

Figure S1 The enterohepatic circulation of bile acids. In the liver, cholesterol is converted 7α-hydroxycholesterol by CYP7A1. The 3β-hydroxysteroid to 7α-hydroxycholesterol dehydrogenase (HSD3B7) converts to 7α-hydroxy-4cholesteric, which eventually is converted to primary bile acids (BAs) by CYP7A1 and CYP27B1. The primary BAs (CA and CDCA) usually conjugated with the glycine or taurine to conjugated BAs (GCA, TCA, GCDCA and TCDCA), and transfer to intestine. BSH in gut microbiota would catalyze the hydrolysis of conjugated BAs into deconjugated BAs. Then, microbial bai dehydroxylase removes a hydroxyl group from C-7 and converts CA to DCA or CDCA to LCA and UDCA. These secondary BAs could active the feedback pathway to preserve the balance of metabolism of BAs by FXR . Meanwhile, the DCA, LCA and UDCA could conjugate with glycine and taurine to conjugated BAs (GDCA, TDCA, GLCA, TLCA, GUDCA and TUDCA). CA, Cholic acid; CDCA, Chenodeoxycholic acid; GCA, Glycocholic acid; TCA, Taurocholic acid; GCDCA, Glycochenodeoxycholic acid; TCDCA, Taurochnodeoxycholic acid; DCA, Deoxycholic acid; LCA, Lithocholic acid; UDCA, Ursodeoxycholic acid; GDCA, Glycine deoxycholic acid; TDCA, Taurodeoxycholic acid; GLDCA, Glycolithocholic acid; TLDCA, Taurolithocholic acid; GUDCA, Glycoursodeoxycholicacid; TUDCA, tauroursodeoxycholic acid.

Figure S2 The analysis flowcharts. a The screening process of BSH sequence for taxonomic and activity identification. **b** The filter procedures of typical BSH structures.

Figure S3 Genera characterization of BSHs obtained from NCBI database. a The proportion of 765 reported BSHs containing genus. **b** The identity of 765 reported BSHs between genus and within genus.

a.			The	average seque	nce identity	= 40.41%			
	2BJF[Clostridium] 2HF0[Bifidobacterium] 4WL3[Enterococcus] 5HKE[Lactobacillus]	NCTGLALETKDGLHLFGRN . CTGVRFSDDEGNTYFGRN . CTAI TYVSKD HYFGRN NCTAI TLNGNS NYFGRN	NDI EYSFNOSI I FI LDVSFSYGETI LVTI FDYEI SYNEVVTI TI LDLDFSYGEEVI I TI	PRNFKCVNKSNKKELTTK PRGYHYLTVFCAGGKAKP PRNYKFSFR.EVCNLDHH FAEYEFKFR.KEKALKNH	YAVLGNGTİ FDDYFT AVİ GVGVVNADRPN FALLGI AAGLADYPL KSLI GVGI VANDYPL	FADGWNEKGLGCAGLNFPV YFDCANEHGLAI AGLNFPG YYDAI NEKGLGNAGLNFSG YFDAI NEDGLGNAGLNFPG	VSYSKEDI ECKTNI PVYNFLLV VASFVHEPVECTENVATFEFPLV VADY. KKI EECKENVSPFEFI PV VAYYSCALENDKDNI TPFEFI PV	VLANFSSVEEVK VARNFDSVDEVE VLGCSTVDEAK VLGCSDVNEAR	120 119 115 117
	2BJF[Clostridium] 2HF0[Bifidobacterium] 4WL3[Enterococcus] 5HKE[Lactobacillus]	EALKNANI VDI PI SENI PN Etlenvtlvsci vpccc. E Kllknlni vni nfsdelpl Nlveki nli nlsfseclpl/	TTLHVVI SDI TOKSI SLLHVFI ODOK RSI SPLHVLLADKE OSI AGLHVLI ADRE KSI	I VVECTKEKLNVFDNNI G I VVECNADGNHVHHDDVD I VVESTKEGLRVFDNPVG I VVEVTKSGVHI YDNPI G	VLTNSETEDVHVANL VLTNGETEDEHNENL VLTNNETEDYGLENL LTNNPEENYGNYNL	NCYVELRYNCVPEFKLEDE RNYNCVSNEMAEFI SVEKA NNYRVLSTRTPKNNFSDEI NKYRNLSI STPCNTFSDSVI	SLTAL GOGTGLVGLPGDFTFASF SLTAVCACVGNHGI PCDVSSPSF LDI YSRCNGGI GLPGDLSSVSF LKVDGTGFGGI GLPGDVSPESF	REI RVAFLBEAVI EVRVAYTNAHYP EVKATETKLNSV EVFATESKLNSS	240 237 234 236
	2BJF[Clostridium] 2HF0[Bifidobacterium] 4WL3[Enterococcus] 5HKE[Lactobacillus]	KNDKDSI DLI EFFHI UNNV CCNDEAANVSRLFFTLCSV SRSSEYESI SCFFHI LSSV KGNTVEEDI TCFFHI LCTV	ANVRGSTRTVEEKS CNVDGNAKNGDGGF ECCKGLCDVGDEKY ECI KGVNKTESGKE	DLTGYTSCNOLEKGI YYY ERTLFTSCYSSXTNTYYN EYTI YSSCONLEKGI YYY EYTVYSNCYDLDNKTLYY	NTYENNCI NAI DINNK NTYDDFAI RSYANAD RTYDNSCI TAVDINK TTYENRCI VAVTLNK	ENLDONEI KTYKYNKTLSI YDNDSSELI SVÅR ENLEKDSLI VYPNVETOOI D. KDONRLVTYPFERKOI I	HVN KLNLE		329 316 325 326
b.									
	PDB ID Seq	uence alignment, i	identity(%)						
	28	3JF 2HF0	4WL3						

2HF0

4WL3

5HKE

35.76

43.46

37.27

36.74

34.91

54.29

Figure S4 The sequence identity of reported BSH sequences. a Multiple sequences alignment of reported BSHs. Grey backgrounds indicate an average identity \geq 50% among three BSHs. b The pairwise sequence identity of four reported BSH sequences.

Figure S5 Reported conserved residues of BSH in PDB database. a 3D structure of CpBSH (PDB ID 2BJF) and LsBSH (PDB ID 5HKE) with their residues reported in the literature (red), in the PDBsum (blue) and both in the literature and PDBsum (yellow).

a.

	Phylum	Order		Family		Genus	No.
		Bifidobacteriales	Ξ	Bifidobacteriaceae	Ξ	Bifidobacterium	17
		Corynebacteriales		Mycobacteriaceae	_	Mycobacterium	5
	- Actinobacteria	Micrococcales	_	Micrococcaceae	_	Paenarthrobacter	1
	Actinobactoria	Pseudonocardiales	_	Pseudonocardiaceae	_	Saccharopolyspora	1
		Coriobacteriales	_	Coriobacteriaceae	_	Collinsella	1
		Eggerthellales	_	Eggerthellaceae	_	Slackia	1
		Bacteroidales		Porphyromonadaceae	_	Parabacteroides	10
				Rikenellaceae	_	Alistipes Cvtophaga	1
	Bacteroidetes	Cytophagales	L	Cytophagaceae	L	Microscilla	į
		Flavobacteriales		Flavobacteriaceae		Flavobacterium	1
	Chlamvdiae	Sphingobacteriales Chlamvdiales	_	Sphingobacteriaceae Waddliaceae	_	Sphingobacterium Waddlia	2
		Gloeobacterales	_	radanaooao	Г	Gloeobacter	1
	Cyanobacteria	Chroococcales	Г	Unassigned		Cyanothece Synechococcus	1
	Europacta	Mathanabastarialas		Mathanahastariasaaa		Śynechocystis Methanosphaera	1
	Laryaronacola		Г	Bacillaceae	Г	Bacillus	120
				Listeriaceae	_	Oceanobacillus Listeria	2 11
		Baciliales		Staphylococcaceae		Macrococcus	1
			L	Unassigned	_	Exiguobacterium	2
		Lactobacillales	Г	Enterococcaceae Lactobacillaceae	_	Enterococcus Lactobacillus	40 39
			L	Streptococcaceae	-	Streptococcus	4
			Г	Clostridiaceae		Hungatella	23
				Eubacteriaceae		Anaerofustis Fubacterium	1
					Г	Anaerostipes	1
						Biautia Butyrivibrio	5
						Cellulosilyticum	1
				Lachnospiraceae		Dorea	1
	Firmicutes	Olastaidislas				Lachnoclostridium Marvinbryantia	4 2
		Ciostitulaies				Oribacterium	1
						Tyzzerella	2
				Peptococcaceae	_	Unassigned Desulfitobacterium	1
				Peptostreptococcaceae		Intestinibacter	1
						Anaerotruncus	1
				Ruminococcaceae		Faecalibacterium Ruminiclostridium	1
Bacteria				Ileasained	L	Ruminococcus	1
			_	Unassigned	_	Catenibacterium	1
						Coprobacillus Ervsinelatoclostridium	1
		Erysipelotrichales		Erysipelotrichaceae		Holdemanella	1
			L		L	Iuricibacter Unassigned	1
	Fusobacteria	Tissierellales Eusobacteriales	_	Peptoniphilaceae Eusobacteriaceae	_	Peptoniphilus	1
	1 usobaciena		Г	1 usobacienaceae	Г	Blastopirellula	2
	Planatomusatas	Planetomycostolog		Planatamyaataaaaa		Gemmata Gimesia	1
	Planciomycetes	Flanctonycelales		Flancionycelaceae		Pirellula Planctopirus	1
		L	L		L	Rhodopirellula	1
		Acidithiobacillales	_	Acidithiobacillaceae Beijerinckiaceae	_	Acidithiobacillus Beijerinckia	1
				Bradyrhizobiaceae	Г	Nitrobacter	2
				Dradynnieddioddo	L	Rhodopseudomonas	5
				Hyphomicrobiaceae		Rhodomicrobium	1
		Rhizobiales		Methylobacteriaceae Phyllobacteriaceae	_	Methylobacterium	3
				Bhizobiaceae	Г	Agrobacterium	1
						Azorhizobium	1
			L	Xanthobacteraceae	L	Starkeya	1
		Bhodobacterales	Г	Bhodobacteraceae	Г	Labrenzia	1
		Rhodospirillales	_	Acetobacteraceae	_	Roseobacter Gluconacetobacter	1
		Rickettsiales	_	Rickettsiaceae	_	Rickettsia	1
				Burkholderiaceae	Г	Burkholderia	3
	Proteobacteria	Burkholderiales		0		Comamonas	1
			L	Ovalobactoraceae		Delftia	1
		Bdellovibrionales	_	Bdellovibrionaceae	_	Bdellovibrio	1
		Desulfobacterales Desulfovibrionales	_	Desulfobulbaceae Desulfovibrionaceae	_	Desulfotalea Desulfovibrio	2
		Aeromonadales	_	Aeromonadaceae	_	Aeromonas	1
		Chromatiales	_	Halothiobacillaceae	_	Halothiobacillus	1
			Г		Г	Escherichia Pectobacterium	1 3
		Enterobacteriales		Enterobacteriaceae		Proteus	2
			L	1	L	Yersinia	5
		Legionellales	_	Legionellaceae Moraxellaceae	_	Legionella Acinetobacter	1 4
		Pseudomonadales		Pseudomonadaceae	_	Pseudomonas	2
		Vibrionales	Γ	Vibrionaceae	Γ	Photobacterium	3
		Xanthomonadales	_	Xanthomonadaceae	_	Vibrio Stenotrophomonas	14 2
	Spirochaetes	Brachyspirales	_	Brachyspiraceae	_	Brachyspira	3
	Syneraietatae	Syneraietales	_	Syneraistaceae	_ _	Dethiosulfovibrio	1
	Verrucomicrobia	Verrucomicrobiales		Verrucomicrobiaceae		Pyramidobacter Verrucomicrobium	1
Archaea	 Euryarchaeota 	- Natrialbales	-	Natrialbaceae	-	Haloterrigena	i

Figure S6 Taxonomic identification of BSHs in HMP database. The numbers in last column indicate the number of BSHs in each genus.

Phylum		Class		Order		Family		Genus	Numb	er of pa	ralogs
1 119 14111	01005			01401		1 411111		ounds	NP=2	NP=3	NP=4
Actinobacteria	—	Actinobacteria	_	Bifidobacteriales	—	Bifidobacteriaceae	_	Bifidobacterium	1	-	-
Paatavoidatas		Paataroidia		Bacteroidales		Bacteroidaceae		Bacteroides	15	9	3
Bucierolaeles	_	Бастеготата	_			Porphyromonadaceae		Parabacteroides	4	-	-
						Bacillaceae		Bacillus	41	5	-
				Bacillales				Oceanobacillus	1	-	-
	. [Bacilli		• Lactobacillales	L	Staphylococcaceae	_	Staphylococcus	6	-	-
			L			Enterococcaceae	_	Enterococcus	13	-	-
						Lactobacillaceae	_	Lactobacillus	6	-	-
				- Clostridiales		Clostridiaceae	_	Clostridium	5	-	-
D '						Eubacteriaceae	_	Eubacterium	3	-	-
Firmicutes								Blautia	2	-	-
								Butyrivibrio	1	-	-
	L	Clostridia	_					Lachnoclostridium	1	-	-
						Lacnnospiraceae		Marvinbryantia	1	-	-
								Roseburia	-	1	-
								Tyzzerella	1	-	-
					L	Unclassified Clostridiales-		Unclassified Clostridiales	1	-	-
Planctomycetes		Planctomycetia	_	Planctomycetales	_	Planctomycetaceae	_	Blastopirellula	1	-	-
D. J. J.	-Gammaproteobacteria			Vibrionales	_	Vibrionaceae	_	Photobacterium	1	-	-
Proteobacteria		Deltaproteobacteri	a —	Desulfobacterales	_	Desulfobulbaceae	_	Desulfotalea	1	-	-

Figure S7 The Taxonomic identification and paralogs distribution of BSHs in HMP.

The numbers in last three columns indicate the number of strains containing BSH paralogs.

Figure S8 Phylogenetic tree of BSHs in the gut micorbiome of 11 populations. The id and strain name of BSHs are provided. Different color represents different phylotype of reclassify BSHs, from top to bottom are BSH-T0, BSH-T1, BSH-T2, BSH-T3, BSH-T4, BSH-T5, BSH-T6 and BSH- T7, respectively. Triangles indicate the strains with paralogs.

Figure S9 SDS-PAGE of BSH and Standard curve used in ninhydrin assay. a SDS-PAGE of BSH protein. M: Marker; Lane 1: *E.coli* BL21(DE3); Lane 2: *E.coli* BL21(DE3)-*bsh* (-IPTG), Lane 3: *E.coli* BL21(DE3)-*bsh* (+IPTG), Lane 4: Purified BSH. **b** Standard curve of glycine and taurine.

Figure S10 Molecular docking results between BSH-T0 and bile acids. The predicted binding models of BSH-T0 with GCA, GCDCA, GDCA, TCA, TCDCA, TDCA and TUDCA. The residues contact to ligand showed in the below table.

Residue contacts : to ligand Asn182 Tyr183 Tyr183 Tyr183 Eu211 Tyr183 Gly212 Leu211 Gly212								
	Residue contacts : to ligand	Asn182 Tyr183 Gly185	Tyr183	Leu211	Tyr183 Gly212	Gly212	Leu211	Gly212

Figure S11 Molecular docking studies between BSH-T1 and bile acids. The predicted binding models of BSH-T1 with GCA, GCDCA, GDCA, TCA, TCDCA, TDCA and TUDCA. The residues contact to ligand showed in the below table.

	GCA	GCDCA	GDCA	TCA	TCDCA	TDCA	TUDCA
Residue contacts : to ligand	Asp216 Ser221	Gly212	Gly212	Asp216 Ser221	Asp216 Ser221	Ser221	Leu211 Ser221

Figure S12 Molecular docking studies between BSH-T2 and bile acids. The predicted binding models of BSH-T2 with GCA, GCDCA, GDCA, TCA, TCDCA, TDCA and TUDCA. The residues contact to ligand showed in the below table.

	GCA	GCDCA	GDCA	TCA	TCDCA	TDCA	TUDCA
Residue contacts : to ligand	Asp183 His213	Asp183	Asp183 His212 Pro215	Asp183 His212 Pro215	His213 Leu214	Asp183 His212 Pro215	Asp183 His213 Pro215

Figure S13 Molecular docking studies between BSH-T3 and bile acids. The predicted binding models of BSH-T3 with GCA, GCDCA, GDCA, TCA, TCDCA, TDCA and TUDCA. The residues contact to ligand showed in the below table.

	GCA	GCDCA	GDCA	TCA	TCDCA	TDCA	TUDCA
Residue contacts : to ligand	Gly214	Gly214 Pro216	His213	Pro216 Gly217	Pro216	His213	His213 Gly214

Figure S14 Molecular docking studies between BSH-T4 and bile acids. The predicted binding models of BSH-T4 with GCA, GCDCA, GDCA, TCA, TCDCA, TDCA and TUDCA. The residues contact to ligand showed in the below table.

	GCA	GCDCA	GDCA	TCA	TCDCA	TDCA	TUDCA
Residue contacts : to ligand	Gly218	Gly218	Gly218	Tyr189 Gly218	Gly218	Tyr189 Gly218	Gly218 Ile219

Figure S15 Molecular docking studies between BSH-T5 and bile acids. The predicted binding models of BSH-T5 with GCA, GCDCA, GDCA, TCA, TCDCA, TDCA and TUDCA. The residues contact to ligand showed in the below table.

	GCA	GCDCA	GDCA	TCA	TCDCA	TDCA	TUDCA
Residue contacts : to ligand	Lys179 Glu181	Lys179 Glu181	Asp160 Lys179	Lys179	Lys179	Asp160 Lys179	Asp160 Lys179

Figure S16 Molecular docking studies between BSH-T6 and bile acids. The predicted binding models of BSH-T6 with GCA, GCDCA, GDCA, TCA, TCDCA, TDCA and TUDCA. The residues contact to ligand showed in the below table.

Figure S17 Molecular docking studies between BSH-T7 and bile acids. The predicted binding models of BSH-T7 with GCA, GCDCA, GDCA, TCA, TCDCA, TDCA and TUDCA. The residues contact to ligand showed in the below table.

Figure S18 Enzyme activity comparisons between substrates in each BSH phylotype. The specific activity of an enzyme per milligram of total protein, using the highest enzyme activity as 100% for each BSH phylotype. a BSH-T0; b BSH-T1; c BSH-T2; d BSH-T3; e BSH-T4; f BSH-T5; g BSH-T6 and h BSH-T7. p value was analyzed by single-factor ANOVA with Tukey HSD test, * p < 0.05, ** p < 0.01, *** p< 0.001, versus the substrate which shown highest enzyme activity in each BSH. Details shown in Table S8. GCA, Glycocholic acid; GCDCA, Glycochenodeoxycholic acid; GDCA, Glycine deoxycholic acid; TCA, Taurocholic acid; TCDCA, Taurochnodeoxycholic acid; TDCA, Taurodeoxycholic acid; TUDCA, Tauroursodeoxycholic acid.

				Corre	lation	
	BSH	Population	Death rate of diabetes	Death rate of CVD	Mean blood cholesterol	BMI of obesity
1	All	HZ、CN、JP、KR DK、SE、AT、FR AU、US、PE	r = -0.65 p = 0.030	r = 0.00011 p = 1.0	r = 0.50 p = 0.12	r = 0.52 p = 0.10
2	то	CN、JP、KR、SE AT、FR、AU、US PE	r = 0.63 p = 0.25	r = 0.92 p = 0.0041	r = -0.62 p = 0.59	r = -0.39 p = 0.48
3	T1	HZ、CN、JP、KR DK、SE、AT、FR AU、US、PE	r = -0.49 p = 0.25	r = -0.21 p = 0.60	r = 0.29 p = 0.62	r = 0.15 p = 0.75
4	T2	HZ、JP、KR、DK SE、AT、FR、AU US、PE	r = -0.33 p = 0.40	r = -0.37 p = 0.46	r = 0.26 p = 0.62	r = -0.49 p = 0.41
5	тз	CN、JP、AT、FR	r = 0.95 p = 0.25	r = 0.84 p = 0.46	r = -0.59 p = 0.62	r = 0.21 p = 0.79
6	T4	CN、JP、KR、DK SE、AT、FR、AU US、PE	r = -0.54 p = 0.25	r = -0.34 p = 0.46	r = 0.31 p = 0.62	r = -0.49 p = 0.41
7	Т5	HZ、CN、JP、KR DK、SE、AT、FR AU、US、PE	r = -0.38 p = 0.34	r = 0.093 p = 0.79	r = 0.18 p = 0.68	r = 0.36 p = 0.48
8	Т6	CN、JP、KR、DK SE、AT、FR、AU US	r = 0.46 p = 0.33	r = 0.42 p = 0.46	r = -0.35 p = 0.62	r = 0.29 p = 0.59
9	Т7	HZ、CN、JP、KR DK、SE、AT、FR AU、US、PE	r = 0.086 p = 0.80	r = 0.39 p = 0.46	r = -0.035 p = 0.92	r = -0.54 p = 0.41

Figure S19 Relationship between average RA of BSHs with WHO released phenotypes in 11 populations. Correlation that shown significant difference between **a** average RA of BSH and death rate (per 100,000 individuals) of diabetes; **b** average RA of BSH-T0 and death rate (per 100,000 individuals) of cardiovascular diseases (CVD); **c** Correlation between different phylotypes of BSH abundance and death rate of diabetes and CVD, mean blood cholesterol and Body mass index (BMI) of obesity. R and p values were calculated form Pearson correlations to assess the relationship.

Here, the information of the WHO released phenotypes could be found in Table S10. RA, relative abundance.

Figure S20 The relative abundance of BSHs among case-control cohorts. a colorectal cancer (CRC) in Austria; b colorectal cancer (CRC) in Denmark; c Adenoma in Austria; d Adenoma in Denmark; e Type 2 diabetes (T2D) in Denmark; f Type 2 diabetes (T2D) in Sweden; g impaired glucose tolerance (IGT) in Sweden. p^c values were calculated by the Chi-squared test; p^u values were calculated by the Mann-Whitney U test, p values in each type were analyzed by followed by false discovery rate correction. The populations from CN and CN² are independent cases. Details are shown in Table S3.

Figure S21 Standard curve of bile acids used in LC-MS/MS. a CA; b CDCA; c DCA; d UDCA.

Figure S22 Typical LC spectrum of different bile acids. a UDCA; **b** DCA and CDCA; **c** CA.