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S1. GOX-HRP CASCADE

The GOx-HRP cascade consists of glucose oxidase (GOx) and horseredish peroxidase

(HRP). In our calculations we have taken the parameters consistent with [1]; the details of

the calculations and the parameters are listed below.

A. Glucose oxidase

We modeled GOx as a spherical particle of radius R1 = 4.3nm; the active site surface

area was A1 = 1.0135nm2 (the surface area was calculated using computer program Maestro

11.6 [2]), which amounts to angle α = 7.58◦ in our model (see Fig. 1a and cf. Fig. S1).

The activity of GOx (i.e. the rate of production of the hydrogen peroxide) depends on the

concentration of Glucose (Glu) as follows

vH2O2 =
[GOx][Glu]kcat
KM + [Glu]

(S1)

where kcat = 250s−1 and KM = 15mM.

In our model, the rate of production of H2O2 was (see equation (5a) in the main text)

vH2O2 =
k1A1

V
(S2)

where V = 1/[GOx] is the volume (of a computational box), and k1 the production rate per

surface area. Thus

k1 = 1.67nM · nm
250s−1 · [Glu]

15mM + [Glu]
, (S3)

where the factor 1.67 comes from units conversion. For 1mM Glucose we obtained k1 ≈

26.1nM nm/ns. We used this value in all calculations.
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B. Horseradish peroxidase

Similarly to GOx, we modeled HRP as a spherical particle of radius R2 = 3.6nm; the

active site surface area was A2 = 0.3523nm2 (the surface area was calculated using computer

program Maestro 11.6 [2]), which amounts to angle α = 5.33◦. The activity is kcat/KM =

13.08× 10−3nM−1s−1, where KM = 2.5µM and kcat = 32.7s−1.

In order to obtain k2 for our model (see equation (5b) in the main text), we needed to

perform separate numerical calculations. However, since the reaction is activity limited (the

diffusion coefficient of hydrogen peroxide is D = 1.8nm2/s), k2 could be well approximated

by

k2 ≈
kcat/KM

0.6A2

, (S4)

where 0.6 comes from unit conversion. We obtained k2 ≈ 0.062nm/ns, which we used in all

calculations.

C. Catalase

Catalase (CAT) is an enzyme competing with HRP for hydrogen peroxide. In our cal-

culations the parameters were kcat = 6.1 × 105s−1 and KM = 96mM so that kcat/KM ≈

6.35 × 10−3nM−1s−1. We assumed small hydrogen peroxide concentrations ([H2O2] < KM)

so its rate of consumption by catalase [CAT][H2O2]kcat/KM and kdeg = [CAT]kcat/KM .
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S2. TK-TAL CASCADE

Transketolase (TK) and transaldolase (TAL) are part of non-oxidative phase of the

pentose phosphate pathway. TK has two substrates, xylulose 5-phosphate and ribose 5-

phosphate, and likewise two products, glyceraldehyde 3-phosphate (g3p) and sedoheptu-

lose 7-phosphate, which are transformed by TAL to erythrose 4-phosphate and fructose

6-phosphate. We considered g3p as an intermediate that is competitively consumed by

triose-phosphate isomerase (TPI).

We assumed that the enzymes are close to each other (1 nm surface-to-surface distance)

but rotate freely. Thus, unlike for the GOx-HRP cascade, we modeled TK-TAL as spherical

enzymes with the average activity homogeneously distributed over the enzyme surface.

A. TK

We modeled TK as a spherical enzyme of radius R1 = 4.43nm and considered a constant

production rate of g3p vg3p = 15 nM/s, which amounts to k1 = 0.1 nM nm/ns within our

model.

B. TAL

Similarly to TK, we modeled TAL as a spherical particle of radius R2 = 5.51nm and

took kcat/KM = 6.6 × 103 mM−1s−1 [3]. Since the reaction is activity limited, we used

equation (S4) which gave k2 = 0.016nm/ns.

C. TPI

We have taken TPI as a competing enzyme. It catalyzes (reversibly) g3p to dihydrox-

yacetone phosphate. We neglected the reverse reaction for simplicity, and took KTPI =

kcat/KM = 1269000000 mM−1 s−1 [4]. Since intrinsic association/disassociation constants

were not know to us, in order to take into account crowding, we assumed that TPI is

catalytically perfect and scaled KTPI by the ratio of the diffusion constants.
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S3. PGI-PFK CASCADE

Phosphoglucose isomerase (PGI) and phosphofructokinase-1 (PFK1) are part of the

Glycoltic pathway. The substrate for PGI is glucose 6-phosphate (g6p), which is trans-

formed into fructose 6-phosphate (f6p); the f6p is then catalyzed by PFK1 into fructose

1,6-bisphosphate (f1,6p). We assumed that the enzymes are close to each other and rotate

freely. We modeled PGI and PFK as spherical enzymes with the average activity homoge-

neously distributed over the enzyme surface.

A. PGI

We modeled PGI as a spherical enzyme of radius R1 = 5.64nm with the parameters

kcat = 103s−1 and KM = 0.31mM. Since PGI catalyzes both forward and backward reactions,

we took 70% of the velocity of the forward reaction to account for the backward reaction

[5]. Then applying the same reasoning as for GOx, we obtained for k1 (see equation (5a))

k1 =
0.7kcat
A1

[g6p]

KM + [g6p]
=

2.92nM · (nm/ns) · [g6p]

0.31mM + [g6p]
, (S5)

where A1 is the surface area of PGI. For a typical intracellular concentration [g6p] = 40mM

we get k1 = 3.83nM nm/ns.

B. PFK1

Similarly to PGI, we modeled PFK1 as a spherical particle of radius R2 = 3.24nm and

took kcat = 88s−1 and KM = 0.011mM. Since the reaction is activity limited, we used

equation (S4) which gives k2 = 10−4nm/ns.

C. PFK2

We have taken PFK2 as a ‘competing enzyme’. It takes fructose-6-phosphate (PGI-

PFK1 intermediate) to produce fructose-2,6-phosphate. The parameters were kcat = 53s−1

and KM = 0.1mN, which gave kdeg = [PFK2]kcat/KM = 0.53× 10−3[PFK2] in crowded and

dilute systems.
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FIG. S1. Model of enzyme. Sa (black shading) denotes the active size and α is half opening

angle of the active site. Sn denotes the rest of the enzyme surface.

S4. APPROXIMATE EQUATIONS FOR THE EFFECT OF CHANNELING

Herein, we derive approximate equations (1) and (2), which allow one to estimate the

effect of enzyme proximity on reaction velocity. To this end, we considered only the first

enzyme of a cascade, which produces intermediates, and we calculated the concentration

of intermediates, C, at position r2 of the active site of the second enzyme. The reaction

velocity is then

vch = kE2 [E2]C(r2), (S6)

where kE2 is the reaction rate of the second enzyme and [E2] is its concentration.

The concentration of intermediates satisfies the stationary diffusion equation

∇2C = 0, (S7)

with the following boundary conditions on the enzyme surface

n · ∇C
∣∣∣∣
Sn

= 0, Dn · ∇C
∣∣∣∣
Sa

= kg

∣∣∣∣
Sa

, (S8)

where D is the mutual diffusion coefficient of intermediates and the enzyme, k is the rate

constant (see equation (5a)), g is a function to be specified below, n is a unit vector, Sa is
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the active site and Sn the remaining enzyme surface (Fig. S1). To solve this problem we

direct the z-axis through the center of the active site and use spherical coordinate system;

we have

1

r

∂2

∂r2
rC +

1

r2
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
C = 0, (S9)

and

D
∂C

∂r

∣∣∣∣
r=a

= kg

∣∣∣∣
r=a

H(α− θ), (S10)

where r is the radial distance and θ the polar angle, a is the enzyme radius, α is the half the

opening angle of the active site and H(α− θ) is the Heaviside step function, which is unity

for θ < α and it is zero otherwise. Finally, we assumed a constant (bulk) concentration far

from the enzyme, i.e.,

C

∣∣∣∣
r=b

= Cbulk. (S11)

After separation of variables we obtained

1

sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ λΘ = 0, (S12)

r2
∂2R

∂r2
− λR = 0, (S13)

where C = fΘ and R = rf . Here f and Θ depend on the radial distance and polar angle,

respectively. The solution of the first equation is a Legendre Polynomials Pn(cos θ) with

λn = n(n+ 1), where n = 0, 1, .... The solution of the second equation takes the form

Rn = Anr
n+1 +Bnr

−n. (S14)

Then the general solution of equation (S9) is

C =
∞∑
n=0

(
Anr

n +Bnr
−(n+1)

)
Pn(cos θ). (S15)

We then took g = −1 in equation (S10), which corresponds to the boundary condition

(5a) of the main text. We obtained the system of equations for An and Bn

Anb
n +Bnb

−(n+1) = Cbulkδ0n,

nAna
n−1 − (n+ 1)Bna

−(n+2) = −2n+ 1

2

k

D

∫ α

0

Pn(cos θ) sin θdθ. (S16)
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Limiting our consideration to the first order in 1/r, we solved the system (S16) and obtained

for the concentration of intermediates

C(r) = Cbulk +
k

D
a2
(

1

r
− 1

b

)
sin2 α

2
. (S17)

Taking r = `, where ` is the distance to the active site of the first enzyme, and using

equation (S6), we obtained for the reaction velocity

vch = vnon

[
1 +

kE1

kDCbulk

(a
`
− a

b

)]
, (S18)

where vnon = kE2 [E2]Cbulk is the reaction velocity of the non-channeled reaction, kD = 4πDa

is the Smoluchowski rate due to diffusion and kE1 = 4πka2 sin2(α/2) is the rate constant of

the first enzyme. Dividing equation (S18) by vnon we obtained equation (1) of the main text

(where we used k`D = 4πD` in lieu of kD for convenience).

A. Multiple active sites

Equation (S18) is valid also in the case when enzymes have more than one active site.

Indeed, in this case we have for N active sites

Dn · ∇C
∣∣∣∣
Sai

= −ki, (S19)

where Sai and ki are the area and rate constant of ith active site, respectively. Then the

solution of the stationary diffusion equation (S7) for such an enzyme up to the first order in

1/r

C(r) = Cbulk +
1

D
a2
(

1

r
− 1

b

) N∑
i=1

ki sin
2 αi

2
, (S20)

where αi is half of the opening angle of the ith active site. Clearly, this equation leads to

equation (S18) with kE = 4πa2
∑N

i=1 ki sin
2(αi/2).

B. Degrading intermediates and competing enzymes

We also solved analytically the problem with degrading intermediates, i.e., with kdeg 6= 0

in equation (4) of the main text. However, the equation analogous to equation (S18) turned

out to be lengthy and not physically appealing. In order to estimate the effect of channeling
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in this case, we took the steady-state concentration of intermediates in the system in which

intermediates do degrade, and used it in equation (S18). As explained in the main text, this

is possible to do as long as the effect of degradation or competing consumption is negligible

on the length scales determined by the separation of enzymes in an enzyme complex.

The bulk concentration of intermediates in the system with degrading intermediates can

be obtained using the homogeneous system (see equation (8) in the main text, where it is

denoted by [I]; the limit t → ∞ must be taken to obtain the steady-state concentration of

intermediates). We obtained

Cbulk =
[E]kE1

kdeg + kE2 [E]
, (S21)

where [E] is the enzyme concentration assumed the same for both enzymes and for enzyme

complexes. Using now this value of Cbulk in equation (S18) we obtained equation (2) of the

main text.

C. Collins-Kimball equation

Incidentally, we note that the well-known Collins-Kimball equation for diffusion-controlled

reactions can be obtained using the same level of approximations. We took g = C in bound-

ary condition (S10), where now C is the substrate concentration for the enzyme, and we

were interested in the dependence of a macroscopic reaction rate on diffusion. We set b =∞

to obtain the following system of algebraic equations for Bn

Bm = − 2m+ 1

2(m+ 1)

kam+2

D

(
CbulkJm +

∞∑
n=0

Bn

an+1
Jnm

)
, (S22)

where

Jm =

∫ α

0

Pm(cos θ) sin θdθ, Jnm =

∫ α

0

Pn(cos θ)Pm(cos θ) sin θdθ. (S23)

The concentration up to the first order in 1/r reads

C(r) = Cbulk

(
1−

k sin2 α
2

D + ka sin2 α
2

a2

r

)
. (S24)

The macroscopic rate constant is

K =
1

Cbulk

∫
Sa

kCdS, (S25)
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which gives upon substituting equation (S24) into equation (S25)

K = 4π
Dka2 sin2 α

2

D + ka sin2 α
2

=
kDkE
kD + kE

, (S26)

where kD = 4πDa and kE = 4πka2 sin2(α/2) as before. Equation (S26) is the well known

Collins-Kimball equation for diffusion-controlled reactions [6, 7].
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