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Geometric approximation method (detailed implementation) 

A fundamental problem in extracting discrete dynamics parameters from NMR 
relaxation data is the requirement to have analytical solutions to the complex behavior 
of spin dynamics. Analytical solutions have been derived for CPMG methods1,2; 
however, these enable description of a rather limited range of timescales (102~103 sec-

1). The same situation also occurs for conventional R1ρ experiments3,4, although they 
are more sensitive to faster dynamics (103~104 sec-1) . Adiabatic R1ρ and R2ρ NMR 
experiments are sensitive to exchange processes over an extremely wide range of 
dynamics (102~105 sec-1)5; however, no analytical solutions exist to extract the 
dependence on kinetic parameters in all time regimes. We propose a novel solution to 
this problem by building approximate 6-dimensional solution surfaces of adiabatic R1ρ 
and R2ρ rates, which are defined on a physically meaningful domain (offset, kex, Δω, pa, 
R1, and R2). The 6-dimensional solution surfaces are built on a library of solution points, 
which are analogous to “lookup-tables” of solutions. Once the solution surfaces are 
built, the dynamic parameters can be determined by a Monte Carlo search of the 
surfaces to extract the set of kinetic parameters that match the observable adiabatic R1ρ 
and R2ρ rates. Significantly, the same solution surfaces can be used for data analysis of 
any biological sample, provided the same adiabatic pulses are used.  

First of all, the proper library is calculated using a multi-processor cluster. Based on the 
concept described in the main text, each 6-dimensional solution surface can be 
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decomposed into three 4-dimensional surfaces (f(), g(), and h() in equation [2] in the 
main text). Therefore, the grid is placed on the four dynamic parameters (offset, kex, Δω, 
and pa). After analyzing the relaxation dispersion profiles with respect to different 
dynamic parameters for our HARD experiments, the grid spacing in the offset dimension 
is chosen as 0.5k s-1, the grid spacing in the kex dimension (on the logarithmic scale) is 
chosen as x100.1, the grid spacing in the Δω dimension is chosen as 0.2k s-1, and the 
grid spacing in the pa dimension is chosen as 5%. The solution libraries consist of 41 
points in the offset dimension (spanning the domain of -10k to 10k s-1), 41 points in the 
kex dimension (spanning the domain of 0.1 to 1000k s-1), 81 points in the Δω dimension 
(spanning the domain of -8k to 8k s-1), and 10 points in the pa dimension (spanning the 
domain of 55 to 100%). Each solution point in the library was calculated as the effective 
relaxation rate of the bulk magnetization (A+B) after a single train of the composite 
adiabatic pulses, and precise numerical integration was performed on the Bloch-
McConnell equation using Euler’s method including the second order correction term. 
The third order correction term was used to estimate the deviations of the numerical 
integration from the true values, which are less than 0.00001% for R1ρ rates and less 
than 0.001% for R2ρ rates in average. Computation of the library required approximately 
22 days, using a 128-core Linux cluster computer system. The final library consists of 
approximately 20 million points for each of the adiabatic R1ρ and adiabatic R2ρ relaxation 
rates. This 40 million point library is approximately 660 MB in size.  

After the library is calculated, a module can be built to approximate a higher resolution 
on the whole surface based on the library. Following the concept described in the main 
text, the approximation can be accomplished with locally defined polynomial functions. 
Because the two slope functions (f() and g()) for intrinsic relaxation rates (R1 and R2) are 
very smooth with respect to the four dynamic parameters (offset, kex, Δω, and pa), the 
two 4-dimensional surfaces (f() and g()) are approximated with zero order polynomial 
functions. But the third 4-dimensional surface (h()) will be approximated with second 
order polynomial functions based on the following general equation. 

𝑅 𝑥!, 𝑥!, 𝑥!, 𝑥! = 𝑎!! + 𝑎!!𝑥! +⋯+ 𝑎!"𝑥!𝑥! +⋯  [1] 

𝑎!! = 𝑅 0,0,0,0   

… 

𝑎!! = 0.5 ∙ 𝑅 0,0,1,0 − 𝑅 0,0,−1,0           𝑖𝑓  𝑛 = 3    

… 

𝑎!" = 0.5 ∙ 𝑅 0,0,1,0 + 𝑅 0,0,−1,0 − 𝑅 0,0,0,0           𝑖𝑓  𝑛 = 𝑚 = 3  

𝑎!" = 𝑅 0,1,1,0 − 𝑅 0,1,0,0 − 𝑅 0,0,1,0 + 𝑅(0,0,0,0)        𝑖𝑓  𝑛 = 3,𝑚 = 2 
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… 

The solution surfaces, built by this method, were compared with the simulated solution 
surfaces (directly calculated by numerical integration of the Bloch-McConnell equation): 
for 10,000 randomly chosen points, the average deviation of the approximated value 
from the simulated surface is 0.05% and 0.06% for adiabatic R1ρ and R2ρ rates, 
respectively (Tab. 1).  

This geometric approximation to the complete solution of the Bloch-McConnell equation 
forms the basis of the acronym for our approach: geoHARD (geometric approximation 
on Heteronuclear Adiabatic Relaxation Dispersion). 

Finally, we designed an algorithm, which combines geometric approximation with Monte 
Carlo sampling, to extract information on spin dynamics at slow (µs-ms) time scales. 
Because the intrinsic R1 rates are determined by experiments and the offset values are 
known from the spectra, only kex, Δω, pa, and intrinsic R2 rates will be treated as 
independent variables. Therefore, adiabatic R1ρ and R2ρ relaxation rates under different 
adiabatic pulses can be rapidly calculated for an arbitrary set of dynamic parameters 
(kex, Δω, pa, and R2) using the geometric approximation. The algorithm aims to minimize 
the distance function between the observed relaxation rates and the calculated ones by 
varying the dynamic parameters. Once the minimum is reached, a set of the dynamic 
parameters giving relaxation rates closest to the observed ones will be reported. In 
order to achieve the global minimum, 100 different runs of Monte Carlo sampling6 from 
randomized initial dynamic parameters are performed for a single calculation, and each 
run uses simulated annealing containing 10,000 steps of the random grid search 
combined with 5,000 steps of random-walk. (Random-walk: both direction and step size 
are randomized during the sampling.) Thus, in each calculation, 1.5 million solution 
points are sampled in a solution surface for a given data point. Among 100 results from 
100 different runs of Monte Carlo sampling, the 10 results with the best scores were 
used for statistical analysis. For the case of data from two magnetic fields, a complete 
data set contained 20 experimental data points (relaxation rates using HS1, HS2, HS4, 
HS6, and HS8 pulses for both adiabatic R1ρ and adiabatic R2ρ experiments at two 
magnetic field strengths). In the analysis by geometric approximation, 30 million solution 
points were sampled for each data set, requiring only 5 minutes using a single-core 
Linux computer. By comparison, in the analysis by numerical integration, each solution 
point for an adiabatic R1ρ (R2ρ) rate requires 1 sec (5 sec) leading to a total equivalent 
time of 1.5 million minutes to perform such massive sampling using a single-core Linux 
computer. Therefore, it is an impossible task to analyze the relaxation data by numerical 
integration without utilizing supercomputing resources.  

In order to test the new algorithm, we simulated 300 sets of relaxation data of adiabatic 
R1ρ and adiabatic R2ρ experiments with randomized dynamic parameters using the 
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Bloch-McConnell equation. The simulated relaxation data (adiabatic R1ρ, adiabatic R2ρ, 
and R1 rates) were analyzed using the new algorithm to extract the dynamic parameters 
and compare to the input values. These tests reveal that data sets from a single 
magnetic field are sufficient to obtain accurate results in the absence of errors (Fig. 2). 
Furthermore, in the presence of random errors, the algorithm provides accurate and 
reliable dynamic parameters if data sets from two magnetic fields are available (Fig. 3), 
and adiabatic relaxation data from more than two magnetic fields continues to improve 
the precision and accuracy of the fit results. Since adiabatic R1ρ and R2ρ experiments 
exhibit differential sensitivity to exchange time regimes, the algorithm provides better 
discrimination among conformational dynamics at different time scales. In our tests, the 
higher precision is equivalent to the higher accuracy in the fit kex values (Fig. 3a, 3d, 
and 3g).  

For most of this discussion, it has been assumed that the experimental system resides 
only in the fast exchange regime and a resonance in the two-dimensional spectrum 
represents the total magnetization (A+B). However, it may occur that the system is in 
the slow exchange regime (kex << Δω) with a small population of state B, which is 
difficult to observe. In this case, experimentally, only the relaxation dispersion of the 
main component (A) is measured, and the solution surfaces for the decay of the total 
magnetization (A+B) become impractical. Therefore, another set of the libraries and 
solution surfaces were built based on the same procedures but for the case of slow 
exchange and detection of only the A component. The same tests are carried out to 
show that accurate and reliable dynamic parameters can be extracted by the new set of 
solution surfaces (Fig. S11). The relaxation dispersion of the A component still carries 
information about dynamics in the system based on our simulated tests (Fig. S11a, 
S11b, and S11c). In the real application, a given experimental data set will be 
separately analyzed by these two sets of solution surfaces, and the best-fit results will 
be selected to provide accurate results (Fig. S12).   

The library and the script for data analysis will be available on request from the authors. 

 

Optimization of proton-decoupling scheme 

A density matrix analysis was used to evaluate the effects of N-HN spin coupling and the 
efficiency of radio-frequency (RF) decoupling schemes to eliminate the coupling and 
yield an effective single spin system7. Here, we evaluated the behavior of the spin 
system via a quantum mechanical simulation, in which we expanded the density matrix 
from the conventional (16X16) matrix to a (32X32) matrix to include consideration of 
chemical exchange effects and all possible relaxation channels. Our expanded density 
matrix (32X32) includes the effects of RF pulses, chemical shift evolution, two-site 
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exchange, J-coupling, and all secular terms of dipole-dipole and chemical shift 
anisotropy relaxation8,9. Cross-correlated relaxation channels are included based on 
Redfield’s theory10. Simulations, showing evolution of the density matrix, demonstrate 
that the effects of proton coupling on 15N relaxation during adiabatic pulses are relatively 
small when the molecular size is small (τc=5ns, Fig. S3a,b). However, deleterious 
effects become significant when the size of the molecule increases (τc=30ns, Fig. 
S3c,d). The effects of proton coupling in our simulation are consistent with the results in 
previous studies on different types of relaxation experiments7,11-13. Therefore, it is 
essential to incorporate an effective proton-decoupling scheme in order to obtain 
accurate measurement of adiabatic R1ρ and R2ρ rates using the HARD experiment.  

In order to remove the effects of proton coupling, the original HARD sequence was 
modified by including two different types of proton decoupling schemes: CW decoupling 
and π-pulse decoupling (Fig. 4). First, the effects of CW proton decoupling at different 
RF power levels were tested for the on-resonance condition. Density matrix simulations 
suggest that either low power (γB1=1kHz) or high power (γB1>6kHz) CW proton 
decoupling (on-resonance) is sufficient to remove the effects of proton coupling without 
introducing additional relaxation dispersion (Fig. S4). The simulated results are 
supported by experimental observations (Fig. S5). However, low power CW proton 
decoupling is sensitive to off-resonance effects (Fig. S6a,b), which can be easily 
observed in the case of large biomolecules. Although high power decoupling partially 
ameliorates this problem, it is not suitable for use with cryogenic NMR probes. Next, we 
examined the incorporation of two π pulses bracketing each composite adiabatic pulse 
to refocus the effects of proton coupling. Simulations predict that this π-pulse 
decoupling is insensitive to off-resonance effects when a hard π-pulse (γB1=20 kHz) is 
used (Fig. S6c,d), and the prediction was supported by experiment (Fig. S7). 
Consequently, based on simulations and experimental validation, π-pulse decoupling is 
superior to the CW decoupling and effective across the total adiabatic spin-lock periods. 

The modified pulse sequences (in Bruker format) will be available on request from the 
authors. 
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Figure S1. Simulated relaxation dispersion profiles of the adiabatic R2ρ experiment with two different 
adiabatic pulses (HS1 and HS8) and two different pulse repetition frequencies (4ms: 125Hz and 8ms: 
62.5Hz). 
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Figure S2. Fitting the simulated relaxation data of constant-time CPMG experiments without (a,c) or with 
(b,d) up to 5% random errors at two (14.1T, and 18.8T) or three (14.1T, 16.5T, and 18.8T) magnetic fields 
using approximate analytic solutions by NESSY23. The data of different CPMG frequencies (νCPMG = 25, 
50, 100, 125, 250, 500, 1000 Hz) were simulated using Bloch-McConnell equation with the same set of 
dynamic parameters in Fig.2. The fit results are plotted against the input values, and those with large 
standard deviations (S.D. of kex > 100.2) during Monte Carlo sampling are not shown. The red data points 
are those with smaller standard deviations (S.D. of kex < 100.1). The coefficient of determination (R2) is 
calculated for each dynamic parameter. The numbers in the parentheses are the percentages of the data 
remained after filtering out the results with large standard deviations. 
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Figure S3. Effects of proton coupling on the 15N spin relaxation during adiabatic pulses. The relaxation 
rates during adiabatic pulses (HS1, HS2, HS4, HS6, HS8) without proton coupling are plotted in black, 
and the rates with proton coupling are shown in red. The results were simulated using the expanded 
density matrix with two different rotational correlation times (τc=5ns: a, b; τc=30ns: c, d). The dynamic 
parameters in the chemical exchange were set as Δω = 240 Hz and pa = 0.96. 
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Figure S4. Effects of power levels of the on-resonance CW proton decoupling on adiabatic relaxation 
dispersion experiments. The adiabatic R1ρ relaxation rates without proton coupling are plotted in black, 
and the rates with proton coupling and the CW decoupling scheme are shown in red. Different power 
levels of CW decoupling scheme were tested, and the results were simulated using the expanded density 
matrix. The dynamic parameters were set as Δω = 240 Hz, pa = 0.96, and τc = 5ns. 
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Figure S5. Experimental tests of different power levels of the CW proton decoupling scheme. The 15N, 2H 
labeled Ub14 sample (25 ºC) was used for the tests, and the R1ρ relaxation rates obtained using the 
adiabatic pulse HS8 were measured at 600MHz. The relaxation rates under different power levels of the 
CW decoupling scheme were compared with the ones without proton decoupling. 
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Figure S6. Off-resonance effects for different decoupling schemes. The CW decoupling field was set to 
be 1 kHz, and the π-pulse corresponded to a γB1 field of 20 kHz. The adiabatic relaxation rates without 
proton coupling are plotted in black, and the rates with proton coupling and a given decoupling scheme 
are shown in red. The off-resonance effects on the spin inversion by the π-pulse were also considered. 
The results were simulated by the expanded density matrix, and the dynamic parameters were set as Δω 
= 240 Hz, kex = 3 kHz, pa = 0.96, and τc = 30ns. 
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Figure S7. Experimental tests of off-resonance effects on different decoupling schemes. The 15N, 2H 
labeled Ube2g2 (15 ºC) was used for the tests, and the R2ρ relaxation rates were measured with the 
adiabatic pulse HS1 at 800MHz. The center of the decoupling RF field was placed at 6 ppm, the power 
level of CW proton decoupling was 1 kHz, and the power level for π-pulse decoupling was 22 kHz. The 
differences between the relaxation rates with a given proton decoupling scheme and the ones without 
proton decoupling scheme are plotted against the proton offset. 
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Figure S8. The curve fitting of relaxation data of residue 70 (kex = ~1.8 k s-1) in Ub14 using the geometric 
approximation method. The 10 fitting curves with best scores are shown in the plots. 
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Figure S9. The curve fitting of relaxation data of residue 6 (kex = ~0.6 k s-1) in Ub14 using the geometric 
approximation method. The 10 fitting curves with best scores are shown in the plots. 
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Figure S10. The curve fitting of relaxation data of residue 18 (kex = ~37 k s-1) in Ub14 using the geometric 
approximation method. The 10 fitting curves with best scores are shown in the plots. 
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Figure S11. Data analysis of adiabatic R1ρ, adiabatic R2ρ, and R1 at two (14.1T and 18.8T) magnetic 
fields in the slow exchange regime using geometric approximation. 300 relaxation data sets without (a, b, 
c) or with up to 5% errors (d, e, f) at two different magnetic fields were simulated using Bloch-McConnell 
equation with random dynamic parameters. The fit results are plotted against the input values, and those 
with large standard deviations (S.D. of kex > 100.2, S.D. of Δω > 0.4ppm, S.D. of pa > 2.5%) during Monte 
Carlo sampling are not shown. The red data points are those with smaller standard deviations (S.D. of kex 
< 100.1). The coefficient of determination (R2) is calculated for each dynamic parameter. The numbers in 
the parentheses are the percentages of the data remained after filtering out the results with large 
standard deviations. 
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Figure S12. Data analysis of adiabatic R1ρ, adiabatic R2ρ, and R1 at two (14.1T and 18.8T) magnetic 
fields in the mixed slow and fast exchange regimes using geometric approximation. 300 relaxation data 
sets without (a) or with up to 5% errors (b) at two different magnetic fields were simulated using Bloch-
McConnell equation with random dynamic parameters. After a model is selected for each result, the fit 
results are plotted against the input values, and those with large standard deviations (S.D. of kex > 100.2) 
during Monte Carlo sampling are not shown. The red data points are those with smaller standard 
deviations (S.D. of kex < 100.1). The coefficient of determination (R2) is calculated for each dynamic 
parameter. The numbers in the parentheses are the percentages of the data remained after filtering out 
the results with large standard deviations. 
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Residue 
number 

Model kex (k s-1) S.D. (k s-1) kex (10x k s-1) S.D. (10x k s-1) 

4 Slow 0.283489 0.237777 -0.54746 0.331211 
6 Slow 0.6273 0.383077 -0.20252 0.251004 
13 Slow 0.192178 0.104802 -0.7163 0.226438 
15 Slow 0.548582 0.626487 -0.26076 0.424876 
18 Fast 37.00794 5.373404 1.568295 0.062838 
20 Fast 61.53278 43.68095 1.789107 0.286957 
32 Slow 0.283921 0.153106 -0.5468 0.224115 
34 Slow 0.278541 0.389108 -0.55511 0.493449 
35 Slow 3.921751 1.845212 0.59348 0.197464 
36 Fast 3.134942 1.11583 0.496229 0.151489 
42 Fast 1.811874 0.845072 0.258128 0.195852 
43 Slow 2.314314 1.530191 0.364422 0.269514 
44 Slow 0.32999 0.164353 -0.4815 0.208232 
49 Fast 38.36913 3.647764 1.583982 0.041227 
50 Slow 0.160814 0.063731 -0.79368 0.167898 
57 Slow 0.381549 0.511766 -0.41845 0.479189 
59 Fast 55.18542 28.93867 1.741824 0.218415 
61 Fast >100 … >2 … 
65 Fast 99.32569 36.12866 1.997062 0.154679 
67 Slow 0.263689 0.267118 -0.57891 0.386756 
69 Slow 1.491089 0.890492 0.173504 0.245998 
70 Fast 1.776879 0.305477 0.249658 0.0743 
71 Fast 1.853067 0.737783 0.267891 0.16864 
73 Fast 3.172482 1.240512 0.501399 0.165765 
74 Fast 7.358664 2.230237 0.866799 0.129688 
76 Fast 34.11158 5.27262 1.532902 0.066864 
Table S1. The conformational exchange rates of residues in Ub14 characterized by adiabatic relaxation 
dispersion experiments and geometric approximation method. The kex values are also represented on the 
logarithmic scale on the right two columns.   
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