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SUPPLEMENTARYMATERIALS
R code: The R code for fittingMFVB for lagged kernel machine regression is provided in our Github account. Code for a
simulation study can be found here (https://github.com/shelleyhliu/VB-LKMR-Simulations), and code for a case study
can be found here (https://github.com/shelleyhliu/VB-LKMR-CaseStudy).
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SupplementaryMaterialsPartA:Derivations
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Form of l ogp(y; q ).
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SupplementaryMaterials Part B:MCMCDiagnostics

SUPPLEMENTARY FIGURE S2aMarginal density plots and trace plots for estimation ofh for a random representative
dataset from the simulation study usingMCMC-LKMR.We present themean ofht , t= 1,2,3,4 for each iteration of the
Gibbs sampler.
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SUPPLEMENTARY FIGURE S2b Trace plots for estimation ofβ,σ2,λ2,ω2, τ 2 for a random representative dataset
from the simulation study usingMCMC-LKMR.
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SUPPLEMENTARY FIGURE S2cMarginal density plots for estimation ofβ,σ2,λ2,ω2, τ 2 for a random representative
dataset from the simulation study usingMCMC-LKMR.
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SupplementaryMaterials Part C:MFVB vs. MCMC Simulations

Because we note that σ2 is estimated to be smaller under VB than under MCMC, we expanded the simulation study of N=300 to explore
this impact on the ensuing inference. In particular, we create plots which are also used in the Application section to understand the rela-
tive importance of each time-varying mixture component, as well as the interaction between two mixture components across time windows,
comparing inference under MFVB-LKMR andMCMC-LKMR. In each of these plots, we see that the confidence bars or confidence bands are
slightly narrower for VB than forMCMC. However, under this simulating example, we see that this slight narrowing does not lead to a change
in inference on the estimated exposure-response relationship across the two estimationmethods.

SUPPLEMENTARY FIGURE S3aAverageMFVB-LKMR estimated relative importance of each exposure at four time
windows for the simulation study. Relative importance is quantified by the difference in the estimated exposure
response function at two given levels of exposure to a single metal, holding all other metals at median exposures. For
each dataset, the relative importance was estimated at the same grid of points, which generally correspond to the 75th
vs. 25th percentile of exposure, and the 95% interval for relative importance is defined as the predicted relative
importance +/- 1.96 times the square root of the corresponding variance.

SUPPLEMENTARY FIGURE S3bAverageMCMC-LKMR estimated relative importance of each exposure at four time
windows for the simulation study. Relative importance is quantified by the difference in the estimated exposure
response function at two given levels of exposure to a single metal, hodling all other metals at median exposures. For
each dataset, the relative importance was estimated at the same grid of points, which generally correspond to the 75th
vs. 25th percentile of exposure, and the 95% interval for relative importance is defined as the predicted relative
importance +/- 1.96 times the square root of the corresponding variance.
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SUPPLEMENTARY FIGURE S4a Plot of the average cross-section of theMFVB-LKMR estimated exposure-response
surface for Z1, at low and high fixed values of Z2, which roughly correspond to 25th (top panel) and 75th (bottom panel)
of Z2 exposure, holding Z3 at its median value, for a simulation study.

SUPPLEMENTARY FIGURE S4b Plot of the average cross-section of theMCMC-LKMR estimated exposure-response
surface for Z1, at low and high fixed values of Z2, which roughly correspond to 25th (top panel) and 75th (bottom panel)
of Z2 exposure, holding Z3 at its median value, for a simulation study.
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SUPPLEMENTARY FIGURE S5a Plot of the averageMFVB-LKMR estimated interaction effect between Z1 and Z2,
holding Z3 at its median exposure, for a simulation study. Interaction was defined as: First, we estimated the
exposure-response effect for high versus low Z1 exposures, at high Z2 levels andmedian Z3. Next, we estimated the
exposure-response effect for high versus low Z2 exposures, at low Z2 levels andmedian Z3. The difference between
these two estimated exposure-response effects quantifies the Z1-Z2 interaction. The high and low levels of exposure
were fixed, and roughly correspond to the 75th and 25th percentiles of exposure.

SUPPLEMENTARY FIGURE S5b Plot of the averageMCMC-LKMR estimated interaction effect between Z1 and Z2,
holding Z3 at its median exposure, for a simulation study. Interaction was defined as: First, we estimated the
exposure-response effect for high versus low Z1 exposures, at high Z2 levels andmedian Z3. Next, we estimated the
exposure-response effect for high versus low Z2 exposures, at low Z2 levels andmedian Z3. The difference between
these two estimated exposure-response effects quantifies the Z1-Z2 interaction. The high and low levels of exposure
were fixed, and roughly correspond to the 75th and 25th percentiles of exposure.


