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Supplementary Methods 

Genetics and imputation 

A total of 2 067 subjects had quality controlled genotype data. Genotypes were obtained on either the Illumina Human OmniExpress 

(n=381) or Affymetrix beadchip 6.0 (n=1 686) platform, and each group was pre-processed separately. Raw genotype data were 

cleaned and formatted using the Haplotype Reference Consortium (HRC) Imputation Preparation and Checking Tool (v4.2.6, 

http://www.well.ox.ac.uk/~wrayner/tools), then imputed using the Michigan Imputation Server (MIS)1 and Eagle22 phasing software 

against the HRC reference panel (v1.1).3 Following imputation, tri-allelic variants were removed and both groups of subjects were 

merged (subsequent genetic analyses co-varied for genotype platform). Output VCF format files from MIS were converted to PLINK 

dosage format using DosageConvertor (v1.0.3, http://genome.sph.umich.edu/wiki/DosageConvertor). 

For the IMAS PET imaging sample, genotyping was performed using the Illumina HumanOmni-Express BeadChip. Standard quality 

control procedures were conducted as described previously.4 The TSPO rs6971 genotype was imputed using IMPUTE (v2.2) and the 

1000 Genomes (phase 1) reference panel. A posterior probability of 0.90 was used as a quality threshold for imputed genotypes. 

APOE (rs429358, rs7412) genotyping was carried out separately using standard protocols. 

 

Selected reaction monitoring proteomics 

The panel of proteins was preselected from existing literature for their roles in neurodegenerative disease, microglial function, and 

inflammatory pathways. Samples were prepared for LC-SRM analysis using standard protocol. Briefly, on average ~20 mg of brain 

tissue from each subject was homogenized in denaturation buffer (8M urea, 50mM Tris-HCl pH 7.5, 10mM DTT, 1mM EDTA). 

Followed denaturation, 400μg protein aliquots were taken for further alkylation with iodoacetamide and digestion with trypsin. The 

digests were cleaned using solid phase extraction, followed readjustment of tryptic peptide digests concentration to 1μg/μL. 30μL 

aliquots were mixed with 30μL synthetic peptide mix. All liquid handling steps were performed in 96 well plate format using 

Epmotion 5075 TMX (Eppendorf) and Liquidator96 (Rainin).  

All LC-SRM experiments were performed on a nano ACQUITY UPLC coupled to TSQ Vantage MS instrument, with 2 µL of sample 

injection for each measurement. A 0.1% FA in water and 0.1% in 90% ACN were used as buffer A and B, respectively. Peptide 

separations were performed by an ACQUITY UPLC BEH 1.7 µm C18 column (75µm i.d. × 25cm) at a flow rate 350nL/min using 

gradient of 0.5% of buffer B in 0-14.5min, 0.5-15% B in 14.5-15.0min, 15-40% B in 15-30min and 45-90% B in 30-32min. The 

heated capillary temperature and spray voltage was set at 350 °C and 2.4 kV, respectively. Both the Q1 and Q3 were set as 0.7 

FWHM. The scan width of 0.002m/z and a dwell time of 10ms were used.  

All the SRM data were analyzed by Skyline software.5 All the data were manually inspected to ensure correct peak assignment and 

peak boundaries. The peak area ratios of endogenous light peptides and their heavy isotope-labeled internal standards (i.e., L/H peak 

area ratios) were then automatically calculated by the Skyline software and the best transition without matrix interference was used for 

accurate quantification. The peptide relative abundances were log2 transformed and centered at the median.  

 

Postmortem Neuropathology and microglial density quantification 

All brains were examined by a board-certified neuropathologist blinded to clinical data. Brains were removed in a standard fashion as 

previously described.6 After weighing, each brain was cut into 1cm coronal slabs using a Plexiglas jig. Slabs from one hemisphere, 

and slabs from the other hemisphere not designated for rapid freezing, were fixed for at least 3 days in 4% paraformaldehyde. We used 

defined landmarks to obtain at least two tissue blocks from each of the following regions: dorsolateral prefrontal cortex, middle and 

inferior temporal cortex, inferior parietal, hippocampus CA1/subiculum, entorhinal cortex proper, ventromedial caudate, and posterior 

putamen. Tissue blocks were processed, embedded in paraffin, cut into either 6 micron or 20μm sections, and mounted on glass slides. 

Neuropathologic diagnoses were made by a board-certified neuropathologist blinded to age and clinical data. Bielschowsky silver 

stain 6 micron sections were used to visualize neuritic plaques, diffuse plaques, and neurofibrillary tangles in the frontal, temporal, 

parietal, entorhinal, and hippocampal cortices, as previously described,7 for the pathologic diagnosis of AD. A neuropathologic 

diagnosis of “no AD,” “low likelihood AD,” “intermediate likelihood AD,” or “high likelihood AD” was given based on 

semiquantitative estimates of neuritic plaque density as recommended by CERAD and the neurofibrillary tangle stage by Braak and 

Braak as recommended by the National Institute on Aging (NIA) - Reagan criteria. For analyses, the neuropathologic diagnosis of AD 

was considered absent if NIA-Reagan diagnosis was no or low and present if intermediate or high likelihood. The density of neuritic 

plaques, diffuse plaques and neurofibrillary tangles was characterized using Bielschowsky silver stain for visualization and a graticule 

http://www.well.ox.ac.uk/~wrayner/tools
http://genome.sph.umich.edu/wiki/DosageConvertor
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to count total number of each in a 1-mm2 area (100 magnification) of highest density. Counts for each marker were completed for each 

of five regions (midfrontal cortex, middle temporal cortex, inferior parietal cortex, entorhinal cortex, and hippocampus 

CA1/subiculum) and then converted to standardized scores. Supplementary Table 9 describes the distributions of tau and amyloid 

neuropathologies in the pathologically confirmed AD and non-AD groups separately for both the entire available ROS/MAP cohort 

and the sample subset for which postmortem microglial density data were available. 

Thirteen additional pathologies were measured in our cohort: Lewy bodies, macroscopic infarcts (acute, sub-acute, and chronic 

measured separately), microscopic infarcts (acute, sub-acute, and chronic measured separately), atherosclerosis, arteriolosclerosis, 

cerebral amyloid angiopathy (CAA), hippocampal sclerosis, neuronal loss in the substantia nigra,8 and transactive response DNA-

binding protein 43 kDa (TDP-43) proteinopathy. CAA was graded on a five-level scale (0 to 4) in four neocortical regions (mid-

frontal, angular gyrus, inferior temporal gyrus, and calcarine cortex) and averaged to derive a CAA score, as previously described.9 

Chronic macroscopic and microscopic infarcts were each dichotomized as present or absent. Atherosclerosis was scored on a four-

level severity scale, and arteriolosclerosis was measured on a four-level scale by small vessel pathologies in anterior basal ganglia.10 

Nigral, limbic, and neocortical Lewy bodies were dichotomized as present or absent, as identified using immunohistochemistry. 

Hippocampal sclerosis was recorded as either present or absent as evaluated with H&E stain. Pathological diagnosis of AD was given 

for cases with high or intermediate likelihood of AD per the modified National Institute of Aging–Reagan Institute criteria.6 For a 

subset of participants (n = 826), transactive response DNA-binding protein 43 kDa (TDP-43) proteinopathy was measured and 

categorized into four steps of severity as previously described:11 no inclusions (stage 0), inclusions in amygdala only (stage I), 

inclusions in amygdala as well as entorhinal cortex and/or hippocampus CA1 (stage II), and inclusions in amygdala, neocortex, and 

entorhinal cortex and/or hippocampus CA1 (stage III). In addition, a semi-quantitative six-point scale for the severity of the TDP-43 

cytoplasmic inclusions was rated as previously described (n=812).12 

Immunohistochemistry for microglia was performed using an Automated Leica Bond immunostainer (Leica Microsystems Inc., 

Bannockborn IL) and anti-human HLA-DP, DQ, DR antibodies (clone CR3/43; DakoCytomation, Carpinteria CA; 1:100 dilution; 

catalog number MA1-25914) using standard Bond epitope retrieval and detection. An investigator blinded to the clinical and 

pathologic data, outlined the cortical or subcortical gray region of interest on each slide using a Microbrightfield Stereology System. 

The Stereo Investigator 8.0 software program was used to place a 1000 × 750μm sampling grid over the region and the program was 

engaged to sample 4.0% of the region with a 200 × 150μm counting frame at 400x magnification at interval grid intersection points. 

Using separate tags for stage I, II and III microglia, the operator marked the microglia at each intersection point. These counts were 

then upweighted by the stereology software to estimate total number of microglia (stage I, II, and III) in the defined area. Different 

stages of activation from least (stage I) to most (stage III) activated can be defined morphologically; when these cells become 

activated, their long fine processes contract and thicken and the cell body adopts a larger more rounded cellular conformation. Data 

from the two adjacent blocks of tissue (0.5 to 1.0 cm apart) were averaged to obtain composite average densities of microglia in each 

region.  

 

Longitudinal cognitive decline metric 

All subjects were administered 17 cognitive tests annually spanning five cognitive domains. The full list of tests is provided in 

Supplementary Table 10. Rates of cognitive decline for each domain were calculated per subject using general linear mixed models of 

cognitive scores over time, co-varying for age at baseline, years of education, and sex, as described.13 

 

[11C]-PBR28 PET image acquisition and analysis 

An anatomic 3D magnetization-prepared rapid-acquisition gradient-echo (MP-RAGE) MR imaging sequence was acquired on a 3T 

Tim Trio (Siemens). [11C]-PBR28 was synthesized as described previously.14 Dynamic PET scans (HR+; Siemens) were initiated with 

injection of approximately 555MBq of [11C]-PBR28 (details previously published).14 Data were acquired for 90 min, with static 

images generated from data between the 35-90 min interval. PET imaging data were motion-corrected and normalized to Montreal 

Neurological Institute (MNI) coordinates using previously described methods.15 Standardized uptake value (SUV) images were 

created by normalizing each voxel by the injected dose of [11C]-PBR28 per total body weight. Statistical models of the effect of 

rs2997325 genotype included TSPO rs6971 (technical covariate to control for altered TSPO binding characteristics14), APOE ε4 

status, age at study entry, and sex as co-variates. 

For these analyses, we used three regions of interest (ROIs) for each hemisphere separately, resulting in six brain regions. First, we 

performed linear regression analyses using the six ROI values separately and identified an association in the left entorhinal cortex 

(uncorrected p-value < 0.05). As six ROI values were strongly correlated and the sample size is moderate for genetic analysis of this 
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type (n=27), we carried out a multivariate analysis by performing genetic association analysis using six phenotypes simultaneously to 

minimize the number of test performed and increase the statistical power. We used the SCOPA (Software for Correlated Phenotype 

Analysis) program16 to perform an aggregation of genetic analyses for our multiple correlated phenotypes.  

 

PAM metric validation using logistic regression 

The ‘rms’ R package was used to perform logistic regression model performance and validation. The main challenge presented by 

these data was the zero-inflated, non-normal distribution of stage III microglial densities found across regions (Figure 1). This in turn 

resulted in a zero-inflation of the PAM measures, as stage III density is found in the numerator of the PAM equation. Therefore, the 

effect of a PAM term evaluated continuously within a logistic model of pathological Alzheimer’s disease (pathoAD) status may only 

be representing an underlying binary effect, whereby the difference in probability of having pathoAD is driven by individuals with 

none vs. some stage III microglia. To test this, we calculated four versions of each cortical PAM score (as the subcortical stage III 

microglia showed no association with pathoAD): 1) ‘continuous’: the full range of PAM as a numerical variable, 2) ‘med. split’: the 

continuous measure binarized by coding all values less than the median as 0 and all those equal or greater than the median as 1, 3) 

‘zero vs. else’: the continuous measure binarized by coding all values of 0 as 0, and anything larger than zero as 1, and 4) ‘no zeros’: 

the continuous measure but only taking a subset of subjects in the dataset by excluding all subjects with a value of 0. These 

transformations are represented graphically on the midfrontal PAM measure in Supplementary Figure 2a.  

For each of these transformations, we tested a series of models with different covariates and evaluated area under the receiver 

operating characteristics curve (AUC) as our metric of model performance. The results of all tested models are found in 

Supplementary Table 1. In addition to testing for improvements in model performance, we examined diagnostic plots of influence and 

leverage, as well as residual distributions, to confirm that regression assumptions were not violated. A bootstrapping method known as 

0.632+, which accounts for the probability of resampling, was used for further assessment of model validity and generalizability (1 

000 iterations). Bootstrapping allows for the calculation of model optimism (overfitting) and thus provides estimates of calibrated 

AUCs. 

Following this comprehensive validation procedure, we found that the continuous measure of PAM (transformation 1) outperformed 

the other three transformations both before and after bootstrapping, particularly for PAM measured in the inferior temporal cortex 

(Supplementary Figure 2b). The ‘med. split’ transformation performed similarly to the ‘continuous’ measure for PAM in the 

midfrontal cortex, but still with less accuracy. Also, while the inclusion of the ‘zero vs. else’ PAM term did improve model accuracy 

over the APOE + covariates only model, these models performed substantially worse than the ‘med. split’ and ‘continuous’ measures 

in both inferior temporal and midfrontal cortex, suggesting that the effect of PAM is driven both by the presence vs. absence of stage 

III microglia and the continuous spectrum of relative activation in those with non-zero stage III counts. Note that AUC values differ 

between the ‘no zeros’ models and the others even where the PAM term is not included; this is due to the difference in sample size in 

this analysis where subjects with PAM=0 were removed. Also note minor variation in the bootstrapped model AUCs where no PAM 

term is present; this is due to the (pseudo)random nature of the bootstrap procedure and is expected. 

 

Hierarchical clustering of microglial density and PAM phenotypes 

Pearson correlations were calculated between each pair of microglial phenotypes. Statistical significance was determined using a false 

discovery rate threshold of q=0.05. To order phenotypes within the correlation matrix, hierarchical clustering was then performed 

using the corrMatOrder() function in the R ‘corrplot’ package. To objectively determine the optimal number of clusters to impose on 

the data, the ‘NbClust’ package was used to simultaneously evaluate 25 metrics of best fit for cluster number.17 Through majority vote 

across metrics, three clusters provided an optimal solution (Supplementary Figure 1). 

 

Regression of PAM against pathological AD diagnosis and neuropathologies 

Regression modeling was performed using the ‘rms’ and ‘MASS’ packages in R (v3.3.3). Each PAM measure was first tested for 

effects on pathological diagnosis of AD using logistic regression in a full model, co-varying for age at death, sex, postmortem interval 

(PMI), genotype batch, top three EIGENSTRAT principal components (PCs) (to control for fine population stratification), and APOE 

ε4 status.  For iterative re-weighted least squares regression, the Huber psi function18 was used for coefficient estimation. The .632+ 

bootstrap method was chosen for model validation as it takes into account the probability of resampling observations and thus 

outperforms traditional cross-validation and bootstrapping algorithms.19 
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Causal mediation modeling 

We assumed a priori the canonical cascade of AD etiopathology where the influence of beta-amyloid on cognitive decline lies 

upstream of tau hyperphosphorylation (measured as paired helical filament (PHF) tau); this model has been shown to be statistically 

valid in the ROS/MAP cohort using mediation modeling.20 Based on this assumption, we tested only models where amyloid effects 

are upstream of tau, but alternated the role of PAM between effector and mediator to ascertain its likely position within the 

pathological cascade. To estimate confidence intervals for average indirect, direct, and total effects, 1 000 Monte Carlo draws were 

used for nonparametric bootstrapping.  

 

Genome-wide association analysis 

Only high quality variants (imputed info score > 0.8) were included in analyses. All models co-varied for age at death, postmortem 

interval, sex, genotype batch, and the first three EIGENSTRAT21 principal components. Significance thresholds of p<2.5x10-8 and 

p<1.0x10-5 were deemed genome-wide significant (corrected for two GWAS) and suggestive, respectfully. To contrast results from 

our GWAS, overlap was evaluated using the ‘Q-value’ Bioconductor package (https://github.com/StoreyLab/qvalue),22 where true 

positive rate is estimated and overlapping proportions of SNPs between GWAS are tested.  

For post-processing of each set of GWAS results, we used the recently released Functional Mapping and Annotation of Genome-Wide 

Association Studies (FUMAGWAS; http://fuma.ctglab.nl/) platform.23 This platform performs a series of state-of-the art SNP- and 

gene-level functional mapping steps to distill and explore the biological relevance of GWAS findings based on the most recent 

bioinformatics database updates. As of Feb 21, 2018 (after which our results were processed) these databases include the latest eQTL 

data releases from the Genotype-Tissue Expression project (GTEx version 7; https://www.gtexportal.org/home/),24 the Multiple Tissue 

Human Expression Resource (MuTHER; http://www.muther.ac.uk/Data.html), the Brain eQTL Almanac from the UK Brain 

Expression Consortium (BRAINEAC; http://www.braineac.org/),25 the CommonMind Consortium (https://www.synapse.org/cmc),26 

and the ROS/MAP xQTL server (http://mostafavilab.stat.ubc.ca/xQTLServe/).27 SNP2GENE mapping was performed using the 

following parameters: lead SNPs defined at p<1x10-5, clumping minimum r2 for LD in risk loci of 0.6 with accompanying association 

p<0.05, inclusion of all 1000 Genomes Phase 328 reference SNPs in LD calculations, 250kb window for merging risk loci, and 

maximum distance for physical gene mapping of 10kb. Gene mapping using eQTL data incorporated all tissue type data from all 

aforementioned databases. All other parameters were chosen as default. Additionally, independent SNP signals within each identified 

risk locus were assessed for Combined Annotation Dependent Depletion (CADD v1.3) score,29 RegulomeDB (v1.1; 

http://www.regulomedb.org/) score,30 and occurrence in the Catalog of published GWAS (https://www.ebi.ac.uk/gwas/).31 Genes 

mapped to risk loci based on combined criteria were carried forward for GENE2FUNC analysis, also implemented using the 

FUMAGWAS platform. 

Tissue expression specificity for each mapped gene was evaluated using GTEx v7 across 53 tissue types and displayed as average 

expression per label (log2 transformed). Tissue-specific enrichment of the set of mapped genes for each GWAS was evaluated using 

hypergeometric tests based on pre-computed differentially expressed gene (DEG) t-tests, where Bonferroni p-values of p<0.05 or 

absolute log fold change ≥ 0.58 constituted significant differential expression. Gene set enrichment analysis was performed using 

Molecular Signatures Database32 (MSigDB v5.2) collections, WikiPathways33 (curated version 20161010), and the GWAS catalog 

(reported genes, version e91; 20180206) (number of unique background genes=34 748). Finally, the DrugBank database34 (version 

5.0.11; https://www.drugbank.ca/) was used to identify drugs targeting mapped genes for potential therapeutic translation.  

 

Mendelian randomization using summary statistics 

For each cortical PAM GWAS, summary statistics were used to generate a set of scores (one score per subject, per GWAS), which 

comprise linear combinations of PAM-associated alleles weighted by their effect coefficients. The PRSice pipeline performs SNP 

clumping based on the original ROS/MAP imputed genetic data to eliminate score bias due to linkage disequilibrium. Gene variants 

and weights can then be applied to external GWAS summary statistic datasets to calculate estimated effect coefficients for the group 

of PAM-associated variants on each external GWAS trait for a range of 10 000 p-value thresholds (lower limit p = 0, upper limit p = 

0.5, increment = 5.0x10-5). This method was repeated in the reverse direction (i.e. calculating scores from the published GWAS and 

estimating effect coefficients for the score on each PAM trait) to assess causal relationships of our selected traits on microglial 

activation in the aging brain. 

https://github.com/StoreyLab/qvalue
http://www.muther.ac.uk/Data.html
https://www.drugbank.ca/
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Our results pinpoint educational attainment as an important phenotype related to the genetic architecture of microglial activation. The 

published study from which educational attainment GWAS statistics were extracted is Okbay et al., 2016.35 The phenotype was 

calculated based on a standard in the 1997 International Standard Classification of Education (ISCED) of the United Nations 

Educational, Scientific and Cultural Organization. Due to the diversity of study settings from which meta-analyzed samples were 

collected, it was necessary for authors to map each major educational qualification that it is possible to attain in a specific country into 

one of seven harmonized ISCED categories. Their main outcome variable was then imputed as a years-of-education equivalent for 

each ISCED category. 
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Supplementary Figures 

 

 

Supplementary Figure 1. Spearman correlations of all microglial phenotypes across four brain regions. Statistical significance was determined 

using a false discovery rate (FDR) threshold of q=0.05 (the X symbols mark correlations that were not statistically significant according to two-sided 

FDR-corrected p-value). Phenotypes were ordered by hierarchical clustering.  IT = inferior temporal cortex; MF = midfrontal cortex; PPUT = 

posterior putamen; VM = verntal medial caudate.  
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Supplementary Figure 2. Results of model validation for PAM phenotype. A) distribution of PAM is shown for midfrontal cortex (MF). B) model performance (indicated by area under the curve 

(AUC) of receiver operating characteristic curves (AUC)) is shown for the original dataset as well as for an average of AUCs over 1 000 bootstrapped samples using the .632+ method. The model 

term indicated as “APOE” is a variable of APOE ε4 genotype status (dichotomous, as positive or negative). IT = inferior temporal cortex. The base model includes co-variates sex, age at death, and 

postmortem interval.



9 
 

 

Supplementary Figure 3. Robust regression testing associations of PAM with regional neuropathologies. The y-axis represents –log10(p-values) for the PAM measure term in regression models, 

weighted by the sign of the effect coefficent (1 or -1). P-values are two-sided. The list includes the original 18 types of tested neuropathologies, but broekn down into their original component 

observations rather than the brain-wide aggregates presented in Figure 3. Only amyloid and tau-related pathoogies were significantly associated with any PAM measure. For a full list of variable 

names and summaries, see https://www.radc.rush.edu/docs/var/variables.htm. 

https://www.radc.rush.edu/docs/var/variables.htm
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Supplementary Figure 4. Causal mediation analysis for direct and indirect effects of PAM. A) illustration of our assumed a priori model of the canonical AD pathological 

cascade, where beta-amyloid causes tau hyperphosphorylation, which causes downstream cognitive decline. B) Results from eight mediation models, where each black line 

represents a direct or mediated effect, and the red X denotes a non-significant effect (two-sided p>0.05). C) summary figure showing the proposed sequence of events. 

Supplementary Table 2 shows full results for each model tested (n=225 for midfrontal cortex, n=205 for inferior temporal cortex; mediation effects were the same for MF and IT). 

Beta amyloid figure adapted from Darvesh, Hopkins & Geula (2003) https://www.nature.com/articles/nrn1035#rightslink. Neurofibrillary tangles figure adapted from Alzheimer 

(1911) Ueber eigenartige Krankheitsfaelle des spaeteren Alters (https://doi.org/10.1177/0957154X9100200506).

https://www.nature.com/articles/nrn1035#rightslink
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Supplementary Figure 5. PAM associations with proteome and transcriptome. A) Effects of PAM measures on protein levels in postmortem 

dorsolateral prefrontal cortex (DLPFC), assessed using robust regression (n=164-187). B) Effects of cortical PAM measures (inferior temporal cortex 

(IT) on top, midfrontal cortex (MF) on bottom) on the expression levels of 47 gene modules, derived from ~13 000 expressed genes in the DLPFC 

(n=100-102). The left side plots are sorted from left to right by decreasing effect of MF PAM on gene module expression. The right side plots are 

sorted from left to right by decreasing effect of IT PAM on gene module expression (color spectrum corresponds to T statistic). Both y-axes represent 

–log10(p-values) for the PAM measure term in robust regression models, weighted by the sign of the effect coefficient (1 or -1). P-values are two-

sided. 
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Supplementary Figure 6. Tissue enrichment analyses in 53 tissue types (GTEx v7) for gene sets mapped from cortical PAM GWAS. Heat maps showing average expression of each gene 

mapped to significant and suggestive loci in the A) inferior temporal cortex (IT) and C) midfrontal cortex (MF) PAM GWAS (y-axis) in each tissue type (x-axis). Color scale indicates expression 

level in log2(TPM) where red = higher expression and blue = lower expression. Corresponding differential gene expression analyses for each tissue type according to mapped gene sets from the B) IT 

and D) MF GWAS. The top, middle, and bottom plots in panels B and D correspond to up-regulated (one-sided), down-regulated (one-sided), and differentially-regulated (two-sided) analyses, 

respectively. The y-axes are –log10(p-values) and the bar colors represent statistical significance corrected for multiple testing (red is significant and blue is not). Tissue types (x-axis) are ordered from 

left to right by decreasing significance in differential expression (two-sided) analyses (bottom plots of panels B and D).  
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