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SUMMARY

Microbes must ensure robust amino acid meta-
bolism in the face of external and internal perturba-
tions. This robustness is thought to emerge from
regulatory interactions in metabolic and genetic
networks. Here, we explored the consequences of
removing allosteric feedback inhibition in seven
amino acid biosynthesis pathways in Escherichia
coli (arginine, histidine, tryptophan, leucine, isoleu-
cine, threonine, and proline). Proteome data revealed
that enzyme levels decreased in five of the seven
dysregulated pathways. Despite that, flux through
the dysregulated pathways was not limited, indi-
cating that enzyme levels are higher than absolutely
needed in wild-type cells. We showed that such
enzyme overabundance renders the arginine, histi-
dine, and tryptophan pathways robust against per-
turbations of gene expression, using a metabolic
model and CRISPR interference experiments. The
results suggested a sensitive interaction between
allosteric feedback inhibition and enzyme-level
regulation that ensures robust yet efficient bio-
synthesis of histidine, arginine, and tryptophan
in E. coli.

INTRODUCTION

Regulation of microbial metabolism involves a wide range of

mechanisms that act on different cellular layers and together

control the abundance and activity of enzymes (Chubukov

et al., 2014). An example is end-product inhibition of amino

acid biosynthesis in Escherichia coli, which can act on enzyme

abundance through transcriptional regulatory cues and

enzyme activities through allosteric feedback inhibition. How-

ever, since metabolic reaction rates are determined by both

enzyme abundance and enzyme activity, it has been difficult

to disentangle the specific roles of the two regulatory layers

and to understand how they interact to control metabolism

(Chubukov et al., 2013; Daran-Lapujade et al., 2007; ter Kuile

and Westerhoff, 2001).
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Allosteric feedback inhibition of the committed step in

biosynthetic pathways is thought to maintain homeostasis of

end-products (Umbarger, 1956), and 16 out of 20 amino acids

in E. coli feedback inhibit enzymes of their own biosynthesis

pathway (Reznik et al., 2017). The consequences of dysregulat-

ing these enzymes were mainly studied in vitro (Schomburg

et al., 2013) or in the context of biotechnological overproduction

strains (Hirasawa and Shimizu, 2016). For the case of nucleotide

biosynthesis in E. coli, a detailed in vivo study showed that

removing allosteric feedback inhibition did not perturb nucleo-

tide homeostasis (Reaves et al., 2013). In the absence of allo-

steric feedback inhibition, additional regulatory mechanisms

accomplished proper control of the pathway by channeling the

excess of nucleotides into degradation pathways (so-called

directed overflow). Theoretical analyses, in contrast, suggest a

key role of allosteric feedback inhibition in achieving end-prod-

uct homeostasis (Hofmeyr and Cornish-Bowden, 2000), meta-

bolic robustness (Grimbs et al., 2007), flux control (Kacser and

Burns, 1973; Schuster and Heinrich, 1987), and optimal growth

(Goyal et al., 2010).

The abundance of enzymes in E. coli amino acidmetabolism is

mainly regulated at the level of transcription, either by transcrip-

tional attenuation (Yanofsky, 1981) or transcription factors (Cho

et al., 2008, 2012). For example, a set of four transcription factors

(ArgR, TrpR, TyrR, and Lrp) control expression of 19 out of 20

amino acid pathways by sensing the availability of amino acids

via allosteric binding (Cho et al., 2012). This regulation ensures

that enzymes in amino acid pathways are only made when they

are needed (Schmidt et al., 2016; Zaslaver et al., 2004). As a

consequence of such need-based enzyme level regulation, one

would expect that enzyme levels are not higher than absolutely

needed for amino acid biosynthesis. However, recent data

suggest that cells express the majority of enzymes at higher

levels than necessary to fulfill biosynthetic demands, and that

such enzyme overabundance provides a benefit in changing

environments (Davidi and Milo, 2017; O’Brien et al., 2016). For

example, enzyme overabundance enables a quick activation of

the pentose phosphate pathway upon stresses (Christodoulou

et al., 2018), and similar benefits were attributed to overabundant

ribosomes (Mori et al., 2017) and coenzymes (Hartl et al., 2017).

Here, we constructed seven E. coli mutants, each with a

different feedback-dysregulated amino acid biosynthesis

pathway (arginine, histidine, tryptophan, leucine, isoleucine, thre-

onine, and proline), and measured their proteins, metabolites,
blished by Elsevier Inc.
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Figure 1. Amino Acid Profile of Feedback-Dysregulated E. coli Mutants

(A) Seven amino acid pathways were dysregulated by genomic point mutations in the indicated genes. See also Table S1. Negative allosteric feedbacks of amino

acids on enzymes in the biosynthetic pathways are shown as dotted lines. Negative transcriptional feedbacks of amino acids are shown as dashed lines. Boxes

indicate enzymes in the biosynthesis pathways.

(B) Relative concentrations of intracellular amino acids in wild-type E. coli and the seven dysregulated mutants. Bar plots show absolute concentrations of the

amino acid in the dysregulated pathways. See also Figure S2. Data are represented as mean, and error bars are ± SD (n = 3).
fluxes, andgrowth. In all seven feedback-dysregulatedpathways,

the concentration of amino acid end products increased, and in

five pathways, we measured lower enzyme levels. Despite the

lower enzyme levels, biosynthetic flux was not limited, indicating

that these enzymes are not operating atmaximal capacity in wild-

type cells. By combining theoretical and experimental analysis,

we showed that this enzyme overabundance provides a robust-

ness benefit against genetic perturbations in the arginine, trypto-

phan, and histidine pathways.

RESULTS

Dysregulating Allosteric Enzymes Changes Levels of
Specific Amino Acids in E. coli

To explore the function of allosteric feedback inhibition in the

arginine, histidine, tryptophan, leucine, isoleucine, threonine,

and proline biosynthesis pathways, we first created a panel of

seven allosterically dysregulated E. coli mutants (Figure 1A;

Table S1). Using a scarless CRISPRmethod (Reisch andPrather,

2015), we introduced point mutations into genes encoding the

allosteric enzyme that catalyzes the committed reaction in

each pathway (argA, hisG, trpE, leuA, ilvA, thrA, and proB).

These mutations have been shown previously to abolish the

allosteric interaction while not affecting enzyme activity, thereby
allowing us to study regulation of the pathway in the absence of

allosteric feedback (Caligiuri and Bauerle, 1991; Csonka et al.,

1988; Doroshenko et al., 2013; Gusyatiner et al., 2005; LaRossa

et al., 1987; Lee et al., 2003; Rajagopal et al., 1998). For N-ace-

tylglutamate synthase (ArgA), we confirmed with in vitro assays

that the mutation does not affect enzymatic activity and

abolishes inhibition by arginine (Figure S1). To analyze the meta-

bolism of the mutants we quantified intracellular metabolites

during exponential growth on glucose by liquid chromatog-

raphy-tandem mass spectrometry (LC-MS/MS) (Guder et al.,

2017). Stronger metabolic changes were restricted to amino

acid biosynthesis, with specific increases between 2- and 16-

fold of only the amino acid products of the dysregulated path-

ways (Figure 1B). Despite these changes within the dysregulated

pathways, the remaining amino acid concentrations as well as

the global metabolite profile remained relatively stable (Figures

1B and S2). Thus, dysregulating allosteric enzymes in E. coli

amino acid biosynthesis elevated the intracellular concentration

of the corresponding amino acid product.

Lower Expression of Enzymes in Feedback-
Dysregulated Pathways
With the exception of proline biosynthesis, all of the dysregulated

pathways are additionally controlled at the layer of enzyme
Cell Systems 8, 66–75, January 23, 2019 67



Figure 2. Expression of Enzymes in Feedback-Dysregulated Pathways

(A) Abundance of 173 enzymes in amino acid metabolism (out of 204 enzymes in total), relative to the level in the wild-type. Data are represented as mean (n = 3).

For each strain the enzymes in the dysregulated pathway are shown as colored dots. Enzymes in degradation pathways of arginine, tryptophan, and proline are

indicated by their names.

(B) GFP-fluorescence measured by flow cytometry. GFP-promoter fusions were transformed in wild-type cells and the indicated mutant. Upper panel: pPargA-

gfp; middle panel: pPtrpL-gfp; lower panel: pPthrL-gfp. Histograms represent fluorescence of 10,000 single cells. Mean fluorescence was calculated from

10,000 single cells of n = 3 independent cultures. See also Figure S3.
abundance via either transcription factors or transcriptional

attenuation. To probe if elevated amino acid concentrations in

our mutants affected enzyme levels in the corresponding

pathways we measured their proteomes (Figure 2A). The data

covered relative abundances of 173 out of the 204 enzymes an-

notated to amino acid metabolism in the latest E. coli metabolic

model (Monk et al., 2017). Enzyme expression was indeed lower

in five of the seven dysregulated pathways (argA*, trpE*, hisG*,

leuA*, and thrA*), indicating that the elevated amino acid con-

centrations caused a compensatory downregulation of their

associated pathway (Figure 2A). Enzyme levels did not change

in the proB* and ilvA* mutants, which is expected because pro-

line biosynthesis lacks enzyme level regulation and isoleucine

biosynthesis is subject to a second allosteric feedback that

was not removed (Figures 1A and 2A). The leuA*mutant showed

more global changes in enzyme levels compared to the other

mutants. The high leucine concentration in this strain likely acti-

vates the leucine responsive transcription factor Lrp, which acts

on many genes in amino acid metabolism (Cho et al., 2008). In

the argA* mutant we observed an expected accompanying

decrease in histidine biosynthesis enzymes, which are additional

targets of the transcription factor ArgR (Gama-Castro et al.,

2016). Apart from the compensatory downregulation of biosyn-

thetic enzymes, enzymes in dedicated amino acid degradation

pathways were upregulated in three mutants (AstC in the argi-

nine mutant, TnaA in the tryptophan mutant, and PutA in the pro-

line mutant, Figure 2A). This likely constitutes an additional

compensatory mechanism similar to the directed overflow re-

ported for nucleotides (Reaves et al., 2013).

To obtain additional evidence for lower enzyme levels in the

dysregulated pathways, we used GFP-promoter fusions and
68 Cell Systems 8, 66–75, January 23, 2019
measured fluorescence in single cells (Figure 2B). GFP expres-

sion from an ArgR-regulated promoter was indeed�3-fold lower

in the argA* mutant compared to the wild-type. Similarly, a

TrpR-regulated promoter was �3-fold stronger repressed in

the trpE* mutant. The cell-to-cell variation in GFP content was

similar in wild-type cells and the mutants, thus indicating that

all cells in the population of allosteric feedback mutants have

lower enzyme levels in the dysregulated pathway. A GFP re-

porter with the thrL leader peptide was only 17% repressed in

the thrA* mutant compared to the wild-type, which is consistent

with the small decrease of enzyme levels in the dysregulated

threonine pathway (Figures 2A and 2B). We also fused GFP to

the hisL and leuL leader peptides, but they did not report repres-

sion by amino acids even when they were added to the medium

(Figure S3). Probably, transcriptional attenuation by hisL and

leuL requires the genomic context and cannot function on plas-

mids. In summary, proteome data revealed a lower expression of

enzymes for five of the seven dysregulated pathways (argA*,

trpE*, hisG*, leuA*, and thrA*). GFP-promoter fusions confirm

this enzyme level regulation at the single-cell level and indicate

that downregulation of enzymes in the argA*, trpE*, and thrA*

mutants occurs at the transcriptional layer.

Allosteric Feedback Inhibition Enforces Enzyme
Overabundance
Next, we wondered if lower expression of enzymes limits the

biosynthetic capacity of the mutants. First, we tested steady-

state growth on glucose minimal medium and seven other car-

bon sources (Figure S4). All mutants showed wild-type like

growth, except the leuA* mutant, which grew on average 10%

slower than the wild-type. To test if lower enzyme levels affect



Figure 3. Growth and Biosynthetic Flux of Feedback-Dysregulated E. coli Mutants

(A) Growth resumption after 20 hr carbon starvation of wild-type E. coli and the seven dysregulated mutants. Cells were starved in minimal medium and glucose

was added at t = 0 hr. ODwasmeasured in 5min intervals in a plate reader. Shown are means of n = 3 cultures. Inserts show the specific growth rate in h�1 during

the same time period. Growth rates were estimated by linear regression over amoving 30minwindow. The samewild-type growth curve and growth rate is shown

in each graph in black as a reference. See also Figures S4 and S5.

(B) Decay of unlabeled amino acids in the wild-type E. coli (black) and the seven dysregulated mutants (color). The measured amino acid is indicated above each

graph. Cells were loaded from shake flasks onto filters and perfused with 15N-medium for different lengths of time (0, 30, 60, 120, and 180 seconds). Dots are

means of n = 2 samples for each time point. Lines are means of 1,000 fits of decay rates based on equations for kinetic flux profiling. Box plots show fluxes based

on the 1,000 fits, relative to the median flux estimate in the wild-type. Boxes contain 50% and whiskers 99% of the flux estimates.
biosynthetic capacity in dynamics shifts, we starved cells for

carbon and measured growth resumption on glucose minimal

medium (Figure 3A). During the initial phase of growth resump-

tion all mutants had the same growth rate as the wild-type.

Only the leuA*, ilvA*, and thrA* mutants reached lower growth

rates than the wild-type during the subsequent 4 hr. The three

strains had also lower ODs after 20 hr starvation. Similarly, nutri-

tional up- and downshifts between glucose and galactose had

only a tangible effect on the growth of the leuA*, ilvA*, and

thrA* mutants during the downshift (Figure S5). The three strains

with the highest reduction in enzyme levels (argA*, trpE*, and

hisG*) grew like the wild-type in all tested conditions, indicating

that biosynthetic capacity is not limited by lower enzyme levels.

The advantage of lower protein costs in these pathways was

either too subtle to be detected by growth assays or counterbal-

anced by negative effects of feedback dysregulation.

To directly probe biosynthetic capacity, we traced intracel-

lular fluxes of amino acids with 15N labeling experiments (Fig-

ure 3B). Labeling of arginine, tryptophan, and proline was

similar in the respective mutant and the wild-type, whereas

histidine, (iso)-leucine, and threonine labeled slower in the

mutants. However, it is important to consider that labeling

rates depend on fluxes and absolute pool sizes of amino

acids. Because amino acid pools were higher in the mutants,

we used a method for quantitative analysis of the labeling

profiles to estimate fluxes (Yuan et al., 2008). To account for

unknown labeling profiles of upstream nitrogen precursors,
we calculated fluxes for a wide range of precursor labeling

rates in the literature (Yuan et al., 2006). The flux estimates

show that none of the mutants had lower flux through the dys-

regulated pathways than the wild-type (Figure 3B). In most

cases, biosynthetic flux was even higher, indicating that

downregulation of enzyme levels could not fully compensate

the loss of allosteric feedback inhibition in some of the mu-

tants. This might be the reason for the growth phenotype of

the leuA*, ilvA*, and thrA* mutants in dynamic growth experi-

ments (Figure 3A).

In conclusion, the feedback-dysregulated mutants showed

the same or higher flux through the dysregulated amino acid

pathways than wild-type cells, although in five mutants

(argA*, trpE*, hisG*, leuA*, and thrA*) enzyme levels in the dys-

regulated pathway were lower. Especially, the argA*, trpE*,

and hisG* mutants, which had �2-fold lower enzyme levels

in the dysregulated pathways compared to the wild-type,

showed 1- to 2-fold higher fluxes and normal growth. This in-

dicates that these enzymes are not operating at maximal ca-

pacity in wild-type E. coli during growth on glucose. We then

hypothesized that this enzyme overabundance emerges from

allosteric feedback inhibition by maintaining a low concentra-

tion of end-products, which in turn increases production of en-

zymes (e.g., by de-repression of transcription). Next, we

explored this interplay between control of enzyme activity

and enzyme abundance and its relevance for cellular

metabolism.
Cell Systems 8, 66–75, January 23, 2019 69



Figure 4. A Kinetic Model Predicts a Robustness-Efficiency Tradeoff

(A) Stoichiometry and structure of the kinetic model. m1 and m2 are metabolites, e1 and e2 are enzymes. Kinetics of the enzyme catalyzed reactions r1 and r2, as

well as kinetics of enzyme expression rates b1 and b2, are sampled in the indicated intervals.

(B) Steady-state concentrations of e1, e2, m1, andm2 calculated with 5,000 randomparameter sets for the completemodel (grey), and themodel with only enzyme

level regulation (blue). Boxes contain 50% and whiskers 99% of the simulated concentrations. All concentrations are normalized to the median concentrations of

the complete model. See also Figures S6 and S7.

(C) Enzyme levels (sum of e1 and e2) and robustness against perturbations of b2,max for 5,000 simulations of the complete model (dots). The color of each dot

shows the ratio of inhibition constants for allosteric feedback inhibition (K1) and enzyme level regulation (K2) in the respective model. Robustness corresponds to

the percentage downregulation of b2,max that was tolerated by each model. 100% enzyme abundance corresponds to the maximum theoretical enzyme con-

centration in the model.

(D) Abundance of enzymes in amino acid metabolism in the DargR, DtrpR, and DhisLmutants, relative to the wild-type. Data are represented as mean (n = 3). For

each strain the enzymes in the dysregulated pathway are shown as orange dots.
Interdependence of Allosteric Feedback Inhibition and
Enzyme-Level Regulation
To obtain a better mechanistic understanding of the interplay

between allosteric feedback inhibition and enzyme level

regulation, we developed a kinetic model of metabolism and

enzyme expression (Figure 4A). Briefly, the model includes two

enzymes, e1 and e2, and two metabolites, m1 and m2, in a two-

step pathway. The end-product m2 represents an amino acid,

which is consumed in the last reaction for protein synthesis

and growth. The end-product m2 feedback inhibits the expres-

sion of both enzymes as well as the activity of the first enzyme.

The first reaction and the expression of both enzymes follow sim-

ple inhibition kinetics, whereas the second reaction follows

Michaelis-Menten kinetics (Figure 4A). As such, this model is a

simplified representation of an amino acid biosynthesis pathway

that is controlled at two layers (Figure 1A).

As a starting point for the model analysis, we fixed the flux in

the pathway to the amino acid requirement given by the growth

rate of E. coli on glucose. We randomly sampled seven model
70 Cell Systems 8, 66–75, January 23, 2019
parameters (maximal rates and binding constants) 5,000 times

from physiologically meaningful ranges based on literature

values (Davidi and Milo, 2017; Li et al., 2014; Milo et al., 2010).

For each of the thus derived 5,000 parameter sets, we calculated

concentrations of e1, e2,m1, andm2, for a model including feed-

back on enzyme activity and enzyme abundance (complete

model, gray in Figure 4B), and also for a model including only

feedback on enzyme abundance (single feedback model, blue

in Figure 4B). The simulated concentrations of e1, e2, m1, and

m2 matched qualitatively the measured protein and metabolite

data: the two enzymes decreased in the single feedback model

(Figure 2A), whereas the end-product m2 increased (Figure 1B).

Also, the simulated concentration of the intermediate m1

matched the measured increase of intermediates in amino acid

pathways (Figure S6). Thus, a simplemodel confirms our hypoth-

esis that allosteric feedback inhibition enforces enzyme over-

abundance. In theory, other types of enzyme inhibition could

cause a similar increase in enzyme expression. To test this, we

replaced the allosteric feedback in the model with competitive



product inhibition of the second reaction (Figure S7). However,

removing competitive product inhibition was compensated by

lower substrate concentrations (m1) and not by lower enzyme

levels. This model result indicates that enzyme overabundance

does not emerge from all types of enzyme inhibition.

The Interplay of Two Feedbacks Solves a Robustness-
Efficiency Tradeoff
Next, we set out to investigate the function that emerges from the

interplay between feedback on enzyme activity and enzyme

abundance. While low enzyme levels are obviously advanta-

geous due to lowering protein cost, high enzyme levels could

provide a cellular benefit by improving robustness against per-

turbations in enzyme expression. To test this with the model,

we made use of a numerical parameter continuation method to

quantify robustness (Lee et al., 2014). This method iteratively de-

creases a model parameter until instabilities occur in the model.

Robustness can then be defined as the percentage change of

this parameter that is tolerated. Using this method, we calcu-

lated robustness against perturbations of the maximal expres-

sion rate of the second enzyme (b2,max) in the complete model

with 5,000 randomly sampled parameter sets (Figure 4C).

Changing b2,max reflects genetic or environmental perturbations

of gene expression that can lead to a bottleneck in the pathway.

Consistent with our expectations, models with high enzyme

levels showed increased robustness, while models with lower

enzyme levels were more sensitive to perturbations of enzyme

expression (Figure 4C). However, robustness was not propor-

tional to the enzyme level: a relatively small increase of enzyme

levels already conferred a large robustness benefit. Very high

enzyme levels, in comparison, did not increase robustness

substantially over more subtle changes in enzyme abundance.

Our model thus reveals a tradeoff between protein costs and

robustness, which can be solved by sensitively balancing

enzyme levels.

The optimal balance of enzyme levels occurs in models occu-

pying the middle of the tradeoff frontier: those models with

equally strong feedback on enzyme activity and enzyme abun-

dance (indicated by similar inhibition constants Ki, black dots

in Figure 4C). We then wondered if amino acid biosynthesis in

E. coli operates in the middle of the tradeoff frontier, meaning

that both feedbacks are simultaneously active. In particular,

enzyme levels in the argA*, trpE*, and hisG* mutants demon-

strated that wild-type E. coli does not operate with minimal

enzyme levels in these pathways (blue dots in Figure 4C). To

test if enzymes in these pathways are maximally expressed (or-

ange dots in Figure 4C), we removed their transcriptional regula-

tion, which functions by different mechanisms: a transcription

factor (arginine), transcriptional attenuation (histidine), or both

(tryptophan). In the arginine and tryptophan pathway, we deleted

the respective transcription factor (DargR and DtrpR), and in

histidine biosynthesis we removed the leader peptide hisL.

Removing transcriptional regulation of all three pathways re-

sulted in higher expression of enzymes in the respective pathway

(Figure 4D): arginine enzymes increased between 5- and 60-fold;

histidine enzymes, about 6-fold; and tryptophan enzymes, about

8-fold. This shows that E. coli does not operate at maximal

expression of arginine, tryptophan, and histidine enzymes but

rather in the middle of the tradeoff frontier. Previous studies
that support this observation showed that ArgR binds to pro-

moters of arginine genes more than 80% of the time when

E. coli grows on glucose (Gerosa et al., 2014). Deletion of ArgR

caused more global changes of amino acid enzymes than

removing TrpR or HisL. This reflects the potential of ArgR to con-

trol metabolism of almost all amino acid pathways (Cho

et al., 2012).

Taken together, both model and dysregulated mutants indi-

cate a regulatory interplay in the arginine, tryptophan, and histi-

dine pathways: removing transcriptional regulation increased

enzyme levels (Figure 4D), whereas removing allosteric regula-

tion decreased enzyme levels (Figure 2A). The model shows

that if feedback on enzyme activity and enzyme abundance

are simultaneously active, inhibition constants of the two feed-

backs must have similar values (black dots in Figure 4C). Inhibi-

tion constants and binding affinities in the literature show that

feedbacks on enzyme activity and enzyme abundance are

indeed equally strong for many amino acids (Table S5), corrobo-

rating the existence of a two-pronged regulation strategy.

Enzyme Overabundance Provides Robustness against
Genetic Perturbations
To test if arginine, tryptophan, and histidine biosynthesis are

more robust against perturbations of gene expression in wild-

type cells compared to the feedback-dysregulated mutants,

we used CRISPR interference (CRISPRi) (Larson et al., 2013).

We designed single guide RNAs (sgRNAs) targeting the genes

argE in arginine biosynthesis, hisB in histidine biosynthesis,

and trpA in tryptophan biosynthesis. The sgRNAs were cloned

on a plasmid that harbors an inducible dCas9 and the constitu-

tively expressed sgRNA. The three CRISPRi plasmids and a con-

trol without target sequence were transformed into the wild-type

as well as into the argA*, trpE*, and hisG*mutants. This resulted

in 16 strains with all combinations of genetic perturbations and

dysregulation of the three pathways (Figure 5A). All strains

expressing the control sgRNA without target sequence grew

almost identically and induction of dCas9 did not affect growth

(Figure 5B).

Induction of dCas9 in strains with sgRNAs targeting argE,

hisB, and trpA reduced growth of all strains by more than 50%

(Figure 5C). However, we observed the strongest growth defect

when perturbing a gene in a dysregulated pathway. For example,

CRISPRi of argE reduced growth of the argA* mutant more than

twice as much as the other strains. Similarly, the hisG* and trpE*

mutants were most sensitive to perturbations of expression of

hisB and trpA, respectively. The argA*mutant was also sensitive

to a perturbation of hisB, which matches the lower expression of

histidine enzymes in this mutant (Figure 2A). These data confirm

that feedback-dysregulated mutants are indeed more sensitive

to a perturbation of gene expression. Notably, the mutants

were only more sensitive to a perturbation within pathways

that had lower enzyme levels, and they did not lack a general

robustness.

While these data support the hypothesis that high enzyme

levels render arginine, histidine, and tryptophan biosynthesis

more robust against perturbations of gene expression, bacteria

would hardly face such strong perturbations in nature. Therefore,

we designed the sgRNAs in such a way that the wild-type

showed only a small growth defect without induction of dCas9
Cell Systems 8, 66–75, January 23, 2019 71



Figure 5. Enzyme Overabundance Achieves Robustness against Perturbations of Gene Expression by CRISPR Interference

(A) CRISPR interference in wild-type cells and the allosteric feedback mutants argA*, hisG*, and trpE*. Strains were transformed with single guide RNAs targeting

genes of the arginine (argE), histidine (hisB), and tryptophan (trpA) pathways, as well as an empty sgRNA without target.

(B) Growth of wild-type, argA*, hisG*, and trpE* with the empty control sgRNA. Upper panels show uninduced cultures and lower panel induced cultures (100 mM

IPTG). Growth curves showmeans from n=3 cultures cultivated in minimal glucose medium in a plate reader. Numbers are specific growth rates (in h�1) and were

estimated by linear regression between OD 0.2 and 0.6.

(C) Growth of wild-type, argA*, hisG*, and trpE* with sgRNAs targeting argE, hisB, and trpA. dCas9 expression was induced with 100 mM IPTG. Growth curves are

means of n=3 cultures; two curves per graph show experiments that were performed at different days. Numbers and colors indicate specific growth rates (in h�1),

which were estimated by linear regression between 5 and 15 hr. All axes have ranges shown in the lower left graph.

(D) Same as (C) but without induction of dCas9. Growth rates were estimated by linear regression between OD 0.2 and 0.6. All axes have ranges shown in the

lower left graph.
(Figure 5D). The mild perturbations in uninduced cultures still

affected the respective mutants stronger than the other strains,

causing unstable growth and lower growth rates (Figure 5D).

Thus, feedback dysregulation renders the arginine, tryptophan,

and histidine pathways more sensitive against perturbations of

gene expression, which may arise in nature due to the stochas-

ticity of gene expression.

DISCUSSION

In this study, we explored the consequences ofmissing allosteric

feedback inhibition in seven E. coli mutants with dysregulated

amino acid biosynthesis pathways: arginine (argA*), histidine

(hisG*), tryptophan (trpE*), leucine (leuA*), threonine (thrA*),

isoleucine (ilvA*), and proline (proB*). In all mutants, the amino

acid product of the feedback-dysregulated pathway increased,

showing that allosteric feedback inhibition is relevant to maintain

end-products at a desired level. In five mutants (argA*, trpE*,

hisG*, thrA*, and leuA*), we observed a downregulation of en-

zymes in the dysregulated pathways, presumably because
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high end-products caused stronger inhibition of enzyme expres-

sion. However, these low enzyme levels did not limit biosynthetic

flux, thus indicating that wild-type cells maintain higher enzyme

levels than would be necessary to ensure sufficient supply of

amino acids (enzyme overabundance). These results are consis-

tent with enzyme overabundance in other pathways (Davidi and

Milo, 2017; O’Brien et al., 2016) and the observation that en-

zymes are rarely operating at maximal capacity (Fendt et al.,

2010; Hackett et al., 2016).

Both model analysis and dysregulated mutants indicate that

enzyme overabundance is enforced by allosteric feedback

inhibition, which maintains low end-product levels and thereby

increases production of enzymes. In case of amino acid biosyn-

thesis, it is likely that low end-products de-repress transcription

because amino acid levels are known signals for transcription

factors and transcriptional attenuation (Cho et al., 2012). Addi-

tionally, GFP-promoter fusions indicated regulation at the

transcriptional layer in the argA*, trpE*, and thrA* mutants. It

will be important to clarify if enzyme overabundance also

emerges from other inhibitory interactions, which are abundant



in metabolic networks (Alam et al., 2017). Besides inhibition of

enzymes by metabolites, other sources for enzyme overabun-

dance might be post-translational modifications. For example,

it was recently shown that deleting kinases in yeast has a strong

effect on enzyme levels (Zelezniak et al., 2018), pointing toward a

similar interplay between post-translational modifications of en-

zymes and enzyme-level regulation.

The strongest and most localized decrease of enzyme levels

occurred when we removed allosteric feedback inhibition in

the arginine, tryptophan, and histidine pathways. Removing tran-

scriptional regulation in the same pathways caused higher

expression of enzymes, which is in agreement with previous re-

ports of a role for transcriptional regulation in minimizing protein

costs in metabolic pathways (Chubukov et al., 2012; You et al.,

2013). This antagonistic regulation by allosteric feedback inhibi-

tion and transcriptional regulation enables an optimal balance of

enzyme levels in amino acid metabolism of wild-type cells. Opti-

mization of enzyme levels has been shown for the global E. coli

proteome (Scott et al., 2010; You et al., 2013), for the lac system

(Dekel and Alon, 2005), and for a single enzyme in themethionine

pathway (Li et al., 2014). Here we provided first indication that

enzyme abundance is optimized in the arginine, histidine, and

tryptophan pathways, to meet multiple, conflicting objectives—

robustness and efficiency. Using a simplified model of amino

acid metabolism, we showed that cells can solve this tradeoff

between protein costs and robustness through the interplay of

allosteric feedback inhibition and enzyme level regulation.

CRISPRi of metabolic enzymes in the dysregulated arginine,

tryptophan, and histidine pathways showed that allosteric feed-

back inhibition provides a substantial robustness benefit against

perturbations of gene expression. While such robustness effects

were attributed to allosteric feedback by previous modeling

approaches (Chandra et al., 2011; Grimbs et al., 2007), we

quantified it in vivo by studyingmutants lacking allosteric control.

During the lifetime of a cell, perturbations of gene expression

could result from stochastic effects at the level of transcription

or in response to fluctuating environments.

In conclusion, our case study of E. coli amino acid metabolism

demonstrated that regulation of enzyme activity and enzyme

abundance are not isolated from each other but interact to con-

trol metabolism. Allosteric feedback inhibition sets amino acid

concentrations, which are signals for enzyme level regulation.

Considering the high precision of metabolite concentrations

(Fuhrer et al., 2017; M€ulleder et al., 2016), it seems possible

that the proposed regulatory principle goes beyond E. coli amino

acid metabolism.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli TOP10: F- mcrA D(mrr-hsdRMS-mcrBC)

F80lacZDM15 DlacX74 recA1 araD139 D(araleu)7697

galU galK rpsL (StrR) endA1 nupG

Invitrogen, Thermo

Fischer Scientific

Cat#C404003

Escherichia coli MG1655: wild-type: F-, lambda-, rph-1 DZMS-German Collection

of Microorganisms and

Cell Cultures

DSM-No.: 18039

MG1655: argA*:F-, lambda-, rph-1, argA(H15Y) This study N/A

MG1655: ilvA*:F-, lambda-, rph-1, ilvA(L447F) This study N/A

MG1655: hisG*:F-, lambda-, rph-1, hisG(E271K) This study N/A

MG1655: leuA*:F-, lambda-, rph-1, leuA(G462D) This study N/A

MG1655: proB*:F-, lambda-, rph-1, proB(D107N) This study N/A

MG1655: thrA*:F-, lambda-, rph-1, thrA(S345F) This study N/A

MG1655: trpE*:F-, lambda-, rph-1, trpE(S40F) This study N/A

MG1655: DargR: F-, lambda-, rph-1, DargR This study N/A

MG1655: DtrpR: F-, lambda-, rph-1, DtrpR This study N/A

MG1655: DhisL: F-, lambda-, rph-1, DhisL This study N/A

Escherichia coli BW25113: JW2000-1: F-, D (araD-araB)

567, DlacZ4787(::rrnB-3), l-,DhisL787::kan, rph-1,

D(rhaD-rhaB)568, hsdR514

CGSC CGSC#9646

MG1655: wild-type CRISPRi-ctrl: F-, lambda-, rph-1,

pNUT1533-ctrl

This study N/A

MG1655: wild-type CRISPRi-argE: F-, lambda-, rph-1,

pNUT1533-argE

This study N/A

MG1655: wild-type CRISPRi-hisB: F-, lambda-, rph-1,

pNUT1533-hisB

This study N/A

MG1655: wild-type CRISPRi-trpA: F-, lambda-, rph-1,

pNUT1533-trpA

This study N/A

MG1655: argA* CRISPRi-ctrl: F-, lambda-, rph-1, argA

(H15Y) pNUT1533-ctrl

This study N/A

MG1655: argA* CRISPRi-argE: F-, lambda-, rph-1,

argA (H15Y) pNUT1533-argE

This study N/A

MG1655: argA* CRISPRi-hisB: F-, lambda-, rph-1,

argA (H15Y) pNUT1533-hisB

This study N/A

MG1655: argA* CRISPRi-trpA: F-, lambda-, rph-1,

argA (H15Y) pNUT1533-trpA

This study N/A

MG1655: hisG* CRISPRi-ctrl: F-, lambda-, rph-1, hisG

(E271K) pNUT1533-ctrl

This study N/A

MG1655: hisG* CRISPRi-hisB: F-, lambda-, rph-1, hisG

(E271K) pNUT1533-hisB

This study N/A

MG1655: hisG* CRISPRi-argE: F-, lambda-, rph-1, hisG

(E271K) pNUT1533-argE

This study N/A

MG1655: hisG* CRISPRi-trpA: F-, lambda-, rph-1, hisG

(E271K) pNUT1533-trpA

This study N/A

MG1655: trpE* CRISPRi-ctrl: F-, lambda-, rph-1, trpE

(S40F) pNUT1533-ctrl

This study N/A

MG1655: trpE* CRISPRi-trpA: F-, lambda-, rph-1, trpE

(S40F) pNUT1533-trpA

This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MG1655: trpE* CRISPRi-argE: F-, lambda-, rph-1, trpE

(S40F) pNUT1533-argE

This study N/A

MG1655: trpE* CRISPRi-hisB: F-, lambda-, rph-1, trpE

(S40F) pNUT1533-hisB

This study N/A

MG1655: pPargA-gfp: F-, lambda-, rph-1, This study N/A

MG1655: argA* pPargA-gfp: F-, lambda-, rph-1,

argA (H15Y)

This study N/A

MG1655: pPtrpL-gfp: F-, lambda-, rph-1, This study N/A

MG1655: trpE* pPtrpL-gfp: F-, lambda-, rph-1,

trpE (S40F)

This study N/A

MG1655: pPthrL-gfp: F-, lambda-, rph-1, This study N/A

MG1655: thrA* pPthrL-gfp: F-, lambda-, rph-1,

thrA (S345F)

This study N/A

MG1655: pPhisL-gfp: F-, lambda-, rph-1, This study N/A

MG1655: hisG* pPhisL-gfp: F-, lambda-, rph-1,

hisG (E271K)

This study N/A

MG1655: pPleuL-gfp: F-, lambda-, rph-1, This study N/A

MG1655: leuA* pPleuL-gfp: F-, lambda-, rph-1,

leuA (G462D)

This study N/A

Chemicals, Peptides, and Recombinant Proteins

Acetonitrile Honeywell Riedel-de Ha€en Cat#14261-2L

Methanol VWR Cat#83638.320

Anhydrotetracycline Sigma-Aldrich Cat#1035708-25MG

IPTG Roth Cat#CN08.2

Ampicillin Roth Cat#K029.2

Kanamycin Roth Cat#T832.3

Gentamycin Roth Cat#0233.3

Spectinomycin Roth Cat#HP66.2

Critical Commercial Assays

PierceTM Quantitative Colometric Peptide Assay Thermo Fisher Scientific Cat#23275

His GraviTrapTM Merck 11-0033-99

Deposited Data

Metabolome, proteome and labeling data This study Table S7

kcat-values for enzymes in amino-acid

biosynthesis (Table S3)

(Schomburg et al., 2013)

(Davidi and Milo, 2017)

BRENDA [doi:https://doi.org/

10.1016/j.copbio.2017.02.007]

Amino acid requirement of Escherichia coli

(Table S4)

(Monk et al., 2017) [doi:https://doi.org/10.1038/

nbt.3956]

Inhibition Constants (Table S5) (Keseler et al., 2017)

(Schomburg et al., 2013);

(Gama-Castro et al., 2016)

EcoCyc

BRENDA;

RegulonDB

Oligonucleotides

Oligonucleotides are listed in Table S6

Recombinant DNA

pKDsgRNA-ack Reisch and Prather (2015) Addgene plasmid # 62654

pCas9-CR4 Reisch and Prather (2015) Addgene plasmid # 62655

pKDsgRNA-p15 Reisch and Prather (2015) Addgene plasmid # 62656

pdCas9 Larson et al. (2013) Addgene plasmid # 44249

pgRNA Larson et al. (2013) Addgene plasmid # 44251

pKDsgRNA-argA(H15Y) This study N/A

pKDsgRNA-ilvA(L447F) This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pKDsgRNA-hisG(E271K) This study N/A

pKDsgRNA-leuA(G462D) This study N/A

pKDsgRNA-proB(D107N) This study N/A

pKDsgRNA-thrA(S345F) This study N/A

pKDsgRNA-trpE(S40F) This study N/A

pKDsgRNA-DargR This study N/A

pKDsgRNA-DtrpR This study N/A

pNUT542 Singh et al. (2017)

pNUT1533-ctrl This study N/A

pNUT1533-argE This study N/A

pNUT1533-trpA This study N/A

pNUT1533-hisA This study N/A

pUA66-PargA-gfp: pPargA-gfp Zaslaver et al. (2006) N/A

pUA66-PtrpL-gfp: pPtrpL-gfp Zaslaver et al. (2006) N/A

pUA66 based plasmid with PhisL This study pPhisL-gfp

pUA66 based plasmid with PleuL This study pPleuL-gfp

pUA66 based plasmid with PthrA This study pPthrA-gfp

Software and Algorithms

MATLAB codes for model analysis This study https://github.com/nfarke/

Sander_et_al

Matlab Version 9.3.0.713579 (R2017b) for the

modelling section and analysis of experimental data

mathworks.com N/A

BD FACSDiva software version 8.0 BD Biosciences, NJ, USA N/A

FlowJo v10.4.1 FlowJo LLC, Ashland, OR, USA N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Hannes

Link (hannes.link@synmikro.mpi-marburg.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strains and Culture
E. coli MG1655 (DSMZ No. 18039) was the wild-type strain. Chemically competent E. coli TOP10 (One ShotTM TOP10, Invitrogen)

were used for cloning. All mutants created in this study derive from the MG1655 strain and are listed in Key Resources Table.

Genomic point mutations were created by scarless Cas9 Assisted recombineering (Reisch and Prather, 2015). Therefore we con-

structed 7 specific sgRNA-plasmids, derived from the backbone plasmid pKDsgRNA-ack (Addgene #62654). The sgRNAs consist

of a gene specific 20 base pair region (argA: ggtcgagggattccgccatt; trpE: acacaactggtgaaaaagcg; hisG: tggaaaaactgaaagcgctg;

thrA: tggtgctgattacgcaatca; leuA: cggtaaagatgcgctgggtc; ilvA: caacacgctgggtacgtact; proB: cgacaccctgcgagcgttgc), which pairs

adjacent to a NGG PAM site. Each sgRNA-plasmid was transformed together with pCas9-CR4 (Addgene #62655) into MG1655

wild-type cells. The resulting strains were grown at 30�C (pKDsgRNA-ack is temperature sensitive at 37�C) and supplemented

with arabinose (final concentration 1.2 %) to induce the l-Red recombinase genes which are located on the sgRNA-plasmid. The

induced strains were then transformed with the 70-80 bp homologous oligonucleotides (Table S2), which contain the desired

base pair exchanges of PAM site and the point mutation disrupting allosteric feedback (argAH15Y, trpES40F, hisGE271K, thrAS345F,

leuAG462D, ilvAL447F, proBD107N). Cells were plated on LB agar containing 100 ng ml-1 anhydrotetracycline (aTc) to induce Cas9

expression, which recognizes the sgRNA adjacent to the PAMsequence and cleaves the chromosomal DNA. Only cells that success-

fully integrated the homologous oligonucleotides will survive due to the modified PAM sequence which prevents Cas9 recognition.

Thereby we counter selected for clones harboring the desired amino acid exchanges, which were verified by sequencing. The

transcriptional knockout mutants DargR and DtrpR were constructed with the same cloning procedure according to the noSCAR

protocol, while DhisL was constructed by P1 Phage transduction with the donor strain JW2000-1 (DhisL) from the Keio collection

(Baba et al., 2006).
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All cultivations were performed using M9 minimal medium with 5 g L-1 glucose (or the respective carbon source in Figure S4). The

M9 medium consisted of the following components (per liter): 7.52 g Na2HPO4 2 H2O, 5 g KH2PO4, 1.5 g (NH4)2SO4, 0.5 g NaCl. The

following components were sterilized separately and then added (per liter of final medium): 1 ml 0.1 M CaCl2, 1 ml 1MMgSO4, 0.6 ml

0.1 M FeCl3, 2 ml 1.4 mM thiamine-HCL and 10 ml trace salts solution. The trace salts solution contained (per liter): 180 mg ZnSO4

7 H2O, 120mgCuCl2 2 H2O, 120mgMnSO4 H2O, 180mgCoCl2 6 H2O.Where appropriate, 50 mgmL-1 kanamycin, 34 mgmL-1 chlor-

amphenicol, 15 mg mL-1 gentamycin , 50 mg mL-1 spectinomycin or 100 mg mL-1 ampicillin was added. For cultivations in microtiter

plates, LB pre-culture in 96-deep-well format plates were inoculated from glycerol stocks and grown to an exponential stage. From

this first pre-culture a second M9 pre-culture in 96-deep-well plates was inoculated 1:100 and incubated overnight at 37 �C under

shaking. Finally, 96-well flat transparent plates (Greiner Bio-One International) containing 150 ml M9minimal mediumwere inoculated

1:150 from the overnight culture. Onlinemeasurements of optical density at 600 nm (OD600) were performed at 37�Cwith shaking in a

plate reader (Epoch, BioTek Instruments Inc, USA; Spark 10M, Tecan Trading AG, Switzerland). For induction of CRISPRi, IPTG was

added to themain culture to a final concentration of 100 mM.Growth rates were calculated as dln(OD)/dt by linear regression over the

indicated time windows. For cultivations in shake flask, 5 ml LB pre-culture in cultivation tubes were inoculated from glycerol stocks

and grown to an exponential stage. From this first pre-culture, 5 ml of a second M9 glucose pre-culture in cultivation tubes was

inoculated 1:100 and incubated overnight at 37�C in a rotary shaker. For the main culture, a 500 ml shake flask containing 35 ml

M9 minimal medium (5 g L-1 glucose) was inoculated 1:150 from the overnight culture, and incubated at 37 �C under shaking at

220 rpm.

METHOD DETAILS

CRISPR Interference
CRISPR interference experiments were performed with a single plasmid (pNUT1533) expressing the sgRNA from a constitutive and

the dCas9 protein from an IPTG inducible Ptac promotor. For construction of this plasmid, the sgRNA and its constitutive promotor

were amplified from the pgRNA plasmid (Addgene #44251) and the dCas9 gene was amplified from the pdCas9 plasmid (Addgene

#44249). The promotor of dCas9 was replaced by an IPTG inducible Ptac promotor. To assure tight regulation of dCas9 expression,

the gene coding for the lacIQ1 repressor (Glascock and Weickert, 1998) was added to the vector. The two single fragments were

joined together by PCR and the resulting fragment was inserted into pNUT542 with PacI and NotI restriction enzymes (New England

Biolabs, USA). This plasmid was used as a backbone for cloning of the specific plasmids targeting the arginine (pNUT1533-argE),

histidine (pNUT1533-hisB) and tryptophan pathway (pNUT1533-trpA). Therefore sgRNAs guide sequences were customized by

site-directed mutagenesis using the primer listed in Table S6.

Metabolite Measurements
Shake flask cultivations onM9 glucosewere performed as described above. Cells were grown to an optical density (OD600) of 0.5 and

2mL culture aliquots were vacuum-filtered on a 0.45 mmpore size filter (HVLP02500, MerckMillipore). Filters were immediately trans-

ferred into 40:40:20 (v-%) acetonitrile/methanol/water at -20�C for extraction. Extracts were centrifuged for 15minutes at 13,000 rpm

at -9 �C. Centrifuged extracts were mixed with 13C-labeled internal standard and analyzed by LC-MS/MS, with an Agilent 6495 triple

quadrupole mass spectrometer (Agilent Technologies) as described previously (Guder et al., 2017). An Agilent 1290 Infinity II UHPLC

system (Agilent Technologies) was used for liquid chromatography. Temperature of the column oven was 30 �C, and the injection

volume was 3 mL. LC solvents A were water with 10 mM ammonium formate and 0.1% formic acid (v/v) (for acidic conditions);

and water with 10 mM ammonium carbonate and 0.2% ammonium hydroxide (for basic conditions). LC solvents B were acetonitrile

with 0.1% formic acid (v/v) for acidic conditions and acetonitrile without additive for basic conditions. LC columns were an Acquity

BEHAmide (30 x 2.1mm, 1.7 mm) for acidic conditions, and an iHILIC-Fusion(P) (50 x 2.1mm, 5 mm) for basic conditions. The gradient

for basic and acidic conditions was: 0 min 90% B; 1.3 min 40 % B; 1.5 min 40 % B; 1.7 min 90 % B; 2 min 90 % B. Absolute

concentrations of amino acids in the 13C-labeled internal standard were determined with authentic standards. Quantification

of intracellular metabolite concentrations was based on the ratio of 12C and 13C peak heights, and a specific cell volume of

2 mL mg-1 was used to calculate the cell volume.

Proteomics
Shake flask cultivations onM9 glucosewere performed as described above. Cells were grown to an optical density (OD600) of 0.5 and

2 mL culture aliquots were transferred into 2 ml reaction tubes and washed two times with PBS buffer (0.14 mM NaCl, 2.7 mM KCL,

1.5 KH2PO4, 8.1 Na2HPO4). Cell pellets were resuspended in 300 ml lysis buffer containing 100 mM ammonium bicarbonate, 0.5 %

sodium laroyl sarcosinate (SLS) and 5 mM Tris(2-carboxyethyl)phosphine (TCEP). Cells were lysed by 5 minutes incubation at 95 �C
and ultra-sonication for 10 seconds (Vial Tweeter, Hielscher). Cells were again incubated for 30 minutes at 90 �C followed by alkyl-

ation with 10 mM iodoacetamide for 30 minutes at 25 �C. To clear the cell lysate, samples were centrifuged for 10 minutes at

15,000 rpm and the supernatant transferred into a new tube. Proteins in the cell lysates were digested with 1 mg trypsin (Promega)

overnight at 30 �C. To remove the SLS by precipitation, trifluoroacetic acid (TFA) was added to a final concentration of 1.5 % and

rested at room temperature for 10 minutes. Samples were centrifuged for 10 minutes at 10,000 rpm and the supernatant used for

C18 purification. The peptide purification was performed using the C18microspin columns according to themanufactors instructions

(Harvard Apparatus). Eluted peptide solutions were dried and resuspended in 0.1 % TFA. The concentration of peptides in the
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samples was measured with a colorimetric peptide assay (Pierce� Quantitative Colorimetric Peptide Assay, Thermo Fischer

Scientific). Analysis of peptides was performed by liquid chromatography-mass spectrometry. Analysis of peptides was performed

by liquid chromatography-mass spectrometry, carried out on a Q-Exactive Plus instrument connected to an Ultimate 3000 RSLC

nano with a Prowflow upgrade and a nanospray flex ion source (Thermo Scientific). Peptide separation was performed on a

reverse-phase HPLC column (75 mm x 42 cm) packed in-house with C18 resin (2.4 mm, Dr. Maisch GmbH, Germany). The following

separating gradient was used: 98% solvent A (0.15% formic acid) and 2% solvent B (99.85 acetonitrile, 0.15% formic acid) to 25%

solvent B over 105minutes and to 35%solvent B for additional 35minutes at a flow rate of 300 nl/min. The data acquisitionmodewas

set to obtain one high resolutionMS scan at a resolution of 70,000 full width at half maximum (atm/z 200) followed byMS/MS scans of

the 10most intense ions. To increase the efficiency of MS/MS attempts, the charged state screening modus was enabled to exclude

unassigned and singly charged ions. The dynamic exclusion duration was set to 30 seconds. The ion accumulation time was set to

50ms for MS and 50ms at 17,500 resolution for MS/MS. The automatic gain control was set to 3x106 for MS survey scans and 1x105

forMS/MS scans. Label-free quantification (LFQ) of the data was performed using Progenesis QIP (Waters), and forMS/MS searches

of aligned peptide features MASCOT (v2.5, Matrix Science) was used. The following search parameters were used: full tryptic search

with two missed cleavage sites, 10ppm MS1 and 0.02 Da fragment ion tolerance. Carbamidomethylation (C) as fixed, oxidation (M)

and deamidation (N,Q) as variable modification. Progenesis outputs were further processed with SafeQuant.

Kinetic Flux Profiling
Incorporation of 15N label into amino acids wasmeasured with a filter cultivationmethod (Link et al., 2013). Briefly, cells were cultured

on M9 glucose medium, which contains unlabeled ammonium sulfate as sole nitrogen source. At mid-exponential phase when cells

reached ODs between 0.4 and 0.6, 2 mL of the culture was vacuum-filtered, and cell-loaded filters were continuously perfused with

M9 glucose medium containing labeled ammonium-15N sulfate. Filters were repeatedly loaded and perfused with 15N-medium for

different lengths of time: 0, 30, 60, 120 and 180 seconds. Subsequently, filters were immediately transferred into 40:40:20 (v-%)

acetonitrile/methanol/water kept at -20 �C. Extracts were centrifuged for 15 minutes at 13,000 r.p.m. at -9 �C and the supernatant

was directly used for LC-MS/MS. For LC separation of tryptophan, proline, threonine and (iso)leucine a ZIC-pHILIC column (150 x

2.1 mm, 5 mm, Merck) was used, and an Acquity BEH Amide (100 x 2.1 mm, 1.7 mm, Waters) for LC separation of histidine and

arginine. Buffers were as described for metabolite measurements and gradients were for Acquity BEH Amide: 0 min 90% B;

2.6 min 40 % B; 3 min 40 % B; 3.4 min 90 % B; 5 min 90 % B. For ZIC-pHILIC: 0 min 90% B; 4.5 min 40 % B; 5 min 40 % B;

6 min 90 % B; 8 min 90 % B. Transitions for all isotopologues per amino acid were measured by LC-MS/MS and the amount of

each isotopologue was used to calculate the fraction of unlabeled amino acid FU as:

FU =
M0PN
0M

+ i
=

Peak Area ðunlabeled AAÞ
Sum of Peak Area ðall AA isotopologuesÞ

WhereM0 is the amount of the unlabeled amino acid,M+1 is the amount of all isotopologues with one 15N atom, etc.N is the number

of 15N atoms in the amino acid: arginine (N = 4 from 2x glutamate, 1x glutamine, 1x aspartate), tryptophan (N = 2 from 1x glutamine,

1x serine), histidine (N= 3 fromATP, 1x glutamate), threonine (N= 1 from glutamate), proline (N= 1 from glutamate), iso-/leucine (N= 1

from glutamate). Fluxes were estimated based on equations for kinetic flux profiling (Yuan et al., 2008), which considers the decay of

the unlabeled fraction FU:

FU =

�ð1� aÞð1� bÞ
kpc � kaa

��
kpc e�kaat � kaa e�kpct

�
+ ½1� ð1� aÞð1� bÞ�

The rate constant kaa is the flux into the amino acid (fluxaa) divided by their absolute concentration: kaa = fluxaa/caa. The rate constant

kaa was obtained by fitting the equation to the measured unlabeled fraction FU. The rate constant kpc describes labeling of upstream

nitrogen precursor. Because amino acids like arginine receive 15N label from several sources, the rate constant of precursor labeling

kpc was unknown. To account for this uncertainty the parameter kpc was randomly sampled between boundaries of 0.8 min-1 and

14.2 min-1, which are the highest and lowest first order rate constants measured for nitrogen assimilation in E. coli (Yuan et al.,

2006). a and b consider amino acid production from degradation of protein and other macromolecules and they were estimable

parameters within bounds of 0 and 0.2.

GFP-promoter Fusions

GFP reporter plasmids for detection of promotor activity of argA, trpL, hisL and leuL were obtained from a library of fluorescent

transcriptional reporters for E. coli (Zaslaver et al., 2006). Since the original plasmids pUA66-PhisL-gfp and pUA66-PleuL-gfp lacked

parts of the attenuator region, we modified the respective promotor resulting in the plasmids pPhisL-gfp and pPleuL-gfp. Therefore

we amplified leader sequence including the rho-independent terminator of hisL and leuL from chromosomal DNA of E. coli

MG1655 (PhisL: hisL_fwd_gfp ccgctcgaggctttcatcattgttgccg, hisL_rev_gfp ccgggatcccgcagaatatcaatcggc; PleuL: leuL_fwd_gfp

ccgctcgagttgtcccctttttcctcg, leuL_rev_gfp ccgggatccgatggtttgcaccgattc). The resulting two single fragments were introduced

into an empty pUA66 backbone with the restriction enzymes XhoI and BamHI. The threonine reporter plasmid which was not

available in the library was constructed with the same strategy. The attenuator region of thrL was amplified with the primer pair

thrA_fwd_gfp (ccgctcgagactgcaacgggcaatatg) and thrA_rev_gfp (ccgggatcctcggcatcgctgatattg) and the single fragment was

introduced into pUA66 (XhoI and BamHI) resulting in pPthrL-gfp.
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Flow Cytometry

Activity of the argA, trpL and thrL promoter was assayed using plasmid-based GFP reporters that were described in the previous

section. Strains for flow cytometry were cultivated in three independent shake flasks (100 ml) containing 10 ml M9 minimal medium

(5 g L-1 glucose; 50 mg mL-1 kanamycin) as described in Strains and Culture. After reaching an OD between 0.5 and 0.8 cells were

diluted 1:2000 in tethering buffer (10 mM KH2PO4, 100 mM EDTA, 1 mM L-methionine and 10 mM lactic acid, pH=7.0) and fluores-

cence was measured with BD LSRFortessa SORP cell analyser (BD Biosciences, Germany). 488-nm lasers, 600 long pass and a

520/30 band pass filters were used for detection of green fluorescence. Per sample, fluorescence of 10,000 single cells was

measured. Before the measurements, cell aggregates were dispersed by vigorous mixing. BD FACSDiva software version 8.0

(BD Biosciences, NJ, USA) and FlowJo v10.4.1 (FlowJo LLC, Ashland, OR, USA) were used for analysis of the acquired data.

Purification and In Vitro Activity Assays of N-Acteylglutamate Synthase

E. coli BL21 cells harboring the overexpression vector pET28a(+)-argA respectively pET28a(+)-argA(H15Y) were cultivated at 37 �C
(220 rpm) in 500ml of LBmedium (5 L shake flasks) containing 30 mgml-1 kanamycine. When cells reachedOD600 0.6, the culture was

shifted to 16 �C to cool down the cell broth. To induce protein expression, 10 ml of IPTG stock solution (final concentration is 10 mM)

were added. The culture was incubated overnight at 16 �C (220 rpm). The cells were harvested by centrifugation at 6000 x g for

10 minutes at 4 �C. The supernatant was completely removed. The cell pellet was resuspended in Lysis buffer (50 mM NaH2PO4,

300 mM NaCl, 10 mM Imidazol) (2-5 ml per gram wet weight). 50 ml protease inhibitor cocktail and 5 mg of DNAse I powder were

added. Lysis of cells was performed by french press (1100 bar). The lysate was centrifuged at 4,000 x g for 45 minutes at 4 �C to

pellet the cellular debris. The supernatant was filtered using a 0.2-mm-pore-size syringe filter and transferred into a new collection

tube. Purification was performed with columns purchased from GE Healthcare Life Science (His GraviTrap; 11-0033-99). 10 ml of

equilibration buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM Imidazol) was added to the column. As soon as equilibration buffer

flowed through, up to 35 ml of filtered supernatant were added to the column. The column was washed twice with 10 ml washing

buffer (same as equilibration buffer). Elution of the protein was performed 3 times with 3 ml elution buffer (50 mM NaH2PO4,

300 mM NaCl, 250 mM Imidazol). Protein concentration of all fractions was determined (660 nm protein assay, life technologies

PIERCETM #22660). Activity of purified N-acetylglutamate-synthase (ArgA) as well as for the feedback-resistant version ArgA

(H15Y) was assayed in 30 mM TRIS buffer (with 40 mM L-glutamate, 0.65 mM N-acetyl-CoA and 10 mM MgCl2). To start the

enzymatic reaction 10 mL of enzyme stock solution (0.15 mg/ml) was transferred to 90 mL assay buffer and mixed by pipetting up

and down. To stop the reaction, 10 mL were transferred into 40 ml of 50:50 (v-%) acetonitrile/methanol at -20�C. Samples were taken

every minute in a total time interval of 8 minutes. The reaction product N-acetylglutamate was measured by LC-MS and calibrated

with authentic standards.

Kinetic Model
The stoichiometry of the model is shown in Figure 4A. Mass balancing results in the system of ordinary differential equations

(ODEs), F, that is a temporal function of the state variables x and the kinetic parameters p:

Fðx;pÞ=dx

dt
=

8>>>>>>>>>>>><
>>>>>>>>>>>>:

dm1

dt
= r1 � r2

dm2

dt
= r2 � a m

de1

dt
= b1 � e1 m

de2

dt
= b2 � e2 m

(Equation 1)

The five reactions (r1, r2, b1, b2, m) are described by the following kinetic equations:

Reaction 1 is feedback inhibited by m2 according to normal inhibition kinetics:

r1 = kcat;1 e1

K1

K1 +m2

(Equation 2)

In the model without allosteric regulation the equation reduces to:

r1 = kcat;1 e1 (Equation 3)

Reaction 2 follows Michaelis-Menten kinetics:

r2 = kcat;2 e2

m1

m1 +Km

(Equation 4)

Expression rates of enzyme 1 and enzyme 2 follow inhibition kinetics

b1 = b1;max

K2

K2 +m2

(Equation 5)
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b2 = b2;max

K2

K2 +m2

(Equation 6)

The growth rate depends on availability of the end-product m2:

m=mmax

m2

m2 +Km

(Equation 7)

Dilution of metabolites by growth was not considered, due to large difference in time scales between growth dilution andmetabolic

flux. Dilution of enzymes by growth is included in Equation 1, because the time scales of enzyme synthesis and growth dilution are

closer.

Together, the kinetic equations include eight kinetic parameters kcat1, kcat2, b1,max, b2,max, K1, K2, Km and a. The physiological

ranges for these parameters were derived from literature values. The boundaries of enzyme turnover number (kcat,1 and kcat,2) are

based on in vitro measured kcat values of enzymes in amino acid biosynthesis (Table S3) and have values between 930 min-1 and

4140 min-1. The maximal enzyme expression rates (b1,max and b2,max) are defined by the translation rate of ribosomes according

to Equation 8. The equation considers the following parameters that were derived from the Bionumbers Database (Milo et al.,

2010): average translation rate (rT = 8.4 amino acids s-1), the median and abundance weighted protein length (L = 209 amino acids),

the fraction of active ribosomes (fR = 0.8), the cellular volume (Vc,0.6 = 3 x 10-15 L) at a growth rate of m = 0.6 h-1, the Avogadro number

(NA = 6.02 x 1023 mol-1), the amount of ribosomes per cell at that growth rate (R0.6 = 8000 ribosomes cell-1) and the fraction of

ribosomes (p) that synthesize the enzyme:

bk;max =
rt,R0:6,fR
L,NA,Vc

,p (Equation 8)

The limits of bk,max are then derived by varying the fraction of ribosomes (p) that synthesize the enzymes in the pathway. According

to the literature the maximal number for a single amino acid biosynthesis enzyme in E. coli is 7% (Li et al., 2014), therefore we set the

boundaries to 1% and 10% (p = 0.01 - 0.1). The parameter limits for the Ki and Km values were set to 0.01 mM and 1 mM. The amino

acid requirement (a = 86.6 mM) was a fixed parameter based on the average amino acid requirement of an E. coli cell (Table S4). We

assumed that the amino acid limits the growth rate reaction only at very low concentrations. This reflects the low Km values of tRNA

ligases. Therefore we fixed Km at a low value of 10-5 mM and set mmax to the measured growth rate on glucose of 0.6 h-1.

Steady State and Robustness Analysis
For steady state analysis a parameter set was randomly sampled from the intervals given above. With a specific parameter set the

steady state concentrations of e1, e2, m1 and m2 were calculated numerically for each of the two models (complete model and single

feedback model). Starting values of the numerical solver were 0.01 mM for m1 and m2, and 10-5 mM for e1 and e2. The convergence

criterion was defined as <10-8 change in all variables. To test stability of the steady state we calculated eigenvalues of the Jacobian

matrix, and tested if all eigenvalues are negative (l < -10-5). This procedure was repeated until 5,000 steady states (with different

parameter sets) were achieved. Note that both models share the same parameter sets and reach the same steady state flux. In order

to estimate robustness of the model against perturbations of the maximal enzyme expression rate b2;max, we used a numerical

parameter continuation method (Lee et al., 2014). The method is based on finding a connected path of steady state concentrations

(xss: steady state concentration vector containing e1,ss, e2,ss, m1,ss, m2,ss), as a parameter, p, is varied. As the system is in steady state

it follows that:

dx

dt
=FðxSS;pÞ= 0 (Equation 9)

The derivative of FðxSS;pÞ with respect to the parameters is also zero:

dFðxSS;pÞ
dp

=
dF

dxSS
,
dxSS
dp

+
dF

dp
= 0 (Equation 10)

After rearranging Equation 10, Equation 11 is obtained:

dxSS
dp

= �
�

dF

dxSS

��1

,
dF

dp
(Equation 11)

which describes the changes in the steady-state concentrations as a kinetic parameter is varied iteratively. The iteration stops

when one of the following three stability criteria is no longer fulfilled. 1st criterion: all real parts of the eigenvalues of the system’s

Jacobian need to be negative. This implies stability of a steady state. Furthermore, in Equation 11 the inverse of the Jacobian Matrix

ðdF=dxSSÞ is required. The inversion is only possible as long as the matrix is regular. Once an eigenvalue reaches zero, the Jacobian

becomes singular and matrix inversion is no longer possible. This bifurcation point defines the boundary between the stable and

unstable parameter space. In other words: after this point is passed, the system no longer returns to a stable steady state. By

checking the eigenvalues of the Jacobian at each step, we make sure that the iteration is terminated when one eigenvalue becomes
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bigger than l = -10-5. 2nd criterion: all variables are required to be positive. 3rd criterion: amodel is considered unstable when a certain

time limit (t > 1 s) is exceeded, which can be the case when numerical errors occur during the numerical integration process. The

maximum theoretical enzyme amount in the model was calculated as:

0= bi;max � ei;max m (Equation 12)

After rearranging Equation 12 and substituting the upper parameter bound of the maximum protein translation rate (bubi;max), the

maximum theoretical enzyme amount of each enzyme is:

ei;max =
bub
i;max

m
=
8:5,10�4 mMmin�1

0:01min�1
= 0:085 mM (Equation 13)

Considering that the model includes two enzymes, the maximum amount of total enzyme is 0.17 mM, which was defined as the

maximal enzyme level (100%).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was done with MATLAB. The statistical details of each experiment can be found in the respective figure caption.

For proteomics and metabolomics n represents the number of independent shake flask cultures. In growth assays, n represents the

number of independent microtiter plate cultures. For in vitro assays, n represents the number of independent reaction vessels.

DATA AND SOFTWARE AVAILABILITY

Software
All codes for model analysis are available in the Github repository: https://github.com/nfarke/Sander_et_al.

Data Resources
Table S7 contains metabolome data as relative concentrations of 110 intracellular metabolites (related to Figure 1 and S1), proteome

data as relative abundance of 1870 proteins (related to Figure 2), 15N labelling and absolute concentrations of amino acids (related to

Figures 1 and 3).
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Figure S1. Related to Figure 1; In vitro kinetics of N-acetylglutamate-synthase (NAGS) from E. 

coli (ArgA) in the A native and B the allosteric feedback resistant version ArgA (H15Y). Dots 

represent means from n=2 independent assays (filled = no arginine; empty = 1 mM arginine). 

Activity of His-tagged purified enzymes was assayed in 30 mM TRIS buffer (40 mM L-

glutamate, 0.65 mM Acetyl-CoA and 10 mM MgCl2). For sampling 10 µL of reaction solution 

was transferred into 40 µL of 50:50 (v-%) acetonitrile/methanol at -20°C. The reaction product 

N-acteylglutamate was measured by LC-MS/MS. Specific activity in [µmol mg-1 min-1] was 

calculated from linear regression through the 8 time points. 
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Figure S2. Related to Figure 1; Relative concentrations of 110 intracellular metabolites in wild-

type E. coli and seven dysregulated mutants (n = 3). 

  



3 
 

 

Figure S3. Related to Figure 2; GFP expression of promotor fusions PargA-gfp, PtrpL-gfp, 

PthrL-gfp, PhisL-gfp and PleuL-gfp in E. coli wild-type with and without addition of external 

amino acids. Bar plots show fold-changes of GFP per OD600 relative to the condition without 

external amino acids (n=3). Cells were grown in M9 minimal medium (5 g L -1 glucose) and GFP 

expression was measured in mid-exponential phase at OD600 ~0.5 with a plate reader. Amino 

acids were supplemented to a final concentration of 2 mM.  



4 
 

 

Figure S4. Related to Figure 3; Growth of wild-type E. coli and 7 mutants (see also Figure 1A) 

on fructose (Fru), galactose (Gal), gluconate (Gnt), glucose (Glu), glycerol (Gly), pyruvate (Pyr), 

succinate (Suc), and xylose (Xyl). Shown are three cultivations in microtiter plates. The dashed 

line is the mean of the wild-type in the particular condition (n = 3). Numbers are the maximal 

growth rates in h-1, which is reached at the time indicated by dots. All x-axes range from 0 to 24 

hours. All y-axes range from -4 to 2 (lnOD600). 

 

  



5 
 

 

Figure S5. Related to Figure 3; Growth of wild-type E. coli and the seven dysregulated 

mutants in shifts between glucose and galactose. For down-shifts from glucose to galactose, 

cells were grown in M9 minimal medium with 0.5 g L-1 glucose and 5 g L-1 galactose. For up-

shifts from galactose to glucose, cells were grown in M9 minimal medium with 5 g L -1 galactose 

and glucose was added to a final concentration of 5 g L-1 at an OD of 0.1. Shown are means of 

n = 3 cultures. Inserts show the growth rate during the same time period. Growth rates were 

estimated by linear regression over a moving 30 minute window. The same wild-type growth 

curve is shown in each graph in black as a reference. 
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Figure S6. Related to Figure 4; Intermediates in dysregulated pathways measured by LC-MS 

in wild-type E. coli and seven dysregulated mutants (n = 3). 
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Figure S7. Related to Figure 4;  

(A) Model with product inhibition, instead of allosteric feedback inhibition. Metabolite 2 inhibits 

reaction 2 by competitive product inhibition, which was modelled using the following equation:  

𝑟2 = 𝑘𝑐𝑎𝑡,2 ∙ 𝑒2 ∙
𝑚1

𝑚1 + 𝐾𝑚 ∙ (1 +
𝑚2
𝐾1

)
    

(B) Steady state concentrations of e1, e2 m1 and m2 calculated with 5000 simulations for the 

complete model (grey), and the model with only enzyme level regulation (blue). Boxes contain 

50% and whiskers 99% of the simulated concentrations. All concentrations are normalized to 

the median concentrations of the complete model. 

(C) Enzyme levels (sum of e1 and e2) and robustness against perturbations of β2,max for 5000 

simulations of the complete model (dots). The color of each dot shows the ratio of inhibition 

constants for allosteric feedback inhibition (K1) and enzyme level regulation (K2) in the 

respective model. Robustness corresponds to the percentage downregulation of β2,max that was 

tolerated by each model. 100% enzyme abundance corresponds to the maximum theoretical 

enzyme concentration in the model. 
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Table S1. Related to Figure 1; Mutations in allosteric enzymes that were investigated in this 

study.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Pathway Gene Enzyme Mutation Reference 

L-arginine 
 biosynthesis 

argA 
N-acetylglutamate 

synthase 
H15Y Rajagopal et al., 1998 

L-isoleucine 
 biosynthesis 

ilvA 
Threonine 
deaminase 

L447F LaRossa et al., 1987 

L-histidine 
 biosynthesis 

hisG 
ATP 

phosphoribosyl 
transferase 

E271K Doroshenko et al., 2013 

L-leucine 
 biosynthesis 

leuA 
2-isopropylmalate 

 synthase 
G462D Gusyatiner et al., 2002 

L-proline 
 biosynthesis 

proB 
Glutamate-5- 

kinase 
D107N Csonka et al., 1988 

L-threonine 
 biosynthesis 

thrA 
Aspartate 

kinase 
S345F Lee et al., 2003 

L-tryptophan 
 biosynthesis 

trpE 
Anthranilate 

synthase 
S40F Caligiuri and Bauerle, 1991 
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Table S2. Related to Figure 1; Oligonucleotides for recombineering 

Gene Oligonucleotides for recombineering (5’-3’) 
Protospacer 
sequence (5’-3’) 

argA GTGGTAAAGGAACGTAAAACCGAGTTGGTCGAGGGAT 
TCCGCTATTCAGTTCCCTATATCAATACCCACCGGGGAA 

GGTCGAGGGATT 
CCGCCATT 

   
ilvA GGAATCACCGGGCGCGTTCCTGCGCTTTCTCAACACG 

CTGGGTACGTACTGGAACATTTCTTTGTTCCACTATCG 
CAACACGCTGG 
GTACGTACT  

   
hisG GTCAGCAGCAAAACCCTGTTCTGGGAAACTATGGAAA 

AACTGAAAGCGCTGGGGCCAGTTCAATTCTGGTCCTG 
TGGAAAAACTGA 
AAGCGCTG  

   
leuA CTGGTGAAATACAGCCTGACCGCCAAAGGACACGGTA 

AAGATGCGCTGGATCAGGTGGATATCGTCGCTAACTAC 
CGGTAAAGATGC 
GCTGGGTC  

   
proB ACCCGTGCTAATATGGAAGACCGTGAACGCTTCCTGAACG

CTCGCGACACCCTGCGAGCGTTGCTCGATAACAATATC 
CGACACCCTGCG 
AGCGTTGC  

   
thrA GCGCGCGTCTTTGCAGCGATGTCACGCGCCCGTATTT 

TCGTGGTGCTGATTACGCAATCATCTTCCGAATACAGC 
TGGTGCTGATTA 
CGCAATCA  

   
trpE CTTATCGCGACAATCCCACTGCGCTTTTTCACCAGTTGTGT

GGGGATCGTCCGGCAACGCTGCTGCTGGAATTCGCAGAT 
CGCTTTTTCACC 
AGTTGTGT  
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Table S3. Related to Figure 4; Literature kcat values for enzymes in amino acid 
biosynthesis. The values were collected from the BRENDA database, and from Davidi and 
Milo, 2017. - indicates that no value could be found in both sources. The 25 th and 75th quartiles 
of these kcat values are 930 min-1 and 4140 min-1, respectively. 

 

Name kcat, s
-1

 Name kcat, s
-1

 Name kcat, s
-1

 

argA 654.00 cysK 378.50 ilvN 40.00 

argB - cysM 24.00 leuA - 

argC - cysN - leuB 69.00 

argD - cysQ 11.00 leuC - 

argE 1800.00 dadX 33.66 leuD - 

argF - dapA 104.00 lysA 33.00 

argG - dapB 382.00 lysC 22.13 

argH - dapD 36.00 metA 22.00 

argI - dapE - metB 121.00 

aroA 32.00 dapF 84.00 metC 34.10 

aroB 14.00 gdhA 37.00 metE 3.50 

aroC 39.00 glnA 33.00 metH - 

aroD 75.00 gltB - metL - 

aroE 237.00 gltD - pheA 32.00 

aroF - glyA 10.00 proA 10.00 

aroG 4.20 hisA 7.20 proB 53.00 

aroH - hisB - proC 717.00 

aroK - hisC - prs - 

aroL - hisD 12.00 serA 29.00 

asd - hisF - serB - 

asnA - hisG - serC 1.80 

asnB 4.50 hisH - thrA - 

aspC - hisI - thrB 17.00 

avtA - ilvA - thrC - 

cysC 50.00 ilvB 38.50 trpA - 

cysD - ilvC 0.30 trpB - 

cysE 772.00 ilvD 69.00 trpC 18.77 

cysH - ilvE - trpE - 

cysI 47.00 ilvH - tyrA 71.00 

cysJ - ilvI - tyrB - 
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Table S4. Related to Figure 4; Amino acid requirements of E. coli (Monk et al., 2017). 

The mean of 86.6 mM was used as parameter α in the model. 

 

Amino 
Acid 

Coefficients, 
mmol gdw

-1
 

alpha, 
mM 

ala-L 0.499 166.4 

arg-L 0.287 95.8 

asn-L 0.234 78.1 

asp-L 0.234 78.1 

cys-L 0.089 29.7 

gln-L 0.256 85.2 

glu-L 0.256 85.2 

gly 0.595 198.4 

his-L 0.092 30.7 

ile-L 0.282 94.1 

leu-L 0.438 145.9 

lys-L 0.333 111.1 

met-L 0.149 49.8 

phe-L 0.180 60.0 

pro-L 0.215 71.6 

ser-L 0.210 69.9 

thr-L 0.247 82.2 

trp-L 0.055 18.4 

tyr-L 0.134 44.7 

val-L 0.411 137.1 

Mean 0.260 86.6 
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Table S5. Related to Figure 4; Inhibition constants of allosteric enzymes (Ki-value), 
transcriptional attenuation (tRNA-ligase Km-value) and metabolite-transcription factor 
interactions (Kd-value). Values were obtained from EcoCyc (Keseler et al., 2017), Brenda 

(Schomburg et al., 2002) or RegulonDB (Gama-Castro et al., 2016). When more than one value 
was available, an upper and a lower bound are given. The grey background indicates the seven 
pathways that were investigated during this work. The Ki of ArgA was measured in this work 
with in vitro assays. 

 

Biosynthesis 

pathway 

Allosteric Feedback 
Ki 

mM 
Transcriptional Feedback 

Km/d 
 mM 

Enzyme Metabolite LB UB Mechanism Protein Metabolite LB UB 

Arginine ArgA arg 0.15  Repressor ArgR arg 0.28 

Asparagine AsnA asn 0.12 Repressor AsnC asn 1 

Cysteine CysE cys 0.001 
     

Histidine HisG his 0.012 0.1 Attenuation his-tRNA ligase his 0.008 0.03 

Isoleucine IlvA ile 0.06 Attenuation ile-tRNA ligase ile 0.0036 1.3 

Leucine LeuA leu 0.28 Attenuation leu-tRNA ligase leu 0.0015 0.05 

Lysine DapA lys 0.21 3.9 
     

Methionine MetA met 0.1 4 Repressor MetJ sam 0.01 0.05 

Phenylalanine PheA phe 0.1 0.6 

 

TyrR phe >0.18 

Proline ProB pro 0.02 
     

Serine SerA ser 0.005 0.37 

     

Threonine ThrA thr 0.097 0.167 Attenuation thr-tRNA ligase thr 0.11 0.2 

Tryptophan TrpE trp 0.17 Repressor TrpR trp 0.16 

Tryptophan TrpE trp 
 

0.17 Attenuation trp-tRNA ligase trp 0.017 

Tyrosine TyrA tyr 0.1 Repressor TyrR tyr 0.18 

Valine IlvB val 0.078 0.1 Attenuation val-tRNA ligase val 0.0043 0.1 
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Table S6. Related to STAR Methods; Oligonucleotides used in this study. 

Oligonucleotide Sequence (5'-3') Description 
argA_Forward GGTCGAGGGATTCCGCCATTG 

TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of 

fragment 1 for customzied pKDsgRNA targeted against 
argA 

argA_Reverse AATGGCGGAATCCCTCGACCG 

TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of 

fragment 2 for customzied pKDsgRNA targeted against 
argA 

ilvA_Forward AGTACGTACCCAGCGTGTTGG 

TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of 

fragment 1 for customzied pKDsgRNA targeted against ilvA 
ilvA_Reverse  CAACACGCTGGGTACGTACTG 

TGCTCAGTATCTCTATCACTGA 
Reverse primer used with CPEC002 for amplification of 
fragment 2 for customzied pKDsgRNA targeted against ilvA 

hisG_Forward  CAGCGCTTTCAGTTTTTCCAGT 
TTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of 
fragment 1 for customzied pKDsgRNA targeted against 
hisG 

hisG_Reverse  TGGAAAAACTGAAAGCGCTGG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of 
fragment 2 for customzied pKDsgRNA targeted against 
hisG 

leuA_Forward  GACCCAGCGCATCTTTACCGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of 
fragment 1 for customzied pKDsgRNA targeted against leuA 

leuA_Reverse  CGGTAAAGATGCGCTGGGTCG 

TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of 

fragment 2 for customzied pKDsgRNA targeted against leuA 
proB_Forward  GCAACGCTCGCAGGGTGTCGG 

TTTTAGAGCTAGAAATAGCAAG 
Forward primer used with CPEC001 for amplification of 
fragment 1 for customzied pKDsgRNA targeted against 

proB 
proB_Reverse CGACACCCTGCGAGCGTTGCG 

TGCTCAGTATCTCTATCACTGA 
Reverse primer used with CPEC002 for amplification of 
fragment 2 for customzied pKDsgRNA targeted against 

proB 
thrA_Forward  TGATTGCGTAATCAGCACCAG 

TTTTAGAGCTAGAAATAGCAAG 
Forward primer used with CPEC001 for amplification of 
fragment 1 for customzied pKDsgRNA targeted against thrA 

thrA_Reverse  TGGTGCTGATTACGCAATCAG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of 
fragment 2 for customzied pKDsgRNA targeted against thrA 

trpE_Forward  ACACAACTGGTGAAAAAGCGG 

TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of 

fragment 1 for customzied pKDsgRNA targeted against trpE 
trpE_Reverse  

 
CGCTTTTTCACCAGTTGTGTG 
TGCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of 
fragment 2 for customzied pKDsgRNA targeted against trpE 

argR_Forward  ATTCTTCAATGGACTGGAGGG 
TTTTAGAGCTAGAAATAGCAAG 

Forward primer used with CPEC001 for amplification of 
fragment 1 for customzied pKDsgRNA targeted against 
argR 

argR_Reverse  CCTCCAGTCCATTGAAGAATGT 
GCTCAGTATCTCTATCACTGA 

Reverse primer used with CPEC002 for amplification of 
fragment 2 for customzied pKDsgRNA targeted against 
argR 

CPEC001 TTTATAACCTCCTTAGAGCTCG
A 

Reverse primer for amplification of fragment 1 for 
pKDsgRNA 

CPEC002 CCAATTGTCCATATTGCATCA Forward primer for amplification of fragment 2 for 

pKDsgRNA 
Ec-F GTTTTAGAGCTAGAAATAGCAA

GTTAAAATAAGGC 
Foward primer used with guide_Rev for ampflification of 
customized pNUT1533-ctrl 

Ec-F-argE-mm5 TTTTTCATTGTTGACACCCCTC

GTTTTAGAGCTAGAAATAGCAA
GTTAAAATAAGGC 

Foward primer used with guide_Rev for ampflification of 

customized pNUT1533-argE 

Ec-F-trpA TTCTTTGCGCTCCTTCAACTGTT

TTAGAGCTAGAAATAGCAAGTT
AAAATAAGGC 

Foward primer used with guide_Rev for ampflification of 

customized pNUT1533-trpA 

Ec-F-hisB TCACTCGGCGGTTCGCTAATCA

GTTTTAGAGCTAGAAATAGCAA
GTTAAAATAAGGC 

Foward primer used with guide_Rev for ampflification of 

customized pNUT1533-hisB 

Ec-R ACTAGTATTATACCTAGGACTG

AGCTAGC 

Reverse primer for amplification of customized pNUT1533 

plasmids 
ArgA_fwd_NdeI TGACCATATGATGGTAAAGGAA

CGTAAAAC 
Amplification of genomic argA 

ArgA_rev_BamHI TGACGGATCCTTACCCTAAATC
CGCCATCA 

Amplification of genomic argA 

ArgA_H15Y_fwd AGGGAACCGAATAGCGGAATC

CCTC 

Forward primer for amplification pET28a(+)-argA 

ArgA_H15Y_rev ATATCAATACCCACCGGG Reverse primer for amplification pET28a(+)-argA 
hisL_fwd_gfp CCGCTCGAGGCTTTCATCATTG

TTGCCG 

Forward primer for amplification of hisL attenuator region 

hisL_rev_gfp CCGGGATCCCGCAGAATATCAA
TCGGC 

Reverse primer for amplification of hisL attenuator region 

leuL_fwd_gfp CCGCTCGAGTTGTCCCCTTTTT
CCTCG 

Forward primer for amplification of leuL attenuator region 
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Table S6. Related to STAR Methods; continued 
 

Oligonucleotide Sequence (5'-3') Description 
leuL_rev_gfp CCGGGATCCGATGGTTTGCAC

CGATTC 
Reverse primer for amplification of leuL attenuator region 

thrA_fwd_gfp CCGCTCGAGACTGCAACGGGC
AATATG 

Forward primer for amplification of thrL attenuator region 

thrA_rev_gfp CCGGGATCCTCGGCATCGCTG

ATATTG 

Reverse primer for amplification of thrL attenuator region 
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