°, N	-	-	-

Supplementary Table S2 | 1 H (600 MHz) and 13 C (150 MHz) NMR data for hydrazidomycin D recorded in DMSO- d_6 .

a. correlations observed in CD_3OD . b. signals are not distinguishable. c. chemical shifts and correlations measured in CD_3CN .

Position	δc, type	δH , (<i>J</i> in Hz)	COSY	HMBC (H→C)
1	-	12.32*, s (broad)	-	-
2	151.6, C	-	-	-
3	139.1, C	-	-	-
4	174.0, C	-	-	-
5	126.1, C	-	-	-
6	126.2, CH	8.27, d (8.1)	7	4, 8, 10
7	124.6, CH	7.37, dd (7.5, 8.1)	6, 7	5,9
8	132.9, CH	7.67, dd (7.5, 8.5)	7, 9	6, 10
9	119.0, CH	7.62, d (8.5)	8	5,7
10	140.0, C	-	-	-
11	30.5, CH ₂	3.22, m; 2.99, m	11, 12	2, 3, 12
12	30.0, CH ₂	1.75, quint (7.7)	11, 13	11, 13
13	30.1, CH ₂	1.44, m; 1.36, m	12, 13, 14	12, 14
14	30.3, CH ₂	1.31, m	13	13, 15
15	32.9, CH ₂	1.30, m	-	14, 16
16	23.7, CH ₂	1.32, m	17	15, 17
17	14.4, CH ₃	0.89, t (6.8)	16	15, 16
1'	107.6, CH	4.68, d (7.8)	2'	3
2'	75.4, CH	3.55, dd (7.8, 8.7)	1', 3'	-
3'	78.3, CH	3.49, dd (8.7, 8.7)	2', 4'	-
4'	73.3, CH	3.53, dd (8.7, 9.5)	3', 5'	-
5'	77.1, CH	3.57, d (9.5)	4'	6'
6'	177.2, C	-	-	-

Supplementary Table S3 \mid 1H (600 MHz) and ^{13}C (150 MHz) NMR data for PQS-GlcA recorded in CD₃OD.

*Measured in DMSO-*d*₆

Supplementary Table S4 | Identities of 14 environmental actinomycete strains tested for secondary metabolite induction in response to HHQ exposure.

GenBank accession numbers are provided for 16S rRNA gene sequences of the strains used in this study. The % ID value is that of the highest scoring match in a BlastN search of the 16S rRNA sequence database.

Strain	GenBank Accession No.	Closest BlastN Hit (Accession No.)	% ID
RKBH-B092	KY362380	Streptomyces tateyamensis (NR_112842)	99.80
RKBH-B124	KY362382	Streptomyces rochei (NR_116078)	100.00
RKBH-B476	KY362385	Streptomyces gelaticus (NR_043488)	98.05
RKBH-B477	KY362386	Streptomyces galilaeus (NR_040857)	98.86
RKHS-054	KY362387	Streptomyces bellus (NR_041222)	97.51
RKHS-126	KY362388	Streptomyces bikiniensis (NR_026177)	99.27
RKHS-142	KY362389	Promicromonospora iranensis (NR_109446.1)	98.92
RKHS-146	KY364190	Streptomyces ederensis (NR_112457)	99.06
RKLL-001	KY362390	Streptomyces fulvissimus (NR_103947)	99.87
RKND-081	KY362391	Streptomyces badius (NR_043350)	99.53
RKND-187	KY362392	Streptomyces drozdowiczii (NR_116093)	99.46
RKND-216	KY362393	Streptomyces qinglanensis (NR_109303)	98.92
RKND-444	KY362394	Streptomyces zaomyceticus (NR_044144)	99.93
RKNM-081	KY362396	Streptomyces canus (NR_043347)	98.93

natural products	biological activities	source	references	
Hydrazidomycin A	IC ₅₀ of 0.857μ M on average against 42 human tumor cells (0.37μ M on average of 12 cell lines)	Streptomyces atratus	(Ueberschaar et al., 2011)	
Hydrazidomycin B	IC_{50} of $10.7\mu M$ on average against 42 human tumor cells (6.04 μM on average of 12 cell lines)	Streptomyces atratus	(Ueberschaar et al., 2011)	
Geralcin B	IC_{50} of 5µM against MDA231 breast cancer cells	Streptomyces sp. LMA-545	(Le Goff et al., 2012)	
Geralcin C	IC_{50} of $0.8\mu M$ against KB and HCT116 cancer cells, 0.7mM against E. coli DnaG primase	Streptomyces sp. LMA-545	(Le Goff et al., 2013)	
Elainomycin	$0.24-1.25\mu$ g/ml against <i>M. tuberculosis</i> , IC ₅₀ of 16.3μ M against HepG2 cancer cells	Streptomyces hepaticus	(Ehrlich et al., 1954, Karlson, 1962)	
	IC_{50} of 12.26 μ M on average against 12 human tumor cells	Streptomyces sp. strain HK10708	(Ding et al., 2012)	
Elainomycin B	IC_{50} of 100 μ M, 1.0 μ M, 6.5 μ M against <i>S. lentus</i> , acetycholinesterase, phosphodiesterase	Streptomyces sp. BK 190	(Helaly et al., 2011)	
Elainomycin C	IC_{50} of 100μ M, 2.0 μ M, 8 μ M against <i>S. lentus</i> , acetycholinesterase, phosphodiesterase	Streptomyces sp. BK 190	(Helaly et al., 2011)	
Elainomycin H	IC_{50} of $4.86 \mu M$ on average against 12 human tumor cells	Streptomyces sp. strain HKI0708	(Ding et al., 2012)	
Elainomycin K	IC ₅₀ of 30.05μM, 54.15μM, 47.5μM against B. subtilus, S. lentus, X. camperstris	Streptomyces sp. Tü 6399	(Manderscheid et al., 2013)	
Elainomycin L	IC ₅₀ of 22.9µM, 41.7µM, 51.3µM against <i>B. subtilus</i> , <i>S. lentus</i> , <i>X. camperstris</i>	Streptomyces sp. Tü 6399	(Manderscheid et al., 2013)	
LL-BH872α	potent antifungal agent	Streptomyces hinnulinus	(McGahren and Kunstmann, 1969)	
Valanimycin	MIC 0.078 μ g/ml, 1.25 μ g/ml, 1.25 μ g/ml against <i>E. coli</i> BE1121, <i>E. coli</i> K12, <i>E. coli</i> ML1629, IC ₅₀ of 0.79 μ g/ml, 1.44 μ g/ml, 2.65 μ g/ml against L1210, P388/ADR, P388/S leukemia cells, and prolonged life span of mice inoculated with Ehrlich carcinoma or L1210	Streptomyces viridifaciens MG456- hF10	(Amato et al., 1986)	
Jietacins A	0.25µg/ml exhibited 100% mortality <i>Bursaphelenchus</i> <i>lignicolus</i> , 11 mm and 7.5 mm zone of inhibition against <i>A. niger</i> and <i>M. racemosus</i> at concentration of 1.0mg/ml	Streptomyces sp. KP-197	(Omura et al., 1987)	
Jietacins B	0.25µg/ml exhibited 100% mortality <i>Bursaphelenchus</i> lignicolus	Streptomyces sp. KP-197	(Omura et al., 1987)	
Lyophyllin	tumor inhibiting	Lyophyllum connatum	(Fugmann and Steglich, 1984)	
Maniwamycins A	8 mm zone of inhibition (50µg/disk) against Rhodotorula sp.	Actinomadura sp.	(Takahashi et al., 1989)	

Supplementary Table S5 | Biological activities of some nitrogen-nitrogen bond containing natural products.

REFERENCES

- Amato M., linuma H., Naganawa H., Yamagishi Y., Amada M., Masuda T., et al. (1986). Isolation and properties of valanimycin, a new azoxy antibiotic. J. Antibiot. 39, 184-91.
- Bauer J. D., King R. W., Brady S. F. (2010). Utahmycins A and B, azaquinones produced by an environmental DNA clone. *J. Nat. Prod.* 73, 976-9. doi: 10.1021/np900786s
- Ding L., Ndejouong, Basile Le Sage Tchize, Maier A., Fiebig H., Hertweck C. (2012). Elaiomycins D–F, antimicrobial and cytotoxic azoxides from Streptomyces sp. strain HKI0708. J. Nat. Prod. 75, 1729-34. doi: 10.1021/np300329m
- Ehrlich J., ANDERSON L. E., Coffey G., Feldman W., Fisher M., Hillegas A., et al. (1954). Elaiomycin, a New Tuberculostatic Antibiotic. Biologic Studies. *Antibiotics & Chemotherapy* 4, 338-42.
- El Sayed K. A., Youssef D. T., Marchetti D. (2006). Bioactive natural and semisynthetic latrunculins. *J. Nat. Prod.* 69, 219-23. doi: 10.1021/np050372r
- Fugmann B., and Steglich W. (1984). Unusual components of the toadstool Lyophyllum connatum (agaricales). Angewandte Chemie International Edition 23, 72-3.
- Funato N., Takayanagi H., Konda Y., Toda Y., Harigaya Y., Iwai Y., et al. (1994). Absolute configuration of staurosporine by X-ray analysis. *Tetrahedron Lett.* 35, 1251-4.
- Gómez C., Olano C., Palomino-Schätzlein M., Pineda-Lucena A., Carbajo R. J., Brana A. F., et al. (2012).
 Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin. J. Antibiot. 65, 341-8. doi: 10.1038/ja.2012.37
- Helaly S. E., Pesic A., Fiedler H., Süssmuth R. D. (2011). Elaiomycins B and C: Alkylhydrazide antibiotics from Streptomyces sp. BK 190. *Org. Lett.* 13, 1052-5. doi: 10.1021/ol1031014
- Henkel T., Rohr J., Beale J. M., Sshwenen L. (1990). Landomycins, new angucycline antibiotics from Streptomyces sp. J. Antibiot. 43, 492-503.
- Kaneda M., Naid T., Kitahara T., Nakamura S., Hirata T., Suga T. (1988). Carbazomycins G and H, novel carbazomycin-congeners containing a quinol moiety. J. Antibiot. 41, 602-8.
- Karlson A. (1962). Specific inhibitory effect of elaiomycin in vitro upon Mycobacterium tuberculosis. *Antibiotics & Chemotherapy* 12, 446-9.
- Le Goff G., Martin M., Iorga B. I., Adelin E., Servy C., Cortial S., et al. (2013). Isolation and Characterization of Unusual Hydrazides from Streptomyces sp. Impact of the Cultivation Support and Extraction Procedure. J. Nat. Prod. 76, 142-9. doi: 10.1021/np300527p
- Le Goff G., Martin M., Servy C., Cortial S., Lopes P., Bialecki A., et al. (2012). Isolation and Characterization of α, β-Unsaturated γ-Lactono-Hydrazides from Streptomyces sp. *J. Nat. Prod.* 75, 915-9. doi: 10.1021/np300026p

- Lin W., Brauers G., Ebel R., Wray V., Berg A., Sudarsono, et al. (2003). Novel Chromone Derivatives from the Fungus Aspergillus versicolor Isolated from the Marine Sponge Xestospongia exigua. *J. Nat. Prod.* 66, 57-61. doi: 10.1021/np020196b
- Manderscheid N., Helaly S. E., Kulik A., Wiese J., Imhoff J. F., Fiedler H., et al. (2013). Elaiomycins K and L, new azoxy antibiotics from Streptomyces sp. Tü 6399. *J. Antibiot.* 66, 85-8. doi: 10.1038/ja.2012.99
- McGahren W. J., and Kunstmann M. (1969). Novel. alpha.,. beta.-unsaturated azoxy-containing antibiotic. *J. Am. Chem. Soc.* 91, 2808-10.
- Omura S., Otoguro K., Imamura N., Kuga H., Takahashi Y., Masuma R., et al. (1987). Jietacins A and B, new nematocidal antibiotics from a Streptomyces sp. J. Antibiot. 40, 623-9.
- Richardson W. H., Schmidt T. M., Nealson K. H. (1988). Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. *Appl. Environ. Microbiol.* 54, 1602-5.
- Takahashi Y., Nakayama M., Watanabe I., Deushi T., Ishiata H., Shiratsuchi M., et al. (1989). Novel Antifungal Antibiotics Maniwamycins A and B. J. Antibiot. 42, 1541-6.
- Ueberschaar N., Ndejouong, Ble S., Ding L., Maier A., Fiebig H., Hertweck C. (2011). Hydrazidomycins, cytotoxic alkylhydrazides from Streptomycesatratus. *Bioorg. Med. Chem. Lett.* 21, 5839-41. doi: 10.1016/j.bmcl.2011.07.108
- Van Boom J., Burgers P., Haasnoot C., Reese C. (1977). Recueil des Travaux Chimiques des Pays-Bas Journal of the Royal Netherlands Chemical Society: General method for the synthesis of 3', 5'diesters and 2'-acetals of the four common nucleosides. *Recueil des Travaux Chimiques des Pays-Bas* 96, 91-5.
- 牛山敬一,田中信寿,小野博史,尾形晴見. (1971). 新抗生物質 Juglomycins の研究 第1報. Jpn J. Antibiot. 24, 197-9.