Supplementary information

Molecular structure and function of myelin protein P0 in membrane stacking

Arne Raasakka^{1,2}, Salla Ruskamo², Julia Kowal^{3,4}, Huijong Han², Anne Baumann^{1,5}, Matti Myllykoski², Anna Fasano⁶, Rocco Rossano⁷, Paolo Riccio⁷, Jochen Bürck⁸, Anne S. Ulrich^{8,9} Henning Stahlberg³ & Petri Kursula^{1,2,†}

¹Department of Biomedicine, University of Bergen, Bergen, Norway

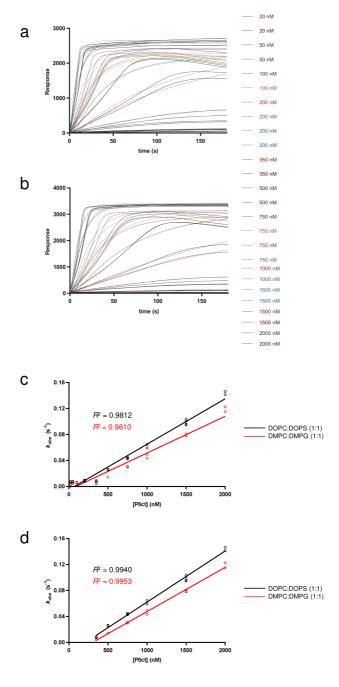
²Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland

³Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland

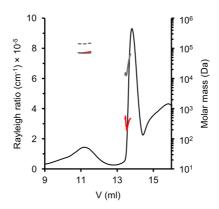
⁴Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Switzerland ⁵Division of Psychiatry, Haukeland University Hospital, Bergen, Norway

⁶Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy

⁷Department of Sciences, University of Basilicata, Potenza, Italy


⁸Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany

⁹Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany


[†]Corresponding author. E-mail: petri.kursula@uib.no

Supplementary Fig. S1. The purity, monodispersity, and folding of P0ct. (a) SEC-MALS profile of P0ct displays a mostly monodisperse preparation, with a single major peak corresponding to P0ct when eluting from a Superdex 75 10/300GL column. The calculated mass (7.5 kDa) matches that of a P0ct monomer. SDS-PAGE analysis of the purity of P0ct fractionated with a Superdex 75 16/60 HiLoad SEC column is shown as inset. (b) P0ct gains significant secondary structure content in TFE, DPC and SDS, but not in LDAO or OG, as shown using CD spectroscopy. (c) The Kratky plot displays the highly elongated nature of P0ct. (d) The SRCD spectra of P0ct in DMPC:DMPG (1:1) display different degrees of folding at different P/L ratios, 1:200 producing the strongest signal.

Supplementary Fig. S2. Kinetic analysis of SPR association data. The data (solid lines) of irreversible P0ct association with DOPC:DOPS (1:1) and DMPC:DMPG (1:1) (shown as panels a and b, respectively) vesicles fitted individually to an exponential one-phase binding model (dashed lines). (c) The derived $k_{\rm obs}$ values plotted against P0ct concentration, with the DOPC:DOPS (1:1) and DMPC:DMPG (1:1) data fitted to linear functions (see Supplementary Table 2 for the extracted $k_{\rm on}$ and $k_{\rm off}$ values). (d) Same data but all data points below the critical binding concentration have been omitted, resulting in a better linear fit.

Supplementary Fig. S3. SEC-MALS of P0 in LDAO. Analysis of full-length P0 monodispersity and oligomeric state using SEC-MALS in LDAO. The Rayleigh ratio is shown (black) together with the total mass (gray dash), protein mass (red) and detergent mass for each peak (gray solid).

Supplementary Table S1. SAXS parameters.

Data collection parameters			
Instrument	P12, PETRAIII, DESY		
Wavelength (nm)	0.124		
Angular range (nm ⁻¹)	0.027 - 4.801		
Exposure time (s)	0.045		
Concentration range (mg ml ⁻¹)	1.1 - 4.2		
Temperature (°C)	20		
Structural parameters			
I_0 (relative) [from p(r)]	1882		
$R_{\rm g}$ (nm) [from p(r)]	2.67		
I ₀ (relative) [from Guinier]	1892		
$R_{\rm g}$ (nm) [from Guinier]	2.46		
R_g (nm) [from EOM ensemble]	2.69		
D _{max} (nm) [from GNOM]	11.06		
D _{max} (nm) [from EOM ensemble]	8.03		
Molecular mass determination			
Molecular mass M_r (kDa) [from I_0 using $p(r)$]	8.4		
Molecular mass M_r (kDa) [from I_0 using Guinier]	8.4		
Theoretical M _r from sequence (kDa)	7.99		
Software	1.22		
Primary data reduction	PRIMUS		
Data processing	PRIMUS		
Ab initio analysis	GASBOR		
Conformational ensemble analysis	EOM		
Validation and averaging	PRIMUS		
Three-dimensional graphics representation	PvMOL		
EOM model parameters	TyMOL		
Conformer #1			
R_{σ} (nm)	2.488		
D_{\max} (nm)	7.904		
Mass fraction	0.182		
Conformer #2	0.102		
R_{σ} (nm)	2.867		
D_{\max} (nm)	8.264		
Mass fraction	0.182		
Conformer #3	U.102		
Conjormer #5 R _g (nm)	3.946		
$R_{\rm g}$ (IIII) $D_{\rm max}$ (nm)	12.73		
Mass fraction	0.182		
Conformer #4	0.182		
V	2.070		
R _g (nm)	2.068		
D _{max} (nm)	6.14		
Mass fraction	0.364		
Conformer #5	2054		
R _g (nm)	2.954		
D _{max} (nm)	9.862		
Mass fraction	0.090		
Total mass fraction of main conformers	1.000		

Supplementary Table S2. Kinetic parameters derived from P0ct association phase with vesicles.

Vesicle composition	Fitting set 1 ^a			Fitting set 2 ^a		
	$k_{\rm on} ({\rm nM}^{-1} {\rm s}^{-1})^{\rm b} \times 10^5$	$k_{\rm off} ({\rm s}^{-1})^{\rm c} \times 10^2$	R^2	$k_{\rm on} ({\rm nM}^{-1} {\rm s}^{-1})^{\rm b} \times 10^5$	$k_{\rm off} ({\rm s}^{\text{-1}})^{\rm c} \times 10^2$	R^2
DOPC:DOPS (1:1)	6.994 ± 0.1978	-0.4874 ± 0.1827	0.9812	7.873 ± 0.1629	-1.655 ± 0.1629	0.9940
DMPC:DMPG (1:1)	5.657 ± 0.2326	-0.5059 ± 0.2148	0.9610	6.804 ± 0.1252	-2.042 ± 0.1468	0.9953

^a Fitting set 1 contains all data points from the linear fit, whereas all data points below 350 nM were omitted from Fitting set 2.

^b Slope of the linear fit function to $k_{\text{obs(on)}}$ vs. [P0ct].

^c Y-axis intercept of the linear fit function to $k_{\rm obs(on)}$ vs. [P0ct]