Cell Systems, Volume 8

Supplemental Information

Allosteric Feedback Inhibition Enables

Robust Amino Acid Biosynthesis in E. coli

by Enforcing Enzyme Overabundance

Timur Sander, Niklas Farke, Christoph Diehl, Michelle Kuntz, Timo Glatter, and Hannes Link

Figure S1. Related to Figure 1; *In vitro* kinetics of N-acetylglutamate-synthase (NAGS) from *E. coli* (ArgA) in the **A** native and **B** the allosteric feedback resistant version ArgA (H15Y). Dots represent means from n=2 independent assays (filled = no arginine; empty = 1 mM arginine). Activity of His-tagged purified enzymes was assayed in 30 mM TRIS buffer (40 mM L-glutamate, 0.65 mM Acetyl-CoA and 10 mM MgCl₂). For sampling 10 µL of reaction solution was transferred into 40 µL of 50:50 (v-%) acetonitrile/methanol at -20°C. The reaction product N-acteylglutamate was measured by LC-MS/MS. Specific activity in [µmol mg⁻¹ min⁻¹] was calculated from linear regression through the 8 time points.

Figure S3. Related to Figure 2; GFP expression of promotor fusions PargA-gfp, PtrpL-gfp, Ptrl-gfp, Ptrl-gfp, PhisL-gfp and PleuL-gfp in *E. coli* wild-type with and without addition of external amino acids. Bar plots show fold-changes of GFP per OD_{600} relative to the condition without external amino acids (n=3). Cells were grown in M9 minimal medium (5 g L⁻¹ glucose) and GFP expression was measured in mid-exponential phase at $OD_{600} \sim 0.5$ with a plate reader. Amino acids were supplemented to a final concentration of 2 mM.

Figure S4. Related to Figure 3; Growth of wild-type *E. coli* and 7 mutants (see also Figure 1A) on fructose (Fru), galactose (Gal), gluconate (Gnt), glucose (Glu), glycerol (Gly), pyruvate (Pyr), succinate (Suc), and xylose (Xyl). Shown are three cultivations in microtiter plates. The dashed line is the mean of the wild-type in the particular condition (n = 3). Numbers are the maximal growth rates in h^{-1} , which is reached at the time indicated by dots. All x-axes range from 0 to 24 hours. All y-axes range from -4 to 2 (lnOD₆₀₀).

Figure S5. Related to Figure 3; Growth of wild-type *E. coli* and the seven dysregulated mutants in shifts between glucose and galactose. For down-shifts from glucose to galactose, cells were grown in M9 minimal medium with 0.5 g L⁻¹ glucose and 5 g L⁻¹ galactose. For upshifts from galactose to glucose, cells were grown in M9 minimal medium with 5 g L⁻¹ galactose and glucose was added to a final concentration of 5 g L⁻¹ at an OD of 0.1. Shown are means of n = 3 cultures. Inserts show the growth rate during the same time period. Growth rates were estimated by linear regression over a moving 30 minute window. The same wild-type growth curve is shown in each graph in black as a reference.

Arginine intermediates

Figure S6. Related to Figure 4; Intermediates in dysregulated pathways measured by LC-MS in wild-type *E. coli* and seven dysregulated mutants (n = 3).

Figure S7. Related to Figure 4;

(A) Model with product inhibition, instead of allosteric feedback inhibition. Metabolite 2 inhibits reaction 2 by competitive product inhibition, which was modelled using the following equation:

$$r_2 = k_{cat,2} \cdot e_2 \cdot \frac{m1}{m1 + Km \cdot \left(1 + \frac{m2}{K1}\right)}$$

(B) Steady state concentrations of e_1 , $e_2 m_1$ and m_2 calculated with 5000 simulations for the complete model (grey), and the model with only enzyme level regulation (blue). Boxes contain 50% and whiskers 99% of the simulated concentrations. All concentrations are normalized to the median concentrations of the complete model.

(C) Enzyme levels (sum of e_1 and e_2) and robustness against perturbations of $\beta_{2,max}$ for 5000 simulations of the complete model (dots). The color of each dot shows the ratio of inhibition constants for allosteric feedback inhibition (K1) and enzyme level regulation (K2) in the respective model. Robustness corresponds to the percentage downregulation of $\beta_{2,max}$ that was tolerated by each model. 100% enzyme abundance corresponds to the maximum theoretical enzyme concentration in the model.

Pathway	Gene	Enzyme	Mutation	Reference
L-arginine biosynthesis	argA	N-acetylglutamate synthase	H15Y	Rajagopal et al., 1998
L-isoleucine biosynthesis	ilvA	Threonine deaminase	L447F	LaRossa et al., 1987
L-histidine biosynthesis	hisG	ATP phosphoribosyl transferase	E271K	Doroshenko et al., 2013
L-leucine biosynthesis	leuA	2-isopropylmalate synthase	G462D	Gusyatiner et al., 2002
L-proline biosynthesis	proB	Glutamate-5- kinase	D107N	Csonka et al., 1988
L-threonine biosynthesis	thrA	Aspartate kinase	S345F	Lee et al., 2003
L-tryptophan biosynthesis	trpE	Anthranilate synthase	S40F	Caligiuri and Bauerle, 1991

 Table S1. Related to Figure 1; Mutations in allosteric enzymes that were investigated in this study.

Gene	Oligonucleotides for recombineering (5'-3')	Protospacer sequence (5'-3')
argA	GTGGTAAAGGAACGTAAAACCGAGTTGGTCGAGGGAT TCCGC <mark>I</mark> ATTC <u>A</u> GTTCCCTATATCAATACCCACCGGGGAA	GGTCGAGGGATT CCGCCATT
ilvA	GGAATCACCGGGCGCG <mark>T</mark> T <u>C</u> CTGCGCTT <u>T</u> CTCAACACG CTGGGTACGTACTGGAACATTTCTTTGTTCCACTATCG	CAACACGCTGG GTACGTACT
hisG	GTCAGCAGCAAAACCCTGTTCTGGGAAACTATGGAAA AACTGAAAGCGCTGGGGCCAGTTCAATTCTGGTCCTG	TGGAAAAACTGA AAGCGCTG
leuA	CTGGTGAAATACAGCCTGACCGCCAAAGG <u>A</u> CACGGTA AAGATGCGCTGG <mark>A</mark> TCAGGTGGATATCGTCGCTAACTAC	CGGTAAAGATGC GCTGGGTC
proB	ACCCGTGCT <u>A</u> ATATGGAAGACCGTGAACGCTTCCTGAACG C <mark>T</mark> CGCGACACCCTGCGAGCGTTGCTCGATAACAATATC	CGACACCCTGCG AGCGTTGC
thrA	GCGCGCGTCTTTGCAGCGATGTCACGCGCCCGTATTT <u> T</u> CGTGGTGCTGATTACGCAATCATCTTCCGAATACAGC	TGGTGCTGATTA CGCAATCA
trpE	CTTATCGCGACAATCCCAC <u>T</u> GCGCTTTTTCACCAGTTGTGT GGGGATCGTCCGGCAACGCTGCTGCTGGAATTCGCAGAT	CGCTTTTTCACC AGTTGTGT

Table S2. Related to Figure 1; Oligonucleotides for recombineering

Table S3. Related to Figure 4; Literature k_{cat} values for enzymes in amino acid biosynthesis. The values were collected from the BRENDA database, and from Davidi and Milo, 2017. - indicates that no value could be found in both sources. The 25th and 75th quartiles of these k_{cat} values are 930 min⁻¹ and 4140 min⁻¹, respectively.

Name	$\mathbf{k}_{cat}, \mathbf{s}^{-1}$	Name	k _{cat} , s ⁻¹	Name	$\mathbf{k}_{cat}, \mathbf{s}^{-1}$
argA	654.00	cysK	378.50	il∨N	40.00
argB	-	cysM	24.00	leuA	-
argC	-	cysN	-	leuB	69.00
argD	-	cysQ	11.00	leuC	-
argE	1800.00	dadX	33.66	leuD	-
argF	-	dapA	104.00	lysA	33.00
argG	-	dapB	382.00	lysC	22.13
argH	-	dapD	36.00	metA	22.00
argl	-	dapE	-	metB	121.00
aroA	32.00	dapF	84.00	metC	34.10
aroB	14.00	gdhA	37.00	metE	3.50
aroC	39.00	glnA	33.00	metH	-
aroD	75.00	gltB	-	metL	-
aroE	237.00	gltD	-	pheA	32.00
aroF	-	glyA	10.00	proA	10.00
aroG	4.20	hisA	7.20	proB	53.00
aroH	-	hisB	-	proC	717.00
aroK	-	hisC	-	prs	-
aroL	-	hisD	12.00	serA	29.00
asd	-	hisF	-	serB	-
asnA	-	hisG	-	serC	1.80
asnB	4.50	hisH	-	thrA	-
aspC	-	hisl	-	thrB	17.00
avtA	-	ilvA	-	thrC	-
cysC	50.00	ilvB	38.50	trpA	-
cysD	-	ilvC	0.30	trpB	-
cysE	772.00	ilvD	69.00	trpC	18.77
cysH	-	ilvE	-	trpE	-
cysl	47.00	il∨H	-	tyrA	71.00
cysJ	-	ilvl	-	tyrB	-

Table S4. Related to Figure 4; Amino acid requirements of *E. coli* (Monk et al., 2017). The mean of 86.6 mM was used as parameter α in the model.

Amino Acid	Coefficients, mmol g _{dw} -1	alpha, mM
ala-L	0.499	166.4
arg-L	0.287	95.8
asn-L	0.234	78.1
asp-L	0.234	78.1
cys-L	0.089	29.7
gln-L	0.256	85.2
glu-L	0.256	85.2
gly	0.595	198.4
his-L	0.092	30.7
ile-L	0.282	94.1
leu-L	0.438	145.9
lys-L	0.333	111.1
met-L	0.149	49.8
phe-L	0.180	60.0
pro-L	0.215	71.6
ser-L	0.210	69.9
thr-L	0.247	82.2
trp-L	0.055	18.4
tyr-L	0.134	44.7
val-L	0.411	137.1
Mean	0.260	86.6

Table S5. Related to Figure 4; Inhibition constants of allosteric enzymes (K_i-value), transcriptional attenuation (tRNA-ligase K_m-value) and metabolite-transcription factor interactions (K_d-value). Values were obtained from EcoCyc (Keseler et al., 2017), Brenda (Schomburg et al., 2002) or RegulonDB (Gama-Castro et al., 2016). When more than one value was available, an upper and a lower bound are given. The grey background indicates the seven pathways that were investigated during this work. The Ki of ArgA was measured in this work with *in vitro* assays.

Biosynthesis	Allosteri	eric Feedback K _i mM		Transcriptional Feedback			K _{m/d} mM		
pathway	Enzyme	Metabolite	LB	UB	Mechanism	Protein	Metabolite	LB	UB
Arginine	ArgA	arg	0.1	15	Repressor	ArgR	arg	0.2	8
Asparagine	AsnA	asn	0.1	12	Repressor	AsnC	asn	1	
Cysteine	CysE	cys	0.0	01					
Histidine	HisG	his	0.012	0.1	Attenuation	his-tRNA ligase	his	0.008	0.03
Isoleucine	IIvA	ile	0.0	06	Attenuation	ile-tRNA ligase	ile	0.0036	1.3
Leucine	LeuA	leu	0.2	28	Attenuation	leu-tRNA ligase	leu	0.0015	0.05
Lysine	DapA	lys	0.21	3.9					
Methionine	MetA	met	0.1	4	Repressor	MetJ	sam	0.01	0.05
Phenylalanine	PheA	phe	0.1	0.6		TyrR	phe	>0.1	8
Proline	ProB	pro	0.0)2					
Serine	SerA	ser	0.005	0.37					
Threonine	ThrA	thr	0.097	0.167	Attenuation	thr-tRNA ligase	thr	0.11	0.2
Tryptophan	TrpE	trp	0.1	17	Repressor	TrpR	trp	0.1	6
Tryptophan	TrpE	trp	0.1	17	Attenuation	trp-tRNA ligase	trp	0.01	17
Tyrosine	TyrA	tyr	0.	1	Repressor	TyrR	tyr	0.1	8
Valine	IIvΒ	val	0.078	0.1	Attenuation	val-tRNA ligase	val	0.0043	0.1

Table S6.	Related to	STAR Methods	; Oligonucleotides	used in this study	<i>'</i> .

Oligonucleotide	Sequence (5'-3')	Description
argA Forward	GGTCGAGGGATTCCGCCATTG	Forward primer used with CPEC001 for amplification of
	TTTTAGAGCTAGAAATAGCAAG	fragment 1 for customzied pKDsgRNA targeted against aroA
argA Reverse	AATGGCGGAATCCCTCGACCG	Reverse primer used with CPEC002 for amplification of
	TGCTCAGTATCTCTATCACTGA	fragment 2 for customzied pKDsgRNA targeted against arnA
ilvA Forward	AGTACGTACCCAGCGTGTTGG	Forward primer used with CPEC001 for amplification of
	TTTTAGAGCTAGAAATAGCAAG	fragment 1 for customzied pKDsgRNA targeted against ilvA
ilvA Reverse	CAACACGCTGGGTACGTACTG	Reverse primer used with CPEC002 for amplification of
	TGCTCAGTATCTCTATCACTGA	fragment 2 for customzied pKDsgRNA targeted against ilvA
hisG Forward	CAGCGCTTTCAGTTTTTCCAGT	Forward primer used with CPEC001 for amplification of
	TTTAGAGCTAGAAATAGCAAG	fragment 1 for customzied pKDsgRNA targeted against
hisG Reverse	TGGAAAAACTGAAAGCGCTGG	Reverse primer used with CPEC002 for amplification of
	TGCTCAGTATCTCTATCACTGA	fragment 2 for customzied pKDsgRNA targeted against hisG
leuA Forward	GACCCAGCGCATCTTTACCGG	Forward primer used with CPEC001 for amplification of
	TTTTAGAGCTAGAAATAGCAAG	fragment 1 for customzied pKDsgRNA targeted against leuA
leuA Reverse	CGGTAAAGATGCGCTGGGTCG	Reverse primer used with CPEC002 for amplification of
	TGCTCAGTATCTCTATCACTGA	fragment 2 for customzied pKDsgRNA targeted against leuA
proB Forward	GCAACGCTCGCAGGGTGTCGG	Forward primer used with CPEC001 for amplification of
	TTTTAGAGCTAGAAATAGCAAG	fragment 1 for customzied pKDsgRNA targeted against
proB Reverse	CGACACCCTGCGAGCGTTGCG	Reverse primer used with CPEC002 for amplification of
prob_recretored	TGCTCAGTATCTCTATCACTGA	fragment 2 for customzied pKDsgRNA targeted against
		nroR
thrA Forward	TGATTGCGTAATCAGCACCAG	Forward primer used with CPFC001 for amplification of
	TTTTAGAGCTAGAAATAGCAAG	fragment 1 for customzied pKDsgRNA targeted against thrA
thrA Reverse	TGGTGCTGATTACGCAATCAG	Reverse primer used with CPEC002 for amplification of
	TGCTCAGTATCTCTATCACTGA	fragment 2 for customzied pKDsgRNA targeted against thrA
troE Forward	ACACAACTGGTGAAAAAGCGG	Forward primer used with CPEC001 for amplification of
	TTTTAGAGCTAGAAATAGCAAG	fragment 1 for customzied pKDsgRNA targeted against troF
troF Reverse	CGCTTTTTCACCAGTTGTGTG	Reverse primer used with CPEC002 for amplification of
	TGCTCAGTATCTCTATCACTGA	fragment 2 for customzied pKDsgRNA targeted against trpF
argR_Forward	ATTCTTCAATGGACTGGAGGG TTTTAGAGCTAGAAATAGCAAG	Forward primer used with CPEC001 for amplification of fragment 1 for customzied pKDsgRNA targeted against arg
ardR Reverse	CCTCCAGTCCATTGAAGAATGT	Reverse primer used with CPEC002 for amplification of
	GCTCAGTATCTCTATCACTGA	fragment 2 for customzied pKDsgRNA targeted against
CPEC001		Reverse primer for amplification of fragment 1 for
CPEC002		Forward primer for amplification of fragment 2 for
0. 20002		nKDsgRNA
Ec-F	GTTTTAGAGCTAGAAATAGCAA	Foward primer used with quide Rev for ampflification of
	GTTAAAATAAGGC	customized pNUT1533-ctrl
EC-F-argE-mm5		Foward primer used with guide_Rev for amphilification of
	GTTTTAGAGCTAGAAATAGCAA	customized pNU11533-argE
	GITAAAATAAGGC	Forward avieward with envide Day for exactlification of
EC-F-trpA	TTACACOTACALATACOAACIGI	Foward primer used with guide_Rev for amprincation of
		customized pivo i 1533-trpA
Eo E bioP		Foward primer used with guide Rey for empflification of
EC-F-NISB		Foward primer used with guide_Rev for amphification of
	GTTTAGAGUTAGAATAGUAA	customized pivo i 1533-nisb
		Deverse primer for emplification of evotemized pNULT1E22
EC-R	ACTAGIATIATACCTAGGACTG	Reverse primer for amplification of customized pNOT1533
ArgA fund Nidal		Amplification of general orga
AlgA_lwa_ndei		Amplification of genomic arga
Arga roy Domili		Amplification of general orga
AlgA_lev_ballini		Amplification of genomic arga
Aral H15V fund		Forward primer for amplification pET280(1) or a
AIYA_HIST_IWU	AGGGAACCGAATAGCGGAATC	Forward primer for amplification perzoa(+)-argA
AraA H15V rov	ΔΤΑΤΟΔΑΤΛΟΟΟΛΟΟΟΟ	Reverse primer for amplification pET28c(1) or a
hist fund of p		Reverse primer for amplification of high attonuator region
ms∟_iwu_gip	TTCCCC	ר סרשמים פרוווופו זטו מוופווויכמנטון טו וווגב מננפוועמטו ופטוטו
hist rev of		Reverse primer for amplification of hist, attenuator region
Inst_iov_gip	TCGGC	Reverse primer for amplification of the attenuator region
leuL_fwd_gfp	CCGCTCGAGTTGTCCCCTTTTT CCTCG	Forward primer for amplification of leuL attenuator region

Table S6. Related to STAR Methods; continued

Oligonucleotide	Sequence (5'-3')	Description
leuL_rev_gfp	CCGGGATCCGATGGTTTGCAC CGATTC	Reverse primer for amplification of leuL attenuator region
thrA_fwd_gfp	CCGCTCGAGACTGCAACGGGC AATATG	Forward primer for amplification of thrL attenuator region
thrA_rev_gfp	CCGGGATCCTCGGCATCGCTG ATATTG	Reverse primer for amplification of thrL attenuator region