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Supplementary Methods  

Changes in the plasma and tissue metabolome of the oil treatment and control groups were 

evaluated using a partial least square discriminant analysis (PLSDA) approach, to identify a 

subset of metabolites as key players contributing to variance between groups1,2,3. The matrix that 

is subjected to PLSDA consists of a descriptor matrix, where rows are carrying the samples, and 

variables (metabolites that include the concentration levels directly quantified from 1H-NMR 

experiment. The Y matrix on the other hand is a matrix of dummy variables describing the class 

membership (corresponding to experimental groups) of each observation (observation: 

experimental samples) in the descriptor matrix X.  PLSDA is a form of partial least square 

regression that calculates latent variables as a linear combination of X in such way that they will 

approximate X and Y and maximize the covariance between X and Y.  

In this study, we report two components of PLSDA; scores plots and loadings plots. 

Those plots are visual aids to examine the similarities and differences in a data set. In this case, 

we are examining a metabolomics data set. Therefore they provide a condensed summary of the 

original dataset. A scores plot shows a summary of the relationships among the observations, and 

the loadings plot shows a similar summary between the variables. A higher loadings value of a 

variable (i.e. a metabolite) corresponds to higher importance of the contribution of the metabolite 

to the variation between two groups4.  A loadings plot is a medium to interpret the patterns seen 

in a score plot. The two plots are complementary and superimposable so the one direction in one 

plot will correspond to the same direction in the other plot. Those subset of metabolites with 

priority score with loading value > |0.19| are defined as the most contributing metabolites. The 

threshold is chosen according to the dataset and the loadings values. This subset was referred as 

the ‘reduced subset’ in later sections.  



The other important aspect of the PLSDA approach is model validation. Model validation 

consists of two components; the first one is a parameter, Q2, for measuring the predictability of 

the model (separation observed in scores plot) and the other parameter R2 measures the quality 

of the model. The range of values that those parameters can be within the range of [0,1]. Values 

closer to 1 indicate good model fit between the dataset and the regression model2,5,6,7,8. 

Table 1. PLSDA Plasma Cross Validation 

Measure 1 comps 2 comps 3 comps 4 comps 5 comps 

Accuracy 0.7619 0.90476 0.90476 0.90476 0.90476 

R2 0.47717 0.81449 0.88941 0.9254 0.94717 

Q2 0.38474 0.7252 0.73592 0.71076 0.63774 

 

  



Table 2. PLSDA Liver Cross Validation 

Measure 1 comps 2 comps 3 comps 4 comps 5 comps 

Accuracy 0.90909 1.0 0.95455 1.0 1.0 

R2 0.86307 0.93719 0.97951 0.9869 0.99414 

Q2 0.72363 0.78381 0.76333 0.79015 0.792 
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