Supplemental Materials

Identification of metabolites involved in the aerobic degradation of estrogen A/B-rings

Running title: Aerobic estrogen degradation pathway

Kan Wu,¹* Tzong-Huei Lee,²* Yi-Lung Chen,^{1,5} Yu-Sheng Wang,¹ Po-Hsiang Wang,^{1,6} Chang-Ping Yu,³ Kung-Hui Chu,⁴ and Yin-Ru Chiang^{1#}

¹Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan.
²Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan.
³Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan.
⁴Zachry Department of Civil Engineering, Texas A&M University, College Station, TX77843-3136
⁵Current affiliation: State Key Laboratory of Marine Environmental Science, Xiamen University, China
⁶ Current affiliation: Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
*K. Wu and T.-H. Lee contributed equally to this work.
Corresponding author: Yin-Ru Chiang, Biodiversity Research Center, Academia Sinica,

128 Academia Road Sec. 2, Taipei 115, Taiwan. E-mail: <u>yinru915@gate.sinica.edu.tw;</u> Tel. (+886) 2 2787 2251; Fax (+886) 2 2789 9624.

Keywords: biodegradation, β -oxidation, estrogen, *Novosphingobium*, 2-oxoacid oxidoreductase, *Shingomonas*, steroid hormones

Compound ID	UPLC behavior (RT ^a , min)	Molecular formula/ (predicted molecular mass) ^b	Dominant ion peaks	Identification of product ions	Mode observed
estrone	8.11	C ₁₈ H ₂₂ O ₂ 270.16	253.16 271.17	$\begin{array}{l} \left[M\text{-}H_{2}\text{O}\text{+}H\right] ^{+}\\ \left[M\text{+}H\right] ^{+}\end{array}$	ESI and APCI ESI and APCI
pyridinestrone acid	3.99	C ₁₈ H ₂₁ O ₃ N 299.15	282.17 300.15 322.14	$[M-H_2O+H]^+$ $[M+H]^+$ $[M+Na]^+$	ESI and APCI ESI and APCI ESI
Compound Ie	5.58	C ₁₆ H ₂₄ O ₄ 280.17	245.16 263.16 281.17 303.15	$[M-2H_2O+H]^+$ $[M-H_2O+H]^+$ $[M+H]^+$ $[M+Na]^+$	ESI and APCI ESI and APCI ESI and APCI ESI
4-norestrogenic acid (Metabolite 5)*	5.90	C ₁₇ H ₂₄ O ₄ 292.17	257.15 275.17 293.17 315.16	$[M-2H_2O+H]^+$ $[M-H_2O+H]^+$ $[M+H]^+$ $[M+Na]^+$	APCI ESI and APCI ESI and APCI ESI
metabolite 7*	6.22	C ₁₇ H ₂₄ O ₅ 308.16	273.15 291.16 309.17 331.15	$[M-2H_2O+H]^+$ $[M-H_2O+H]^+$ $[M+H]^+$ $[M+Na]^+$	APCI ESI and APCI ESI and APCI ESI
metabolite 10*	5.03	C ₁₅ H ₂₂ O ₅ 282.15	247.14 265.15 283.15 305.14	$[M-2H_2O+H]^+$ $[M-H_2O+H]^+$ $[M+H]^+$ $[M+Na]^+$	ESI and APCI ESI and APCI ESI and APCI ESI
metabolite 11*	5.44	C ₁₅ H ₂₀ O ₅ 280.13	245.13 263.14 281.14 303.13	$[M-2H_2O+H]^+$ $[M-H_2O+H]^+$ $[M+H]^+$ $[M+Na]^+$	APCI ESI and APCI ESI and APCI ESI
metabolite 12*	5.15	C ₁₅ H ₂₂ O ₆ 298.14	263.15 281.16 299.15	$[M-2H_2O+H]^+$ $[M-H_2O+H]^+$ $[M+H]^+$	ESI and APCI ESI and APCI ESI and APCI
HIP	3.75	C ₁₃ H ₁₈ O ₄ 238.12	221.12 239.13 261.11	$[M-H_2O+H]^+$ $[M+H]^+$ $[M+Na]^+$	ESI and APCI ESI and APCI ESI

Table S1. UPLC-HRMS analysis of estrogen metabolites involved in aerobic estrone catabolism by strain SLCC.

^aRT, retention time. ^bThe predicated molecular mass was calculated using the atom mass of ¹²C (12.00), ¹⁶O (15.99), and ¹H (1.01). *, the non-CoA structures deconjugated from the hypothetical CoA-ester intermediates were identified using UPLC–HRMS.

Figure S1 UPLC–ESI–HRMS analysis of the authentic standard of HIP purchased from the Sigma-Aldrich.

Figure S2 ¹H- (500 MHz) (A) and ¹³C-NMR (125 MHz) (B) spectra of 4-norestrogenic acid.

Figure S3 COSY (A) and HMBC (B) spectra of 4-norestrogenic acid.

Figure S4 UPLC–ESI–HRMS analysis of the strain KC8 cell extract incubated with 4-norestrogenic acid and CoASH. (A) Extracted ion chromatograms (m/z = 293.17 for 4-norestrogenic acid) of the ethyl acetate extracts. (B) Total ion chromatograms (m/z = 700~1200) of the CoA-esters extracted from the reaction mixtures. The reaction mixture (1 mL) contained 0.5 mL of the strain KC8 proteins (20 mg/mL), 0.1 mM 4-norestrogenic acid, 1 mM CoASH, 5 mM ATP, and 10 mM MgSO₄. Negative controls were reaction mixtures without 4-norestrogenic acid (middle panel) or soluble proteins (lower panel). The reaction mixtures were incubated at 30 °C for 16 hours. The 4-norestrogenic acid and CoA-esters were extracted through liquid-liquid partition and solid phase extraction, respectively.

Figure S5 Incubation of strain KC8 cells with 4-norestrogenic acid (0.1 mM) for 6 days. After different time intervals of incubation, samples (0.5 mL) were withdrawn from the bacterial culture. The bacterial cells were removed through centrifugation. 4-norestrogenic acid remaining in the supernatant was extracted using ethyl acetate, and the extracted 4-norestrogenic acid was quantified through UPLC–ESI–HRMS.