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SUMMARY

Over the past decade, extensive studies of the brain
regions that support face, object, and scene recogni-
tion suggest that these regions have a hierarchically
organized architecture that spans the occipital and
temporal lobes [1–14], where visual categorizations
unfold over the first 250 ms of processing [15–19].
This same architecture is flexibly involved in multiple
tasks that require task-specific representations—
e.g. categorizing the sameobject as ‘‘a car’’ or ‘‘a Por-
sche.’’ While we partly understand where and when
these categorizations happen in the occipito-ventral
pathway, the next challenge is to unravel how these
categorizations happen. That is, how does high-
dimensional input collapse in the occipito-ventral
pathway to become low dimensional representations
that guide behavior? To address this, we investigated
what information the brain processes in a visual
perception task and visualized thedynamic represen-
tation of this information in brain activity. To do so,we
developed stimulus information representation (SIR),
an information theoretic framework, to tease apart
stimulus information that supports behavior from
that which does not. We then tracked the dynamic
representations of both in magneto-encephalo-
graphic (MEG) activity. Using SIR, we demonstrate
that a rapid (�170ms) reduction of behaviorally irrele-
vant information occurs in the occipital cortex and
that representations of the information that supports
distinctbehaviorsareconstructed in the right fusiform
gyrus (rFG). Our results thus highlight how SIR can be
used to investigate the component processes of the
brain by considering interactions between three vari-
ables (stimulus information, brain activity, behavior),
rather than just two, as is the current norm.

RESULTS

Diagnostic Features of Behavior: Identifying the
Stimulus Features that Underlie Perceptual Decisions
In this task, we used Dali’s painting SlaveMarket with Disappear-

ing Bust of Voltaire (see Figure 1A-a, Stimulus) because it con-
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tains a complex, ambiguous scene that observers perceive as

either ‘‘the nuns’’ or ‘‘Voltaire.’’ We used the Bubbles technique

[20] to break down the stimulus information into random samples

for each experimental trial (see Figure 1A-a, Stimulus Sampling)

to characterize the features that support each perceptual deci-

sion. We then recorded the observer’s response to each sample

(whether they perceived ‘‘the nuns,’’ ‘‘Voltaire,’’ or selected

‘‘don’t know’’) and also their dynamic brain activity (on 12,773

MEG sources, every 2 ms between 0 and 400 ms post-stimulus,

see STAR Methods). Using this approach, we identified the low-

dimensional information each participant used to support their

‘‘nuns’’ versus ‘‘Voltaire’’ decision by evaluating the relationship

between the randomly sampled information on each trial and the

corresponding observer’s decision (see Figure 1A-b). We sche-

matized the relationship between the two variables of informa-

tion sample and decision as a Venn diagram; where they inter-

sect was designated the ‘‘diagnostic features’’ that support

each observer’s decisions (Figure 1A) [21, 22]. Specifically, using

mutual information (MI [23], a nonparametricmeasure of the rela-

tionship between variables), we computed diagnostic features

separately for the behavioral contrasts <Information Samples;

‘‘the nuns,’’ versus ‘‘don’t know’’>, excluding ‘‘Voltaire’’ trials,

and <Information Samples; ‘‘Voltaire,’’ versus ‘‘don’t know’’>,

excluding ‘‘nuns’’ trials (see STAR Methods).

As shown in Figure 1A-c, all observers used the left and right

nun’s faces at higher spatial frequencies (HSF) to respond ‘‘the

nuns,’’ whereas they used the global face of Voltaire at lower

spatial frequencies (LSF) to respond ‘‘Voltaire’’ (see Figure S1-A

for each observer’s features). Since diagnostic features influ-

ence behavior, the observer’s brain must represent at a mini-

mum these features between stimulus onset and observer deci-

sion. Next, we show that the brain does indeed represent all

diagnostic features over time, as well as other features.

Sampled Information Coupled to MEG Voxel Activity:
Characterizing the Stimulus Features that Brain Activity
Represents
To show where and when each observer’s MEG activity repre-

sents stimulus features, we used MI to evaluate the single-trial

relationship <Information Samples; MEG Source Activity> inde-

pendently for each source (henceforth, MEG voxel) and time

point (see STAR Methods). The outcome is a 3D (feature-by-

voxel-by-time) MI matrix per observer in which, for each stimulus

feature represented in their brain (1st dimension), MI values indi-

cate the strength of feature representation (i.e., effect size,

FWER p < 0.05, one-tailed) over 12,773 MEG voxels (2nd
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Figure 1. Diagnostic and Brain Features

(A) Diagnostic features. (a) The original stimulus (left), which was decomposed into 6 spatial frequency (SF) bands (middle, band 6 is not shown) of one octave

each for each trial, starting at 128 cycles per image. Samples were added across bands to generate one experimental stimulus (dark blue frame, right).

(b) Perceptual decisions recorded by observers, as: ‘‘the nuns,’’ ‘‘Voltaire,’’ or ‘‘don’t know.’’ The cyan intersection in the Venn diagram illustrates the relationship

between information samples (blue) and perceptual decisions (green): the diagnostic features of behavior. (c) Diagnostic feature of behavior. The cyan-framed

images show significant pixels (family-wise error rate (FWER), p < 0.001, one-tailed) in the first three SF bands that reveal features diagnostic for observers

responding ‘‘the nuns’’ (the two small faces in SF band 1) and ‘‘Voltaire’’ (the broad face in SF band 3). Color saturation indicates N, number of observers.

(B) Brain features. White frames highlight ‘‘the nuns’’ and ‘‘Voltaire’’ diagnostic and color-coded brain features represented by all observers. The magenta frames

highlight color-coded non-diagnostic brain features represented by a majority of observers (i.e., N > = 3). The magenta intersection in the Venn diagram rep-

resents the relationship between information samples (blue) and MEG voxel activity (red) whereas the white intersection represents the relationship between all

three variables, including behavior.

(C) Early representation of brain features. Common, color-coded brain regions, show the early (during the initial 20 ms of representation) topological repre-

sentation of each correspondingly colored brain feature (FWER, p < 0.05, one-tailed). Each observer contributed at least one significant voxel for each color-

coded feature. See also Figure S1 for the results of each observer.
dimension), every 2ms between 0 and 400ms post-stimulus (3rd

dimension). These 3D representation matrices are unique to our

approach: they reveal the stimulus features that the brain

dynamically represents, separating out the features that are rele-

vant for the perceptual task.

First, we identified the features represented in observers’

brains (see Figure 1B for the common features represented
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cross observers and Figure S1-B for each observer’s brain fea-

tures). Comparing Figure 1B with Figure 1A reveals that some

brain features correspond to the same visual information as

the features that are diagnostic of behavior (i.e., the red and

blue nun’s faces at HSFs and the green face of Voltaire at

LSFs), whereas others do not (e.g., the brown features flanking

Voltaire’s face).



Figure 2. Nondiagnostic Feature Reduction

and Diagnostic Feature Progression

Magenta color-coded brains show voxels that

represent at least one significant (FWER p < 0.05,

one-tailed) nondiagnostic brain feature (repre-

sented with a magenta color in the Venn diagram)

in earlier [50–170 ms] and later [170–400 ms] time

windows post stimulus. White color-coded brains

show voxels that represent at least one significant

(FWER p < 0.05, one-tailed) diagnostic brain

feature (represented with a white color in the Venn

diagram) in earlier [50–170 ms] and later [170–

400 ms] time windows post stimulus. Voxel

brightness denotes the number (N) of observers for

whom these criteria held true. For all observers,

nondiagnostic features were consistently reduced

over time in the occipital cortex while diagnostic

features were sustained and progressed into the

ventral pathway. See also Figure S2B. Abbrevia-

tions: left (L); right (R).
Second, we divided the brain’s features into diagnostic or non-

diagnostic for the task (see STAR Methods). The Venn diagram

of Figure 1B illustrates such division: the addition of brain mea-

sures produces a white area of intersection that represents the

diagnostic features that influence both behavioral and brain

measures; themagenta intersection designates the nondiagnos-

tic features that influence brain measures but not behavior. (see

Figure S1C and Figure S2A for a formal demonstration).

Finally, Figure 1C illustrates the expected topological rep-

resentation of brain features during the first 20 ms of

representation (see Figure S1F for each observer’s topological

representation). Color codes reveal that the observers’ brains

contral-laterally represented the diagnostic eyes of Voltaire

(see the red and blue voxels) and the brown nondiagnostic fea-

tures flanking the center of the stimulus in relation to the bilater-

ally represented LSF Voltaire face (see green voxels).

Divergence of Nondiagnostic and Diagnostic Brain
Features in the Occipito-Ventral Pathway
The color-coded brains in Figure 2 summarize the evolving rep-

resentations of the diagnostic and nondiagnostic features across

two post-stimulus time windows [50–170 ms] and [170–400 ms]

that flank the N/M170, the event-related potential �170 ms

post-stimulus commonly associated with visual categorizations

[16, 24]. A comparison of the nondiagnostic and diagnostic brain

features across the earlier and later time windows reveals a

consistent pattern. Over the first 170 ms of processing, repre-

sentation of diagnostic and nondiagnostic brain features simi-

larly involve occipital cortex (Bonferroni corrected p < 0.05,

two-tailed). They diverge afterward, and only representations

of diagnostic brain features are sustained in all occipito-ventral

regions (see STAR Methods and Figure S2B for representation

divergence in each observer).

These data suggest that a spatio-temporal junction exists be-

tween the occipital and occipito-ventral cortex around 170 ms,

after which only behaviorally relevant features flow into the tem-

poral cortex, with the processing of irrelevant features ending in

the occipital cortex. In the next two sections, we detail what hap-

pens before and after this junction.
Dynamic Reduction of Nondiagnostic Brain Features in
the Occipito-Ventral Pathway
Diagnostic and nondiagnostic features travel like two wavefronts

of representation in the occipital cortex toward the occipito-

ventral junction, where they diverge �170 ms post stimulus. To

establish this finding, we used each observer’s 3D representa-

tion matrix and computed the maximum representation strength

(i.e., MI effect size) across nondiagnostic (versus diagnostic)

brain features separately for each voxel and time point (see

STAR Methods). This produced a time course of maximum

feature representation (see Figures 3A and 3B).

In Figure 3A, the representation time courses and brain

scatters illustrate the dynamic reduction of nondiagnostic

feature representations in each observer (see Video S1 for

the dynamic effects in a typical observer). Specifically, non-

diagnostic feature representations initially travel as a wave-

front that then reduces in duration as it progresses through

the occipital cortex (see Figure S3A for each observer and

Table S2 for demonstrations). Thus, the wavefront of non-

diagnostic feature representations rapidly collapses (around

170 ms) as it travels into the occipital cortex (see Figure 3A).

In contrast, identical computations applied to diagnostic fea-

tures demonstrate that the diagnostic wavefront progresses

past 170 ms and deeper into ventral and dorsal regions (see

Figures 3B and S3B for each observer and Table S2 for dem-

onstrations). We also identified the anatomical brain regions

where the two wavefronts diverge (see Figures 3C and S3C

for each observer).

Dynamic Construction of Behavior Representations in
the Right Fusiform Gyrus
Our results show that only diagnostic brain features are repre-

sented past the occipito-ventral 170 ms junction. A prevalent

hypothesis is that visual information represented early and

separately across the left and right occipital cortices [25]

later converges in the rFG to support visual cognition tasks,

such as visual decisions [26]. However, conclusive testing

of this hypothesis remains challenging for two reasons.

First, the hypothesis implies the need to characterize the
Current Biology 29, 319–326, January 21, 2019 321



Figure 3. Dynamic Reduction of Nondiag-

nostic Brain Features in the Occipital-

Ventral Pathway.

(A and B) Dynamics of (A) nondiagnostic brain

feature reduction and (B) diagnostic brain feature

progression. For each observer, a plot shows the

curves of maximum (A) nondiagnostic and (B)

diagnostic brain feature representation (i.e., MI

effect size) for each voxel between 0 and 400ms

post stimulus, color-coded by ranked onset time

(blue, early; magenta, midway; yellow, late). In (A),

the vertical dashed lines represent the time

(�170 ms) at which the brain stops representing

nondiagnostic features. Adjacent brain scatters

locate the voxels associated with each curve using

the same color code.

(C) Divergence of nondiagnostic and diagnostic

feature representations. In each panel, brain re-

gions comprise one column per observer, where

each horizontal line represents one voxel from

the region. Lines denote two voxel properties:

the color denotes representation onset, and the

length, representation duration. Adjacent white

bars show median representation duration across

all regions, organized by the y axis of MNI

Euclidean distance of each voxel to the voxel of

initial representation onset. The dashed white

horizontal line shows the nondiagnostic wavefront

extends ventrally in the LG up to the junction with

the TG and FG, and dorsally with IPL and SPL (see

regions shaded a lighter gray). The diagnostic

wavefront extends further into the ventral (i.e., FG,

ITG, MTG, and STG) and dorsal (i.e., IPL and SPL)

(see pink to yellow colors). See also Figure S3,

Video S1 and Table S2. Abbreviations: Cuneus

(CU), lingual gyrus (LG), inferior occipital cortex

(IOG), middle occipital gyrus (MOG), superior oc-

cipital gyrus (SOG), fusiform gyrus (FG), inferior

temporal gyrus (ITG), middle temporal gyrus

(MTG), superior temporal gyrus (STG), inferior pa-

rietal lobe (IPL), and superior parietal lobe (SPL).
evolution of increasingly complex (e.g., lateralized to bilateral)

stimulus representations in the dynamic brain activity of this

specific region, and not others. Second, it requires demon-

strating that the representations specifically support task

behaviors.

We propose that the SIR framework can address these points

in a data-driven manner across the whole brain. We introduce

feature redundancy (RED), which quantifies the shared variability

between: < Information Samples; MEG Voxel Activity; ‘‘the

nuns,’’ ‘‘Voltaire,’’ ‘‘don’t know’’> on individual trials. It therefore

directly measures modulations of feature representations in the

brain to specifically support each perception. We computed

feature redundancy (FWER p < 0.05, one-tailed) on all 12,773

MEG voxels of each observer over an extended N/M170, 120–

220 ms post-stimulus time course [19, 24] (see STAR Methods).

If information converges on a brain region to support task

behavior, then the number of features represented in the region’s
322 Current Biology 29, 319–326, January 21, 2019
voxels should increase over time—an in-

crease in the complexity of the region’s

population code. For each observer, we
quantified representational complexity for behavior by counting

the number of different features that each brain voxel represents

redundantly with behavior, independently in five time intervals

over the extended N/M170 time course (see STAR Methods).

As shown in Figure 4A, representational complexity does indeed

increase over time and peaks between 161–201ms, primarily in

the rFG (see Figure S4A for this increase in each observer), the

time window during which representation of perceptual decision

also peaks in brain activity (see Figures 4B and S4B for each

observer). We computed representation of perceptual decision

in brain activity as MI < MEG Voxel Activity; ‘‘the nuns,’’

‘‘Voltaire,’’ ‘‘don’t know’’>.

Figure 4C decomposes representational complexity into

the specific features that underlie each perceptual behavior

in each individual observer. In the fourth time window, voxels

at the top of the rFG represent redundant features that

are linked to the response ‘‘Voltaire’’ (primarily the green



Figure 4. Dynamic Construction of Behavior

Representations

(A) Representational complexity. Gray level voxels

in each brain schematic and in each time window

denote the median number of redundant behav-

ioral features represented across observers. Times

in brackets indicate the range of each time interval

(time started and ended). Beneath, voxels in the

rFG show that representational complexity peaks

at the top of the rFG in the fourth (183–201ms) time

window (highlighted). Voxel size denotes the

number (N) of observers who represented at least

one redundant behavioral feature on this voxel and

time window.

(B) Representation of behavior. Yellow voxels in

each time window denote the median MI between

MEG activity and the decisions ‘‘the Nuns,’’ ‘‘Vol-

taire,’’ and ‘‘don’t know’’ across observers (illus-

trated with the yellow intersection in the Venn

diagram).

(C) Feature representation for each decision in rFG.

Representational complexity was decomposed at

each rFG voxel and time window by showing fea-

tures that are redundantly represented in MEG

activity and for each behavioral decision, in each

observer (see adjacent color-coded features).

Adjacent histograms show the number of rFG

voxels representing each redundant feature. The

bottom histograms show the median number of

voxels representing each redundant feature across

observers, showing feature selectivity for each

decision (e.g., the turquoise HSF left nuns face and

the green LSF bust of Voltaire). See also Figure S4.
global face in special frequency 3 [SF3], the right orange eye

in SF1, and the right red eye in SF2). Other redundant features

are primarily linked to the response ‘‘the nuns’’ (the turquoise

left face in SF1 and the blue and red faces in SF2). Note also

that the representation of ipsi-lateral information in the rFG

(e.g., the orange and red features) implies that inter-hemi-

spheric information transfer occurs from its initial contra-

lateral representation in the left occipital cortex (see Figure 1B

and [26]). Figure S4C also shows a trend for HSF features

reaching rFG voxels for perceptual behavior before LSF fea-

tures [27, 28].

Thus, by using feature redundancy and representational

complexity, we have demonstrated that rFG voxels represent

stimulus information with a selectivity and complexity that sup-

ports task-specific behaviors.
Current
DISCUSSION

In this case study, we investigated how

high-dimensional information input col-

lapses in the occipito-ventral pathway to

become low dimensional representations

that guide behavior, using a novel infor-

mation theoretic framework called SIR.

Using this framework, we identify that

high dimensional stimuli are reduced in

the occipito-temporal pathway into low

dimensional representations that can
support subsequent perceptual decision making. To address

the where, when, and how of information processing, we tracked

dynamic feature representations in the brain and show that

behaviorally irrelevant information is rapidly reduced at the occi-

pito-ventral junction around 170 ms. We also show that rFG

representations for behavior are constructed between 161 and

201 ms post stimulus. Remarkably, we replicated all these re-

sults independently in five individual observers, as is now better

practice. Using non-parametric family-wise error rate correction,

we found spatio-temporally coincident significant effects within

all five observers. This is a stronger finding than conventional

cluster corrected group statistics, where a small subset of partic-

ipants can drive effects that can be non-significant within any in-

dividual observer. SIR enabled us to interpret the information

processing of task-related brain activity because it computes
Biology 29, 319–326, January 21, 2019 323



the interactions between three variables in individual observers

(cf. the colored set intersections) rather than two of the variables

across groups of observers, as is typical in neuroscience and

neuroimaging. In doing so, SIR directly addressed the recent

argument [29, 30] that neuroscientific explanations need to

explicitly include behavior to better tease apart the component

processes of the brain.

Information Reduction in the Occipito-Ventral Pathway
We documented an information reduction process that evolves

over time from a state of many to fewer dimensions of stimulus

representation. To implement such reduction, hierarchical layers

in the occipito-ventral pathway likely communicate with each

other, using both feedforward and feedback signals, as sug-

gested by network models that resolve ambiguity between hier-

archically organized representations [31, 32]. We subscribe to

such interactive organization whereby diagnostic feature selec-

tion from the stimulus might involve memory predictions, which

propagate down the visual hierarchy and interact with the feed-

forward flow [5, 33–35]. Although we can visualize the feedfor-

ward flow of stimulus representation by coupling information

samples with subsequent brain responses, the arrow of time

prevents us from similarly visualizing the representation of top-

down predictions (although see [34, 36] for visualizations from

behavior). Nevertheless, we can document the interactive archi-

tecture by visualizing successive transformations of stimulus

representations over time.

We traced the dynamic representation of a nun’s face (the HSF

pixels representing this image feature) from occipital cortex into

the ventral pathway. It would be naive to assume that the nun’s

face is represented as such in any of these regions, but we need

a broad view of the information-processing, which this model af-

fords. To better understand representational transformations

along the visual hierarchy, we could instead sample an explicit

generative model of hierarchical visual information that hypothe-

size these transformations—with size, rotation, and illumination

invariant representations at the top of its hierarchy—to better

reflect properties of higher-level ventral pathway representa-

tions, and with Gabor-type filters at the bottom, to better model

early visual cortex representations [37]. Designing such

generative models to study multiple face (e.g., identity, gender,

age, ethnicity, and social traits), objects (e.g., superordinate

‘‘vehicle,’’ basic ‘‘car,’’ and subordinate ‘‘Beetle’’), and scenes

(e.g., superordinate ‘‘outdoor,’’ basic ‘‘city,’’ subordinate ‘‘Chi-

cago’’) categorizations remains a critical step to understand

structured sensory representations in wet and silicon brains

(cf [38–41]).

Time Course of Information Processing in the Occipito-
Ventral Pathway
The information processes at the occipito-ventral junction flank

the timing and sources of the N/M170 ERPs [42], which reflect

a network that represents and transfers features across the

two hemispheres [15]. Potentially, the N170 peak might reflect

the divergence of the two wavefronts of behaviorally relevant

and irrelevant information. Alternatively, the pre- and post-

170 ms rFG processes could reflect two stages: pre-170 ms,

rFG could buffer information arising first from the contra-lateral

visual field, followed by ipsi-lateral visual field information that
324 Current Biology 29, 319–326, January 21, 2019
is transferred from the left occipital hemisphere; post-170 ms,

rFG could integrate this buffered information across the two vi-

sual fields, as shown here (see also [15]). Future research should

seek to resolve and generalize these results for the overlapped

rFG representations of faces, objects, and scenes categories

[43, 44] and elucidate the role of cognitive tasks on representa-

tions in pre-frontal cortex [45–47].
Relationship between Information Reduction in
Occipital Cortex and Consolidation in rFG
Our SIR results inform early versus late attentional models of in-

formation selection [48]. We identified where (in occipito-ventral

junction) and when (before 170 ms) feature reduction occurs

and also where (rFG) and when (from 170 ms) feature are

consolidated for perceptual decision. We showed that reduc-

tion involves other regions than V1-V2, though these could in-

fluence selection with gain control [49, 50]. However, reduction

is probably not as late as rFG because this region mainly rep-

resents diagnostic features. Our results therefore suggest a

mixed model of attentional selection, and SIR offers a powerful

platform to directly study such attentional mechanisms in com-

plex tasks.

To conclude, the SIR framework enables us to investigate

task-sensitive brain activity that relates information processing

in the brain to behavior. SIR enables brain processes to be iso-

lated (here, the reduction of behaviorally irrelevant information

and the construction of behavioral representations) and employs

principles that are broadly applicable across different modalities

and granularities of brain measures used in a wide range of

cognitive and systems neuroscience.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Observers
Five right-handed observers with normal (or corrected to normal) vision participated in the experiment. We obtained informed con-

sent from all observers and ethical approval from the University of Glasgow Faculty of Information andMathematical Sciences Ethics

Committee.

METHOD DETAILS

Stimuli
We cropped a copy of Dali’s SlaveMarket with the Disappearing Bust of Voltaire to retain the ambiguous part of this image that shows

the bust of Voltaire and the two nuns. The cropped image size was 2563 256 pixels, presented at 5.72� 3 5.72� of visual angle on a

projector screen. On each trial, we sampled information from the cropped image using bubble masks made of randomly placed

Gaussian apertures to create a different sparse stimulus. We explain the sampling procedure below (see also Figure 1A-a, Stimulus

Sampling). Note that the information supporting perception of ‘‘the nuns’’ and ‘‘Voltaire’’ is separated (i.e., multiplexed [51]) across

the spatial frequencies of the stimulus which impact the spatial frequency channels of the visual system (for a review [52],). Conse-

quently, to tap into the information supporting each perception, we decomposed the image into six independent spatial frequency

(SF) bands of one octave each, with cut-offs at 128 (22.4), 64 (11.2), 32(5.6), 16 (2.8), 8 (1.4), 4 (0.7) cycles per image (c/deg of visual

angle), respectively. For each of the first five SF bands, a bubble mask was generated from a number of randomly located Gaussian

apertures (the bubbles), with standard deviations of 0.13, 0.27, 0.54, 1.08, and 2.15 deg of visual angle, respectively. We sampled the

image content of each SF band by multiplying the bubble masks and underlying grayscale pixels at that SF band, summed the re-

sulting pixel values across SF bands, and added the constant 6th SF band to generate the actual stimulus image. The total number of

60 Gaussian apertures on each trial remained constant throughout the task, ensuring that equivalent amounts of visual information

were presented for each trial, at a level found previously to maintain ‘‘don’t know’’ responses at 25% of the total response number

[53]. Since the 6th underlying SF image was constant across trials, we performed all analyses on the 5 bubble masks controlling vis-

ibility, but reported only the first three because they represented most of the information required for perceptual decisions. For anal-

ysis, we down-sampled (bilinear interpolation) the bubble masks to a resolution of 64 3 64 pixels to speed up computation.

Task Procedure
We familiarized each observer with the two possible perceptions of the same stimulus. Each trial started with a fixation cross dis-

played for 500 ms at the center of the screen, immediately followed by a stimulus generated as explained above that remained until

response. We instructed observers to maintain fixation during each trial, and to respond by pressing one of three keys ascribed to

each response choice—i.e., ‘‘the nuns,’’ ‘‘Voltaire,’’ or ‘‘don’t know.’’ Each stimulus remained on the screen until response. Stimuli

were presented in runs of 150 trials, with randomized inter-trial intervals of 1.5–3.5 s (mean 2 s). Observers performed 4–5 runs in a

single day session with short breaks between runs. Observers completed the experiment over 4–5 days.
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MEG Data Acquisition
Wemeasured the observers’ MEG activity with a 248-magnetometer whole-head system (MAGNES 3600WH, 4-D Neuroimaging) at

a 508 Hz sampling rate. We performed analysis with the FieldTrip toolbox [54] and in-house MATLAB code, according to recommen-

ded guidelines [55]. For each observer, we discarded runs based on outlying gradiometer positions in head-space coordinates. That

is, we computed theMahalanobis distance of each sensor position on each run from the distribution of positions of that sensor across

all other runs. Runs with high average Malahanobis distance were considered outliers and removed. The distances were then

computed again and the selection procedure was repeated until there were no outlier runs (Mahalonobis distances > 20). We

high-passed filtered data at 1 Hz (4th order two-pass Butterworth IIR filter), filtered for line noise (notch filter in frequency space)

and de-noised via a PCA projection of the reference channels. We identified noisy channels, jumps and other signal artifacts using

a combination of automated techniques and visual inspection. We then epoched the resulting dataset (mean trials per observer 3396,

range 2885–4154, see Table S1) into trial windows (�0.8 s to 0.8 s around stimulus onset) and decomposed using ICA, separately

for each observer. We identified and projected out of the data the ICA sources corresponding to artifacts (eyemovements, heartbeat;

3 to 4 components per observer).

We then low-pass filtered the data to 40Hz (3rd order Butterworth IIR filter), specified our interest time period 0-400ms post stim-

ulus, and performed the Linearly Constrained Minimum Variance Beamforming analysis [56] to obtain the source representation of

the MEG data on a 6mm uniform grid warped to standardized MNI coordinate space. We low-pass filtered the resulting single trial

voxel time courses with a cut-off of 25Hz (3rd order Butterworth IIR filter, two-pass). In the following analysis, based on the obtained

single trial voxel activity time courses (12,773 MEG voxels, every 2ms between 0 - 400ms post stimulus), we analyzed the dynamic

representation of features in the brain for perceptual decisions.

The following sections detail each step of the information processing pipeline.

QUANTIFICATION AND STATISTICAL ANALYSIS

Diagnostic Features of Behavior
To compute the diagnostic features of perceptual decisions, we quantified the statistical dependence between the pair < Information

Samples; Perceptual Decision > usingMutual Information (MI [23]. We usedMI because it non-parametrically quantifies the common

variations between information and decisions to reveal the features that support decision. On each trial, 5 real-valued Gaussian bub-

ble masksmultiply the visual information represented in 5 SF bands (see Figure 1A-a, Stimulus Sampling, for an illustration). Thus, on

a given trial, a real value represents the visibility of that pixel under aGaussian bubble, with 1 indicating full visibility and 0 indicating no

visibility. For each pixel of the bubblemask, we converted its randomdistribution of real values across trials into 2 bins—values below

0.2 were ascribed to the ‘‘no to low visibility’’ bin and values above 0.2 to the ‘‘low to full visibility’’ bin. We then usedMI to quantify the

statistical dependence between the binarized pixel visibility values and the corresponding observer responses, grouping ‘‘the nuns’’

versus ‘‘don’t know’’ responses together in one computation (i.e., < Information Samples; ‘‘the nuns,’’ ‘‘don’t know’’>) and the ‘‘Vol-

taire’’ versus ‘‘don’t know’’ responses in the other (i.e., < Information Samples; ‘‘Voltaire,’’ ‘‘don’t know’’>). These computations re-

sulted in two MI perceptual decision pixel images per observer (see Figure S1-A). We used the method of maximum statistics [57] to

determine the statistical significance of MI pixels and correct for multiple comparisons. Specifically, for each of 10,000 permutations,

we randomly shuffled the observer’s choice responses across trials, repeated the computation of MI for each pixel as explained and

extracted the maximum MI across all pixels over the 5 SF bands. We used the 99.9th percentile of the distribution of maxes across

10,000 permutations to determine the above-chance significance of each MI pixel (FWER p < 0.001, one-tailed). Across observers,

we reported the diagnostic pixels with significant MI in the first 3 SF bands that illustrate the consistency of the main diagnostic fea-

tures underlying perceptual decision behaviors (see Figure 1A-c, Diagnostic Features of Behavior).

Brain Features
In each observer, we measured single-trial MEG activity with the bivariate of amplitude and instantaneous MEG gradient on 12,773

sources, every 2ms between 0 and 400mspost stimulus. A high-dimensional 12,7733 200 voxel-by-timematrix therefore structures

the MEG data. For each observer, we aimed to quantify the features of the stimulus that each cell of this matrix represents, if any. We

proceeded in three steps. We now detail the computations involved in each step. For MI calculations, we used throughout the

Gaussian-Copula Mutual Information estimator [23]. Note that we report only the 5,869 cortical voxels in our figures.

Step 1: Computation of the Relationship < Information Samples; MEG Activity >

Weaim to identify, in each observer, the features represented in each cell of the full voxel-by-timematrix ofMEGactivity. However, it is

computationally impractical to directly compute the features from the single-trial relationship < Information Samples; MEG Voxel Ac-

tivity > , due to the enormous dimensionality of the space—643 643 5SF bands pixels x 12,773 voxels x 200 time points. Instead, we

used themethod reported in [26], which computes the relationship over themore computationally tractable matrix of 60 Independent

Component Analysis (ICA) sources representing MEG activity over 75 time points that span 0 to 600 ms post stimulus every 8 ms.

Step 2: Computation of Brain Features

For each observer, the reducedmatrix computed above (i.e., 60 ICA sources x 75 time points) comprisedMI images in each cell, for a

total of 4,500 MEG-pixel information images across 5 SF bands. We vectorized each (64 3 64 3 5 = 200,480) MEG MI image as a

20,480-dimensional vector. We applied Non-negative Matrix Factorization (NMF [58],) to the set of 4,500 vectorized MEGMI images

to characterize the main NMF features of the stimulus that modulate MEG source activity, resulting in 21–25 components per
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observer. We thresholded these NMF features by setting to zero the pixels with low MI values (< 15% of the maximum pixel value

across SFs). We then normalized the NMF features (L2-norm). Henceforth, we call ‘‘brain features’’ the normalized NMF features

of each observer that modulate the MEG activity of their brain.

Step 3: Computation of the Relationship < Brain Feature; MEG Voxel Activity > in the Full Voxel-by-Time MEG Activity

Matrix

Weused thebrain features computedabove from the reducedmatrix of ICAMEGsources toquantify their representation into eachcell

of the full voxel-by-timematrix. To this aim, first we computed the visibility of each brain feature into the information samples (i.e., bub-

blemask) presented as stimulus on each trial. That is, we spatially filtered (i.e., dot product) the bubblemask for that trial with the brain

feature computed above, thereby producing a scalar value indicating the visibility of this feature on this trial. We call these real values

‘‘brain feature coefficients.’’ Next, for each brain feature, and for each cell of the full voxel-by-time MEG activity matrix, with MI we

quantified the relationship < Brain Feature Coefficient; MEG Voxel Activity > . This produced for each observer, a 3D feature-by-

voxel-by-time MI matrix. We determined the statistical significance for each cell using a permutation approach and the method of

maximum statistic to address multiple comparisons [57]. Specifically, for each of 200 permutations, we randomly shuffled the brain

feature coefficients valuesacross trials and recalculated theMIof thesingle trial relationship<RandomizedBrainFeatureCoefficients;

MEGVoxel Activity > .We then computed themaximumof the resulting 3DMImatrix for eachpermutation andused the 95th percentile

of this maximum value across permutations as the statistical threshold (i.e., FWER p < 0.05, one-tailed). In the remaining analyses, we

used the thresholded 3D feature-by-voxel-by-time MI matrix of each observer (called ‘‘representation matrix’’ in the main text).

Diagnostic and Nondiagnostic Brain Features
For each observer, we determined the diagnostic versus nondiagnostic status of their brain features as follows. Using only the trials

associated with ‘‘the nuns’’ versus ‘‘don’t know’’ responses, we computed the single-trial MI relationship < Brain Feature Coefficient;

‘‘the nuns,’’ ‘‘don’t know’’>. We computed independently the single-trial MI relationship < Brain Feature Coefficient; ‘‘Voltaire,’’

‘‘don’t know’’>, using these trials. In both cases, a strong relationship (i.e., MI above 75th percentile of the distribution of MI across

all brain features) would classify this brain feature as diagnostic—i.e., of ‘‘the nuns’’ or of ‘‘Voltaire.’’ Finally, we computed the single-

trial MI relationship < Brain Feature Coefficient; ‘‘the nuns,’’ ‘‘Voltaire,’’ ‘‘don’t know’’>. A weak relationship (MI below 25th percentile

of the MI distribution) would classify this brain feature as nondiagnostic of perceptual decisions (see Figure S1-B for the perception-

specific brain features and nondiagnostic features of each observer).

K-means of Brain Features
Observers’ brains represented similar brain features in the task (see Figure S1B). This warranted their projection onto a common

feature basis for group-level visualization. To this aim, we applied k-means clustering by setting k, the number of clusters, to 25,

to align the number of means to the maximum number of NNMF brain features computed in any observer. We pooled the normalized

NNMFbrain features of all observers, resulting in a 1153 20480matrix (115NNMF components in total for 5 observers and 64 pixels *

64 pixels * 5 SFs weights). We applied k-means (cosine similarity, 1000 repetitions) to this matrix. It is important to emphasize that we

performed all analyses on the specific brain features of each observer. We only indexed these individual features onto the common

k-mean feature basis and corresponding color codes to report group results (e.g., in Figure 1 and 4).

Divergence of Brain Features
For each observer, we used their full 3D un-thresholded 3D representation matrix. For each of the 5,869 cortical voxels, we extracted

the max MI across all diagnostic (versus nondiagnostic) features in 10 ms time windows between 0 and 400 ms post stimulus. This

resulted in one 2D matrix (5869 voxels by 40 time windows) of diagnostic feature representation and another of nondiagnostric

feature representation. In each time window, we computed the similarity between diagnostic and nondiagnostic representations

with the de-meaned dot-product between the two 5,869 dimensional vectors. To establish statistical significance, we bootstrapped

a null distribution as follows. On each iteration (N = 1000), we randomly shuffled the values across the dimensions of the two 5,869

dimensional vectors and calculated their de-meaned dot product. We used the percentile 0.625 and 99.9375 of the chance distribu-

tion as the upper and lower boundaries for the chance-level similarity (Bonferroni corrected, p < 0.05, 2-tailed). We performed the

same analysis at the group level, by pooling all participant’s data together to form a larger 2D matrix (29345 voxels by 40 time win-

dows). We found diagnostic and nondiagnostic brain features diverge around 170 ms post stimulus (see Figure S2-B).

On this basis, we defined an earlier ([50-170 ms] post stimulus) and a later time window ([170-400 ms] post stimulus) and summa-

rized the representation of brain features in each. A voxel would represent diagnostic (versus nondiagnostic) brain features if it has

significant MI (FWER p < 0.05, one-tailed) for at least one diagnostic (versus nondiagnostic) brain feature in this time window. For

each voxel, we then counted the number of observers satisfying these criteria and reported the distributions for diagnostic (white

schematic brains in Figure 2) and nondiagnostic (magenta schematic brains in Figure 2) brain features in each time window.

Dynamic Feature Representation in Occipital Cortex
For each observer, we proceeded in two steps:

Step 1: Dynamics of brain feature representation between 0 and 400ms post stimulus

For each observer, we used their representationmatrix and selected the voxels with significantMI for at least one nondiagnostic brain

feature in the 0 to 400ms time window (henceforth, ‘‘nondiagnostic voxels’’). For each nondiagnostic voxel, at each time point, we
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extracted the maximum MI over all nondiagnostic brain features to plot the maximum representation curve of this voxel (Figure 3A

shows the representation curves of all nondiagnostic voxels). The curve of each voxel had an onset (the first time point at which

maximumMI was significant) and an offset (the last time point of significance) that we computed; representation duration on a voxel

was therefore computed as offset - onset. Finally, we computed the Euclidean distance (in the common MNI space) of each voxel in

relation to the voxel with the earliest onset. We repeated these computations separately for diagnostic brain features.

For nondiagnostic voxels (versus diagnostic voxels), we fitted a robust linear regression line between their onset times and

Euclidean distances from the voxel of initial onset. We computed another robust linear regression between their representation dura-

tion and Euclidean distances (see Figure S3 for individual results). Table S2 details the statistics of the robust linear regressions. We

excluded outlier voxels for these analyses—i.e., voxels with > 3 standard deviations from the median onset of all voxels, computed

separately using nondiagnostic and diagnostic voxel onset distributions, see Table S3 for percentage of voxels exclusion.

Step 2: Spatial-temporal junction of divergence between nondiagnostic and diagnostic feature representations

We selected the voxels representing nondiagnostic features that were furthest in the brain–i.e., with Euclidean distances > 75th

percentile of distances of all nondiagnostic voxels. These voxels represented the spatial marker of the junction. We defined the latest

representation offsets of these voxels as the temporal marker of the junction (see Figure 3A the vertical dash line on the represen-

tation curves). To identify the brain regions (based on the ‘‘Talairach Demon Atlas’’ warped into MNI space) involved in the junction,

we grouped nondiagnostic voxels of each observer according to their location in the cuneus (CU), lingual gyrus (LG), inferior occipital

cortex (IOG), middle occipital gyrus (MOG), superior occipital gyrus (SOG), fusiform gyrus voxels locates quite close to LG (LG/FG,

see Figure S3-D for location), fusiform gyrus (FG), inferior temporal gyrus (ITG), middle temporal gyrus (MTG), superior temporal gyrus

(STG), inferior parietal lobe (IPL), and superior parietal lobe (SPL). In each anatomical region, we then checked the Euclidean distance

(see step 1) of all nondiagnostic and diagnostic voxels (see Figure 3C and Figure S3-C for individual results).

Feature Representation in the Brain for Behavior
For each observer, we proceeded in three steps:

Step 1: Redundancy computation: < Brain Feature Coefficients; MEG Voxel Activity; Perceptual Decision >

For each observer, we computed information theoretic redundancy, from co-information [23], the triple relationship between < Brain

Feature Coefficients; MEG Voxel Activity; ‘‘the nuns,‘‘ ‘‘Voltaire,’’ ‘‘don’t know’’>:

RED=MIðFeature;Perceptual DecisionÞ+MIðFeature;MEG Voxel ActivityÞ
�MIðFeature;MEG Voxel Activity; Perceptual DecisionÞ (1)

(1) is equivalent to the set theoretic intersection of three variable entropies, or alternatively the intersection of any two mutual in-

formation [23]. We applied Equation (1) for each combination of diagnostic brain feature, brain voxel, and every 2 ms between 0 and

400 ms post stimulus. This computation produced a 3D redundancy matrix (feature3 voxel3 time point). We established statistical

significance for each cell by recomputing redundancy with shuffled decision responses across trials (repeated 200 times), and used

the 95th percentile of 200 maximum values (each taken across of the entire 3D redundancy matrix per permutation) as statistical

threshold (i.e., FWER, p < 0.05, one-tailed)

Step 2: Representational complexity computation

We constructed 5 evenly distributed time windows per observer between 120 and 220 ms. This specific time interval encompasses

the M/N170 time course. In each time window, for each of the 12,773 brain voxels, we calculated the median number of different

redundant features it significantly represented across five observers (see gray level scatters in Figure S4-A).

Step 3: Representation of behavior in the brain

For each voxel, we also computed MI < MEG Voxel activity, ‘‘the nuns,’’ ‘‘Voltaire,’’ ‘‘don’t know’’ > , resulting in a 2D voxel by time

matrix. To establish statistical significance, we extracted the maximum MI across the matrix recomputed, shuffling decision re-

sponses across trials in each cell (repeated 200 times). We used the 95th percentile of this maximum distribution as statistical

threshold (i.e., FWER, p < 0.05, one-tailed). In each time window (see Step 2), for each brain voxel we calculated the median MI value

(see orange scatters in Figure S4-B).

Step 4: Decision-specific feature representations

We uncovered the perception-specific redundant features of each observer by computing information theoretic redundancy be-

tween < Brain Feature Coefficients; MEG Voxel Activity; ‘‘the nuns,‘‘ ‘‘don’t know’’>, and between < Brain Feature Coefficients;

MEG Voxel Activity; ‘‘Voltaire,‘‘ ‘‘don’t know’’>, separately. We used the permutation test described in Step 1 above to threshold

redundancy values and obtain the features represented on rFG voxels for each perceptual decision behavior (see color-coded scat-

ters in Figure S4-C for each observer).

DATA AND SOFTWARE AVAILABILITY

The raw data and analyzed data reported in this study are deposited in Mendeley Data: https://doi.org/10.17632/pjnkwwzn9x.1. The

custom code (experiment, analyses, visualization) are available by request to the Lead Contact.
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Figure S1. Diagnostic Features and Brain Features of each Observer. Related to Figure 

1. 

A. Diagnostic Features. The cyan framed images in column A report the significant (FWER p 

< 0.01, one-tailed) MI value for each pixel in the first three spatial frequency (SF) bands, 

revealing across observers the features most diagnostic for responding “the nuns” (the two 

small faces in SF band 1) and “Voltaire” (the broad face in SF band 3). B. Brain Features. 

White frames in column B (vs. magenta frames in column C) highlight the diagnostic (vs. 

nondiagnostic) features that this observer’s MEG voxels represented, separately presented for 

deciding “the nuns” and “Voltaire.” C. Nondiagnostic features Influence Brain Measures but 

not Behavior. We computed whether the presence of background nondiagnostic features 

(magenta frames in column C) modulated the usage of the foreground diagnostic features 

(column A) for perceptual decisions. We computed the Modulation Index = MI <Information 

Samples, Perceptual Decision> - CMI <Information Samples, Perceptual Decision | 

Nondiagnostic Feature>. The first term (Mutual Information, MI), computes the relationship 

between all information samples and perceptual decisions—i.e. the diagnostic features.  The 

second term (CMI) recomputes this relationship, eliminating (i.e. conditioning out) the role of 

background nondiagnostic features (each magenta frame in column C). The difference is a 



modulation index image (cyan framed per spatial frequency in column C), in which values 

indicates whether nondiagnostic features change the usage of diagnostic features—as can be 

seen in the cyan frames of column C, they did not (see Figure S2A for the statistical 

demonstration). D and E. Maximum Diagnostic and Nondiagnostic Representation Matrices. 

Each cell of the Diagnostic (column D) and Nondiagnostic (column E) representation 

matrices report the color-coded significant brain feature with maximum representation in 

MEG effect size (i.e. MI) across all brain features, at this voxel and time point.  For 

reference, alternating white/black bars flanking each matrix indicate the anatomical brain 

region of the corresponding voxels. To illustrate, the representation matrices of Observer 1 

reveal that the diagnostic brain feature “nose of Voltaire” in yellow is primarily represented 

in specific EV, MOG and FG voxels with highest effect sizes across the full-time course.  In 

contrast, the brown nondiagnostic brain feature is primarily represented in occipital regions, 

and before ~170 ms. F. Early Representation of Brain Features. Color-coded brain regions 

show the early (i.e. initial 20 ms) topological representation of diagnostic and nondiagnostic 

brain features (FWER, p < 0.05, one-tailed). EV = early visual cortex (including lingual 

gyrus and cuneus), IOG = inferior occipital gyrus, MOG = middle occipital gyrus, SOG = 

superior occipital gyrus, FG = fusiform gyrus, ITG = inferior temporal gyrus, MTG = middle 

temporal gyrus, STG = superior temporal gyrus, IPL = inferior parietal lobe, SPL = superior 

parietal lobe. 

  



 

Figure S2. Divergence of Diagnostic Nondiagnostic Brain Features. Related to Figure 2 

and STAR METHOD, QUANTIFICATION AND STATISTICAL ANALYSIS, 

Divergence of Brain Features. 

A. Statistical Testing of the Modulation Index. In each observer (rows), each panel displays 

the green distribution of the number of pixels (Y axis) with modulation index values (X axis, 

MI - CMI) for a given nondiagnostic feature (magenta insert). The blue distribution shows 

chance-level modulations, obtained by first shuffling nondiagnostic feature coefficients 

across trials and then recalculating CMI in each of 200 permutations. A shade of blue 

illustrates the high overlap between the true data and permutated chance distributions. The 

left and right dashed lines indicate the lower vs. upper significance thresholds (p < .05, two-

tailed, corrected with the methods of maximum statistics). The small number of pixels 

significantly modulated by nondiagnostic features are shown in a frame adjacent to the 

nondiagnostic feature for their number, image location(s) and number.  B. Divergence of 



Diagnostic and Nondiagnostic Brain Features. Group Results plot shows the similarity 

between diagnostic and nondiagnostic brain feature representations over the time course of 

visual information processing, using the data of all observers. The shadowed region indicates 

the Bonferroni corrected chance-level similarity (p < 0.05, two-tailed). Observer 1 to 5 plots 

show the diagnostic vs. nondiagnostic brain feature representation similarity for each 

observer.  Together, the results show a consistent dynamic pattern of increasing similarity of 

diagnostic and nondiagnostic feature representations in the brain of each observer, up until 

170 ms post-stimulus, following which diagnostic and nondiagnostic feature representations 

become dissimilar (i.e. diverge).  



 



Figure S3. Dynamic Reduction of Nondiagnostic Brain Feature Representations in 

Occipito-Ventral Pathway of Each Observer. Related to Figure 3. 

A. Wavefront Property of Nondiagnostic Brain Feature Representations. The left scatter 

shows a linear relation between the representation onset times of voxels and their Euclidean 

distances to the voxel of initial representation onset.  The right scatter shows that duration of 

nondiagnostic feature representation linearly decreases with the increasing distance of the 

considered voxel from the voxel of initial representation onset.  B. Wavefront Property of 

Diagnostic Brain Feature Representation.  Same caption as in panel A for diagnostic brain 

features, with later onsets (pink to yellow colors) in ventral and dorsal regions. C. Junction of 

Reduction of Nondiagnostic Brain Features.  In the left panel, voxels color-coded by onset 

times are pooled by anatomical brain region (X-axis) and scattered according to their 

Euclidean distance to the initial onset voxel of nondiagnostic representation on the Y-axis. In 

the right panel, the same caption for diagnostic voxels. The horizontal dashed line indicates 

the brain regions of furthest representation of nondiagnostic features. LG/FG on the X-axis 

comprises voxels located near to LG, which are illustrated in panel D. In D, the dark purple 

scatters show lingual gyrus (LG) voxels; the light purple scatters show LG/FG voxels which 

are fusiform gyrus voxels located next to lingual gyrus voxels; the white scatters show the 

well-demarcated FG voxels that we included in our analysis of feature representations for 

behavior. LG = Lingual Gyrus, CUN = cuneus, IOG = inferior occipital gyrus, MOG = 

middle occipital gyrus, SOG = superior occipital gyrus, FG = fusiform gyrus, ITG = inferior 

temporal gyrus, MTG = middle temporal gyrus, STG = superior temporal gyrus, IPL = 

inferior parietal lobe, SPL = superior parietal lobe. 

 

  



 

 



Figure S4. Dynamic Construction of Representations for Behavior in rFG of each 

Observer. Related to Figure 4. 

A. Representational Complexity in rFG. Starting and ending times in brackets indicate the 

ranges of the time intervals we displayed for this observer. Here, we only show two critical 

time windows (1
st
 and 4

th
 in Figure 4). The grey level of the right Fusiform Gyrus (rFG) 

voxels corresponds to the number of redundant features that it represented within each time 

interval. B. Representation of Behavior in rFG. Yellow voxels denote the maximum MI (un-

thresholded) between MEG activity and decisions “the Nuns”, “Voltaire,” “don’t know” in 

each time interval. The yellow level represents the maximum MI value. C. Feature 

Representation for each Decision. Specific redundant features represented at each rFG voxel 

and time interval for each decision behavior (see the color-coded features for interpretation). 

The bottom box-plots show the peak latency of redundant feature representations (Y-axis) 

across rFG voxels at each Spatial Frequency (SF) band over time (X-axis). We used the 

representation matrices to compute the peak representation latency (i.e. peak MI) of each 

redundant feature on each rFG voxel. We computed the median peak latency of all redundant 

features per SF band and compared peak latencies across SF bands with a non-parametric 

one-way ANOVA (i.e. Kruskal-Walis test).  Comparison of median peak latencies revealed 

that higher SF features tend to be represented on rFG voxels before lower SF features, a 

result compatible with [S1, S2]. 

  



All "Nuns" "Voltaire" "Don't Know" 

Observer responses response response response 

1 3314 1189 1313 812 

2 3604 1666 1263 675 

3 4154 1634 1892 628 

4 3023 1603 738 682 

5 2885 1007 1346 532 

Table S1. Number of trials following pre-processing of MEG data. Relate to STAR 

METHODS, METHOD DETAILS, MEG Data Acquisition. 

Nondiagnostic voxels 

Onset Duration 

Observer model p value model p value 

1 Y=0.118X - 3.546 p < .001 Y = -0.063X + 4.906 p < .001 

2 Y=0.094X - 3.222 p < .001 Y = -0.057X + 3.673 p < .001 

3 Y=0.084X -0.457 p < .001 Y = -0.064X + 5.189 p < .001 

4 Y=0.201X - 10.535 p < .001 Y = -0.083X + 3.746 p < .001 

5 Y=0.154X - 7.912 p < .001 Y = -0.061X + 2.869 p < .001 

Diagnostic voxels 

Onset Duration 

Observer model p value model p value 

1 Y=0.024X + 3.214 p < .001 Y = -0.025X + 7.013 p < .001 

2 Y=0.030X + 1.343 p < .001 Y = -0.021X + 5.852 p < .001 

3 Y=0.055X + 2.462 p < .001 Y = -0.015X + 7.408 p < .001 

4 Y=0.174X - 8.126 p < .001 Y = -0.011X + 5.004 p = .094 

5 Y=0.000X + 4.061 p = .919 Y = -0.014X + 4.693 p < .001 

Table S2. Linear models between the Euclidean distance (Y) and Onset/Duration 

(X), and p values for the slope, per observer. Relate to Figure 3 and STAR 

METHODS, QUANTIFICATION AND STATISTICAL ANALYSIS, Dynamic 

Feature Representation in Occipital Cortex. 

Observer Diagnostic Nondiagnostic 

1 1.81% 0.35% 

2 0 2.45% 

3 2.21% 0.19% 

4 3.52% 0 

5 0.58% 0 

Table S3. Percentage of voxels excluded from onset analysis. Relate to STAR 

METHODS, QUANTIFICATION AND STATISTICAL ANALYSIS, Dynamic 

Feature Representation in Occipital Cortex. 
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