
Reviewer #1 (Remarks to the Author):  

 

In this study, Fonseca et al. investigated the molecular bases for shared as well as specific ChIP-seq 

profiles of different AP-1 family members in basal and KLA-activated macrophages. Understanding 

how transcription factors with identical DNA binding specificities are recruited to different sites is in 

fact a classical and still unsolved problem that the authors tackled in a lucid and effective manner by 

combining machine learning approaches with mouse genetics.  

The main conclusion of the study is that DNA binding specificities in vivo are the result of the 

availability of partner transcription factors that selectively promote recruitment of a specific AP-1 

family member.  

Overall, the approach, the data and the interpretation of the results are convincing and the 

manuscript represents an important contribution to the field.  

I have only a couple of comments for improvement:  

1. It is unclear if the KO iBMDMs used represent different clones or polyclonal populations of 

deleted cells. Moreover, no details are provided regarding the generation of these immortalized 

cells.  

2. One point I do not fully understand is why no motifs for the cooperating transcription factors 

identified by machine learning were not retrieved in a standard over-representation analysis (page 6, 

bottom). I assume this is due to the low fraction of specific events that are explained by each 

cooperating TF, but it would be important to clarify this issue.  

 

 

Reviewer #2 (Remarks to the Author):  

 

Fonseca et al study the sequence features that are responsible for distinct DNA binding activities of 

different AP-1 family members in thioglycolate-elicited macrophages before and after stimulation 

with a TLR4 agonist. They do this by first identifying the binding sites of six AP-1 family members 

(ATF3, Jun, JunD, Fos, FosL2 and JunB) using ChIP-seq. They find that there are substantial 

differences in the binding patterns of all of the family members. To understand the reasons for these 

differences, they develop a simple logistic regression model to identify transcription factor motifs 

that are predictive for the binding of different AP-1 members. They also perform a number of 

validation experiments in immortalised bone-marrow derived macrophages confirm their findings. 

Overall, the paper is well written and provides novel insights into the binding specificities of AP-1 

family members as well as confirming well-established models of collaborative interactions between 

TFs. The paper also highlights that a potentially large number of binding partners can influence the 

binding of a single TF - an observations that is currently not well appreciated in the field. However, 

all of these results rely on a crucial assumption that the antibodies used for the ChIP-seq 



experiments are highly specific to their target proteins. Moreover, important experimental details to 

judge the validity of this assumption are currently missing from the manuscript.  

 

Major concerns  

The quality of ChIP-seq experiments crucially depend on the quality and specificity of the antibodies 

used (https://www.nature.com/news/reproducibility-crisis-blame-it-on-t he-antibodies-1.17586). 

Non-specific antibodies can lead to false positive results and multiple Nature group journal are now 

requiring the authors to fill a reporting checklist describing which antibodies were used and how 

they were validated. The current version of the manuscript does not contain any information about 

the antibodies used (manufacture name, lot number, etc) and how their specificity for the different 

AP-1 family members was validated. Thus, it is not clear if the differences in ChIP-seq signal observed 

between the six AP-1 family members are due to intrinsic binding properties of the TFs or non-

specific binding of the antibodies to other transcription factors. At a minimum, the authors should 

clearly state which antibodies were used for the study and how their binding specificities were 

validated (either by the manufacturer or in the lab of the authors). If no evidence for validation can 

be provided, this should clearly be stated in the manuscript, explicitly acknowledging how this might 

influence the interpretation of the results.  

 

Similarly, the authors report that the PPAR half-site motif is specifically enriched among the ChIP-seq 

peaks of the Jun TF. However, the same result would also be consistent with a scenario in which the 

Jun antibody exhibits low specificity for the PPARg factor which could drive the signal. The best 

validation would be to perform the ChIP-seq experiment for Jun in Jun-deficient cells to demonstrate 

that without the target protein present the ChIP-seq signal is reduced to background levels. 

However, if this is not feasible, the authors should seek other means of validation such as using a 

different antibody for Jun or demonstrating that in PPARg knockout cells the Jun signal decreases 

specifically at sites that are also bound by Jun and not at other PPARg binding sites across the 

genome.  

 

Page 2, pg 3. The authors state that the experiments were performed in thioglycolate-elicited 

macrophages (TGEMs). However, it is not clear why TGEMs were chosen over other macrophages 

models. Moreover, it is not clear why the authors did not use BMDMs for their main experiments, 

given that this cell type was used for all of the knockout experiments. While I agree that this 

difference in cell types is unlikely to change the results, it would nevertheless be nice to have a 

justification for the experimental design somewhere in the paper. Secondly, since Nature 

Communications is a journal of general interest, it would be useful to add 1-2 sentence description 

of what the TGEMs are and how they are derived. People outside of the mouse macrophage field 

(but still interested in determinants of TF binding) might not be familiar with all of the different 

mouse macrophage models available.  

 



Minor issues  

Throughout the main text of the paper, it is not clear which machine learning algorithm is being 

used. It is only in the discussion where the authors mention that they have used logistic regression. 

Although it is reasonable to leave implementation details for the Methods section, It would be 

beneficial to introduce the main learning algorithm earlier in the paper. For example, the caption for 

Figure 3 could contain this information.  

 

Can you reproduce the PPARg result from the gkm-SVM model? For example, by looking at the k-

mers that have high predictive power for Jun binding? Can you extract k-mer weights from the gkm-

SVM model?  

 

p19 line 6 from the bottom: Missing ‘to’ in: 'To assess the extent multi-collinearity in the motif score 

features we used to train our models.'  

 

p20, pg 2. Since PPMs are matrices and not vectors, It is not clear how the Pearson correlation 

between the two motif is defined. Please clarify. Also, why did you decide the use Pearson 

correlation as the similarity measure for motif clustering, given that multiple other alternatives are 

available?  

 

p20, pg 4. Please provide the exact versions of the ‘latest’ gkm-SVM, LS-GKM and BaMM software 

packages that were used in this study.  

 

p17, pg 2 from bottom. In the discussion of more complex deep neural network models, you state 

that they are often difficult to interpret. While this is true in general, considerable progress has been 

made in this area recently. For example, you might find this recent paper from Peyton Greenside et 

al relevant (https://www.biorxiv.org/content/early/2018/04/17/302711).  

 

 

 

 

Reviewer #3 (Remarks to the Author):  

 



Fonseca et al describe genome-wide transcriptional regulation of AP-1 in thioglycolate-elicited 

macrophages and immortalized bone marrow derived macrophages. They show that (1) AP-1 family 

members have distinct regulatory roles and can target monomer-specific loci in addition to 

overlapping ones (2) monomer-specific binding is not explained by differences in the DNA-binding 

domain but rather a differential interaction of locally-bound factors described as ensembles of 

collaborating TFs (PU.1, CEBP, RUNX). They then developed a machine learning approach (TBA – 

transcription factor Binding Analysis) with reduced multiple collinearity, which shows relatively 

higher performance when compared with existing sequence-based approaches with the exception of 

gkm-SVM. Outside the logical flow of the manuscript, the authors went on demonstrating the cell-

type specific binding preferences of JunD. Finally, the manuscript shows that (3) TLR4 activation with 

KLA treatment reshapes the AP-1 cistrome which could be predicted by TBA and (4) a variant of TBA 

(TBA-2strain) that implements genetic variation between BALB and C57 mouse strains, confirms TBA 

predictions. As a proof of principle, they show that (5) PPARgamma specifically affects Jun 

recruitment and ATF3 and JunD do not interact with PPARg in the absence of Jun.  

 

The manuscript is a collection of large-scale data with little emphasis on communicating a 

converging and clear message. The novelty and impact of the results in terms of AP-1 in macrophage 

activation are questionable. The collaboration between AP-1 dimers and PPARg has been previously 

shown in the disease context (PMID:24411941; not cited by the authors). The cell-line specificity in 

terms of TF binding was shown by the ENCODE consortium (PMID: 22955990) so the JunD cistrome 

in different cell lines, although a good resource for testing TBA, does not bring any additional 

insights. Some major issues are:  

 

1. The distinct regulatory roles of AP-1 family members cannot be concluded from a system where 

the differentially expressed genes in response to KLA are shown in TGEM whereas the hierarchical 

clustering and gene expression as a result of deleting AP-1 monomers are performed in iBMDMs. 

Immortalization is likely to affect AP-1 dimerization and the effect of thioglycolate on AP-1 

expression and binding is not known nor shown. These controls must have been included in the 

study design and the experiments repeated in the same cell system, ideally primary macrophages. 

There are no technical details on the iBMDM generation in the methods. The results state that 

‘ATF3, Jun and JunD as the most expressed AP-1 family members under basal conditions’ but Figure 

1A shows JunD levels being similar to those of JunB in vehicle samples (same in supplementary 

figure 1a). In human macrophages JUN and FOSB are early LPS-response genes whereas mouse 

TGEMs do not up-regulate these significantly upon KLA treatment. How the results presented in 

Figure 2A and 5A can be interpreted to draw general conclusions on the AP-1 cistrome in 

macrophages?  

 

2. Monomer binding sites: this definition is based on unique AP-1 family member Chip-Seq peaks 

and ChIP-seq was performed in basal and 1h KLA-treated TGEMs for ATF3, Jun, Fos, FosL2, Junb and 

JunD. As the authors state, there are 15 different AP-1 family members and the rationale behind 

performing ChiP-seq on these 6 AP-1 family members is based on their relative expression levels in 



TGEMs (ATF3, Jun, JunD, JunB, FOSL2) and their KLA-responsiveness (FOS). The authors found that 

lowly expressed AP-1 members result in low number of binding sites but what about other highly 

expressed AP-1 members (ATF4) which are very likely to influence the global AP-1 binding 

landscape? ATF4 is the second most highly expressed ATF member in macrophages after ATF3 and it 

has been shown to be crucial for M-CSF signaling and osteoclast differentiation from mouse BMDMs 

(PMID:20628199), a process under AP-1 regulation.  

 

3. If there are no differences in mRNA levels of AP-1 monomemers between BALB and C57BL6, how 

does TBE takes into account SNPs that may change their protein amounts in a post-transcriptional 

way ?  

 

Minor:  

 

1.Figure 5A is not cited correctly (page 11). The text refers to 178 mRNA increasing 2-fold but the 

figure shows the heatmap in the change of binding.  

 

2.There is reference to a Figure 6H (page 15) which does not exist  

 

3.The abstract is written in a conceptual and vague style. It is not clear what was not known before, 

what this paper investigated, which methods and cells were used and what was concluded and how 

the research complements the current understanding of AP-1 in macrophages.  

 

4.There is no discussion on the potential biological impact of the findings. The collaboration between 

AP-1 and NF-KB is very well described in macrophage activation and Figure 5B confirms that. Even if 

the findings are confirmatory, the results should be discussed in the context of TLR4 activation in 

macrophages 



Detailed responses to Reviewer comments: 
 
Reviewer #1: 
In this study, Fonseca et al. investigated the molecular bases for shared as well as specific ChIP-seq 
profiles of different AP-1 family members in basal and KLA-activated macrophages. Understanding 
how transcription factors with identical DNA binding specificities are recruited to different sites is in 
fact a classical and still unsolved problem that the authors tackled in a lucid and effective manner by 
combining machine learning approaches with mouse genetics.  
The main conclusion of the study is that DNA binding specificities in vivo are the result of the 
availability of partner transcription factors that selectively promote recruitment of a specific AP-1 
family member.  
Overall, the approach, the data and the interpretation of the results are convincing and the manuscript 
represents an important contribution to the field.  
 
Our response: We thank the reviewer for the positive review and recognition that we are working on 
a classical problem with implications for others working in the broad field of transcriptional 
regulation.  
 
I have only a couple of comments for improvement:  
1. It is unclear if the KO iBMDMs used represent different clones or polyclonal populations of 
deleted cells. Moreover, no details are provided regarding the generation of these immortalized cells.  
 
Our response: The cells are a polyclonal population produced separately in duplicate using two 
distinct sets of sgRNA guides. We added the following text into the methods section: “KO iBMDMs 
were produced by infection of iBMDMs expressing CAS9 (iBMDM-CAS9-IRES-EGFP) with lenti 
viruses directing expression of guide RNAs specific for the AP-1 family members of 
interest.  iBMDM-CAS9-IRES-EGFP cells were infected with MOI 100, as measured in 293T cells, 
with Lentiblast (5uL each reagent) in OPTI-MEM. Cells were then centrifuged at 1300g for 1h at 
room temperature. Media was then removed and cells were cultured in bone marrow media (30% L-
cell, 20% FBS, 1% penicillin/streptomycin in DMEM) for two days. Infected cells were then purified 
by FACs sorting for expression of a transgene on the viral sequence (tagBFP2).” 
 
2. One point I do not fully understand is why no motifs for the cooperating transcription factors 
identified by machine learning were not retrieved in a standard over-representation analysis (page 6, 
bottom). I assume this is due to the low fraction of specific events that are explained by each 
cooperating TF, but it would be important to clarify this issue.  
 
Our response: We agree with the reviewer that it is important to clearly describe why our machine 
learning approach, TBA, can identify motifs that cannot be retrieved via standard over-representation 
analysis. The reviewer’s intuition is correct that motifs that occur at a low fraction of specific binding 
events may be difficult to pick up using over-representation analysis. There are two aspects of our 
approach that allow for better detection of motifs of cooperating TFs. First, our model can identify 
combinations of motifs that are co-enriched that cannot be identified using over-representation 
analysis, which compares the frequency of a motif at peaks versus background sequence individually. 
Consider a pair of motifs X and Y that individually occur at similar frequency in peaks and 
background sequences, which would not be identified using overrepresentation analysis. Supposing 
that motif X and Y co-occur frequently in just peaks, our model could assign X and Y moderate 
weights such that the occurrence of X and Y alone would not cause TBA to predict TF binding at a 
peak, and only the joint occurrence of X and Y would cause TBA to predict TF binding. Second, our 
model considers degenerate instances of motifs, allowing TBA to see more instances of a rare motif, 
whereas traditional approaches typically consider high affinity matches to a motif. We modified the 



  
language used to describe our model to clarify this issue to readers who may have the same point of 
inquiry as the reviewer. 
 

Reviewer #2:  
Fonseca et al study the sequence features that are responsible for distinct DNA binding activities of 
different AP-1 family members in thioglycolate-elicited macrophages before and after stimulation 
with a TLR4 agonist. They do this by first identifying the binding sites of six AP-1 family members 
(ATF3, Jun, JunD, Fos, FosL2 and JunB) using ChIP-seq. They find that there are substantial 
differences in the binding patterns of all of the family members. To understand the reasons for these 
differences, they develop a simple logistic regression model to identify transcription factor motifs 
that are predictive for the binding of different AP-1 members. They also perform a number of 
validation experiments in immortalized bone-marrow derived macrophages confirm their findings. 
Overall, the paper is well written and provides novel insights into the binding specificities of AP-1 
family members as well as confirming well-established models of collaborative interactions between 
TFs. The paper also highlights that a potentially large number of binding partners can influence the 
binding of a single TF - an observations that is currently not well appreciated in the field. However, 
all of these results rely on a crucial assumption that the antibodies used for the ChIP-seq experiments 
are highly specific to their target proteins. Moreover, important experimental details to judge the 
validity of this assumption are currently missing from the manuscript.  
 
Our response: We appreciate the positive comments from the reviewer as well as the constructive 
criticism. We hope that our responses to concerns raised improve the clarity of the manuscript and 
better enable others to reproduce and build upon our results. 
 
Major concerns 
The quality of ChIP-seq experiments crucially depend on the quality and specificity of the antibodies 
used (https://www.nature.com/news/reproducibility-crisis-blame-it-on-the-antibodies-1.17586). Non-
specific antibodies can lead to false positive results and multiple Nature group journal are now 
requiring the authors to fill a reporting checklist describing which antibodies were used and how they 
were validated. The current version of the manuscript does not contain any information about the 
antibodies used (manufacture name, lot number, etc) and how their specificity for the different AP-1 
family members was validated. Thus, it is not clear if the differences in ChIP-seq signal observed 
between the six AP-1 family members are due to intrinsic binding properties of the TFs or non-
specific binding of the antibodies to other transcription factors. At a minimum, the authors should 
clearly state which antibodies were used for the study and how their binding specificities were 
validated (either by the manufacturer or in the lab of the authors). If no evidence for validation can be 
provided, this should clearly be stated in the manuscript, explicitly acknowledging how this might 
influence the interpretation of the results.  
 
Our response: This information was inadvertently deleted from the initial uploaded version of the 
manuscript.  We now included details for all of the antibodies in Supplementary Table 3 
(manufacturer and catalog number). Each antibody was specifically chosen to target regions of the 
protein sequence that were not conserved amongst the AP-1 family members that we targeted. We 
also added to the text to clarify this “Antibodies against AP-1 family members were chosen for 
targeting of non-conserved regions to minimize the potential for non-specific binding.  
 
Similarly, the authors report that the PPAR half-site motif is specifically enriched among the ChIP-
seq peaks of the Jun TF. However, the same result would also be consistent with a scenario in which 



  
the Jun antibody exhibits low specificity for the PPARg factor which could drive the signal. The best 
validation would be to perform the ChIP-seq experiment for Jun in Jun-deficient cells to demonstrate 
that without the target protein present the ChIP-seq signal is reduced to background levels. However, 
if this is not feasible, the authors should seek other means of validation such as using a different 
antibody for Jun or demonstrating that in PPARg knockout cells the Jun signal decreases specifically 
at sites that are also bound by Jun and not at other PPARg binding sites across the genome.  
 
Our response:  
We thank Reviewer 2 for this suggestion.  To provide evidence that the Jun ChIP-seq is specific to 
Jun and not PPARg, we performed ChIP-seq targeting Jun in iBMDM cells (in replicate) in which 
Jun has been knocked out using CRISPR. We were only able to detect 12 Jun peaks using HOMER 
(after filtering away peaks that had IDR < 0.05) in Jun knockout cells as compared to 25042 peaks in 
wildtype iBMDM cells treated with scramble control, demonstrating a high degree of specificity for 
the antibody. These data are now provided in a Supplement to figure 7. 
 
Page 2, pg 3. The authors state that the experiments were performed in thioglycolate-elicited 
macrophages (TGEMs). However, it is not clear why TGEMs were chosen over other macrophages 
models. Moreover, it is not clear why the authors did not use BMDMs for their main experiments, 
given that this cell type was used for all of the knockout experiments. While I agree that this 
difference in cell types is unlikely to change the results, it would nevertheless be nice to have a 
justification for the experimental design somewhere in the paper. Secondly, since Nature 
Communications is a journal of general interest, it would be useful to add 1-2 sentence description of 
what the TGEMs are and how they are derived. People outside of the mouse macrophage field (but 
still interested in determinants of TF binding) might not be familiar with all of the different mouse 
macrophage models available.  
 
Our response:  BMDMs and TGEMs are both extensively used as model systems to study primary 
macrophages. Although the transcriptomes and epigenetic landscapes are not identical, we have 
shown that they are highly similar (Gosselin et al, 2014). Our experience has been that conclusions 
obtained from studies of TGEMs are broadly applicable to BMDMs and vice versa.  We agree that it 
would be most consistent to have performed all of the studies in a single model system. However, 
after collection the majority of the ChIP-Seq data for each AP-1 factor in TGEMs, it became evident 
that it was not possible to achieve sufficiently robust knockdowns of these factors using conventional 
siRNA approaches.  TGEMs were also resistant to lentiviral transduction required for CRISPR/CAS9 
mediated mutagenesis. In order to perform loss of function studies to establish specific roles of AP-1 
factors in macrophages it was necessary to employ iBMDMs as a model system that is amenable to 
CRISPR-Cas9 knockout methods. Importantly, these experiments are internally controlled by 
transducing Cas9 expressing iBMDMs with scrambled guide RNAs.  
 
To make the manuscript more accessible, we added language to the results describing TGEMs. “To 
investigate the genome wide locations of AP-1 family members in a primary macrophage population, 
we generated thioglycollate elicited macrophages (TGEMS) by injection of thioglycollate into the 
peritoneal cavities of mice.  Thioglycollate injection induces an inflammatory response, in which 
recruited macrophages become the major cell type by three days following injection. A highly 
purified population of TGEMs is obtained at this time by flushing the peritoneal cavity and allowing 
the macrophage population to adhere to a tissue culture plate.” 
 
Minor issues 



  
Throughout the main text of the paper, it is not clear which machine learning algorithm is being used. 
It is only in the discussion where the authors mention that they have used logistic regression. 
Although it is reasonable to leave implementation details for the Methods section, It would be 
beneficial to introduce the main learning algorithm earlier in the paper. For example, the caption for 
Figure 3 could contain this information.  
 
Our response: We thank the reviewer for suggestions on how to improve the clarity of our 
manuscript, and we have revised our description of our approach in the results section and caption for 
Figure 3 to indicate that we used logistic regression. “TBA uses logistic regression to learn to 
distinguish the binding sites of a TF from a set of GC-matched background loci.” 
 
Can you reproduce the PPARg result from the gkm-SVM model? For example, by looking at the k-
mers that have high predictive power for Jun binding? Can you extract k-mer weights from the gkm-
SVM model?  
 
Our response: In the original manuscript describing gkm-SVM, the authors detailed a procedure that 
used the top 1% of the most highly ranked k-mers to calculate up to three de novo PWMs. In 
principle, the ranked k-mers can be used to identify additional motifs, and we have modified our 
discussion of gkm-SVM to indicate that this is potentially possible. To determine whether the PPARg 
half site motif can be retrieved using the gkm-SVM weights calculated for Jun, we quantified how 
well each k-mer matched to the PPARg half-site motif using the motif score. Of the 11-mers (default 
k is 11 for gkm-SVM) that were identified by gkm-SVM as positively correlated with Jun binding, 
we observed 74 k-mers that matched the PPARg half-site with a motif score greater than 10 and the 
median rank of these k-mers was 2406 out of 2097152 total 11-mers (best rank was 38, worst was 
15041). As all these k-mers fall within the top 1% of k-mers (20971 highly ranked k-mers), we can 
conclude that the PPARg half site is recoverable using gkm-SVM. However, given the variability in 
how k-mers that matched the PPARg half-site were ranked, it is difficult for us to state how important 
the PPARg half-site is in comparison to other motifs that can be recovered from the k-mers ranked in 
the top 1% by gkm-SVM. While it is likely possible to devise a method to rank motifs recovered 
from the k-mers (which we indicate in our revised discussion section), we do not believe doing so 
would be consistent with the rest of the manuscript. The difficulty in interpreting rankings assigned to 
millions of k-mers is one of the motivations for why we devised our method. We state: “Efforts to 
build more advanced methods to extract information from machine learning models will allow not 
only for interpretation of future models of greater complexity, but also better understanding of 
existing models (Shrikumar 2017). For example, the procedure used by Ghandi and Lee et al to 
retrieve motifs from gkm-SVM can likely be improved to retrieve additional PWMs (Ghandi 2014)” 
 
p19 line 6 from the bottom: Missing ‘to’ in: 'To assess the extent multi-collinearity in the motif score 
features we used to train our models.'  
 
Our response: We corrected this error. 
 
p20, pg 2. Since PPMs are matrices and not vectors, It is not clear how the Pearson correlation 
between the two motif is defined. Please clarify. Also, why did you decide the use Pearson 
correlation as the similarity measure for motif clustering, given that multiple other alternatives are 
available?  
 
Our response:  



  
We modified the methods section to clearly indicate how the Pearson correlation between two PPMs 
are calculated. Briefly, we flatten a pair of PPMs to form a pair of vectors which we then use to 
calculate the Pearson correlation. We initially considered each of the comparison metrics proposed by 
Mahony et al in their manuscript entitled “STAMP: a web tool for exploring DNA-binding motif 
similarities,” and ultimately selected Mahony et al’s default recommendation of the Pearson 
correlation for its intuitive behavior.  The Pearson correlation similarity threshold we used to merge 
motifs together also showed a straightforward relationship to the maximum Variance Inflation Factor 
observed for the motif scores for the set of merged motifs, allowing us to easily identify a similarity 
threshold for merging together motifs that sufficiently reduces multiple collinearity. This Mahony et 
al reference was mistakenly omitted and is now included in our revised manuscript.  
 
p20, pg 4. Please provide the exact versions of the ‘latest’ gkm-SVM, LS-GKM and BaMM software 
packages that were used in this study.  
 
Our response: We modified both the main text as well as the methods to indicate the latest versions of 
software packages used. LS-GKM was compiled from source code downloaded from 
github.com/Dongwon-Lee/lsgkm on 08/25/16 and we used v1.0 of BaMM downloaded from 
github.com/soedinglab/BaMMmotif. 
 
p17, pg 2 from bottom. In the discussion of more complex deep neural network models, you state that 
they are often difficult to interpret. While this is true in general, considerable progress has been made 
in this area recently. For example, you might find this recent paper from Peyton Greenside et al 
relevant (https://www.biorxiv.org/content/early/2018/04/17/302711).  
 
Our response: We thank the reviewer for highlighting recent advances in extracting useful 
information from neural networks such as feature interactions. We modified the language in the 
discussion to indicate that progress in this direction will make deep neural network technology more 
accessible to genomics researchers. We too believe that neural networks can be interpreted, and we 
are engaged in separate efforts to build interpretable neural network models. 
 
Reviewer #3:  
Fonseca et al describe genome-wide transcriptional regulation of AP-1 in thioglycolate-elicited 
macrophages and immortalized bone marrow derived macrophages. They show that (1) AP-1 family 
members have distinct regulatory roles and can target monomer-specific loci in addition to 
overlapping ones (2) monomer-specific binding is not explained by differences in the DNA-binding 
domain but rather a differential interaction of locally-bound factors described as ensembles of 
collaborating TFs (PU.1, CEBP, RUNX). They then developed a machine learning approach (TBA – 
transcription factor Binding Analysis) with reduced multiple collinearity, which shows relatively 
higher performance when compared with existing sequence-based approaches with the exception of 
gkm-SVM. Outside the logical flow of the manuscript, the authors went on demonstrating the cell-
type specific binding preferences of JunD. Finally, the manuscript shows that (3) TLR4 activation 
with KLA treatment reshapes the AP-1 cistrome which could be predicted by TBA and (4) a variant 
of TBA (TBA-2strain) that implements genetic variation between BALB and C57 mouse strains, 
confirms TBA predictions. As a proof of principle, they show that (5) PPARgamma specifically 
affects Jun recruitment and ATF3 and JunD do not interact with PPARg in the absence of Jun.  
 
The manuscript is a collection of large-scale data with little emphasis on communicating a 
converging and clear message. The novelty and impact of the results in terms of AP-1 in macrophage 



  
activation are questionable. The collaboration between AP-1 dimers and PPARg has been previously 
shown in the disease context (PMID:24411941; not cited by the authors). The cell-line specificity in 
terms of TF binding was shown by the ENCODE consortium (PMID: 22955990) so the JunD 
cistrome in different cell  lines, although a good resource for testing TBA, does not bring any 
additional insights. Some major issues are:  
 
Our response: The major objective of these studies was to investigate mechanisms by which members 
of a conserved family of transcription factors that bind to a common DNA recognition element are 
able to occupy both overlapping and distinct genomic locations and exert both redundant and non-
redundant functions.  The convergent and clear message that we hoped to convey was stated in the 
abstract as follows: ‘These findings provide evidence that non-redundant genomic locations of 
different AP-1 family members in macrophages largely result from collaborative interactions with 
diverse, locus-specific ensembles of transcription factors and suggest a general mechanism for 
encoding functional specificities of their common recognition motif.’  We are open to suggestions for 
how these points can be further clarified.  
 
We thank Reviewer 3 for bringing the paper by Hasenfuss et al to our attention.  This is an interesting 
study, but to our reading it does not provide any evidence for collaborative DNA binding interactions 
between AP-1 dimers and the PPARg transcription factor.  Hasenfuss et al demonstrate that PPARg 
gene expression is regulated by members of the AP-1 family in the liver. Six different AP-1 family 
members are shown to bind to a common region of the PPARg promoter by locus specific 
ChIP.  Gain and loss of function experiments indicate that some AP-1 heterodimers induce PPARg 
gene expression, while others are repressive. These differential functions have important biological 
consequences in a disease model of steatosis. However, there are no experiments in this paper that 
investigate the role of the PPARg transcription factor in differentially regulating the DNA binding 
properties of AP-1 family members. To our knowledge, there are no prior studies that systematically 
investigate mechanisms determining the distinct genomic binding profiles of specific AP-1 family 
members or members of other similarly conserved transcription factor families. We hope that with 
this clarification Reviewer 3 will agree that the current studies are both novel and significant. 
 
We agree that the ENCODE consortium has demonstrated in a previous manuscript (PMID: 
22955990) that a single TF can interact with different genomic regions in a cell type specific 
manner.  As Reviewer 3 suggests, these data sets are primarily used as a way of additionally 
validating and extending the utility of the TBA algorithm.  
 
1. The distinct regulatory roles of AP-1 family members cannot be concluded from a system where 
the differentially expressed genes in response to KLA are shown in TGEM whereas the hierarchical 
clustering and gene expression as a result of deleting AP-1 monomers are performed in iBMDMs. 
Immortalization is likely to affect AP-1 dimerization and the effect of thioglycolate on AP-1 
expression and binding is not known nor shown. These controls must have been included in the study 
design and the experiments repeated in the same cell system, ideally primary macrophages.  
 
Our response:  As Reviewer 3 suggests, we have collected extensive transcriptomic and epigenetic 
data for TGEMs, BMDMs and iBMDMs under resting and activated conditions. While there are 
differences among each model system, BMDMs and TGEMs are highly similar to each other and 
distinct from tissue resident macrophages. Consistent with this, our experience has been that 
conclusions obtained from studies of TGEMs are broadly applicable to BMDMs and vice versa.  We 
agree that it would be most consistent to have performed all of the studies in a single model system. 



  
However, as noted in our response to Reviewer 1, after collection the majority of the ChIP-Seq data 
for each AP-1 factor in TGEMs, it became evident that it was not possible to achieve sufficiently 
robust knockdowns of these factors using conventional siRNA approaches.  TGEMs were also 
resistant to lentiviral transduction required for CRISPR/CAS9 mediated mutagenesis. In order to 
perform loss of function studies to investigate specific roles of AP-1 factors in macrophages it was 
necessary to employ iBMDMs as a model system that is amenable to CRISPR-Cas9 knockout 
methods. Importantly, these experiments are internally controlled by transducing Cas9 expressing 
iBMDMs with scrambled guide RNAs. Therefore, factor-specific roles are clearly established in this 
model system, consistent with the prior findings of Hasenfuss in the liver.   We clarify the limitation 
of extending these findings to TGEMs in the revised manuscript.  
 
There are no technical details on the iBMDM generation in the methods.  
 
Our response: We revised the methods text to detail how iBMDM cells were generated and added the 
corresponding reference (PMID: 2185941).  
 
The results state that ‘ATF3, Jun and JunD as the most expressed AP-1 family members under basal 
conditions’ but Figure 1A shows JunD levels being similar to those of JunB in vehicle samples (same 
in supplementary figure 1a). 
 
Our response: As noted by Reviewer 3, JunB mRNA levels are high. However, we were unable to 
detect JunB binding in 3 separate ChIP-seq experiments. In addition, we were unable to detect JunB 
by western blot in Vehicle treated conditions in the nucleus. We added a figure showing this western 
blot as well as the text “Despite high RNA expression in Veh treatment, JunB protein expression was 
not detected in the nucleus by western blot, explaining a lack of ChIP-seq signal (Supplementary Fig. 
2B). ”. 
 
In human macrophages JUN and FOSB are early LPS-response genes whereas mouse TGEMs do not 
up-regulate these significantly upon KLA treatment. How the results presented in Figure 2A and 5A 
can be interpreted to draw general conclusions on the AP-1 cistrome in macrophages?  
 
Our response: Transcription factor cistromes are established in a cell-specific manner based on 
genomic sequence and the expression levels and activities of collaborative transcription factors.   We 
recently demonstrated, for example, that the cJun cistrome shows striking differences in macrophages 
derived from C57BL6, BALB, NOD, PWK and SPRET mice due to the influence of cis non coding 
genetic variation (Link et al, 2018).  Differences in cis regulatory architecture appear to be major 
drivers of differences in human and mouse microglia gene expression (Gosselin et al, 2017). 
Conversely, the same macrophage lineage-determining factor, PU.1, binds to overlapping but distinct 
genomic locations in different tissue resident macrophage populations in the same strain of mice 
(Gosselin et al 2014).  Therefore, each cistrome is highly context dependent. The general conclusion 
that we wish to present in this paper is that the overlapping and distinct cistromes of different AP-1 
family members in a particular context are established by their differential interactions with 
combinations of co-expressed collaborative binding partners. The LPS-response in this case was 
primarily used as a strong perturbation of the expression and activities of these proteins that allows 
further testing of the factor-specific collaborative binding concept.  We suggest that similar rules 
apply to AP-1 members in human macrophages, but due to differences in cis regulatory architecture 
and expression of collaborative transcription factors, specific cistromes will differ. We clarify these 
points in the revised manuscript. 



  
 
2. Monomer binding sites: this definition is based on unique AP-1 family member Chip-Seq peaks 
and ChIP-seq was performed in basal and 1h KLA-treated TGEMs for ATF3, Jun, Fos, FosL2, Junb 
and JunD. As the authors state, there are 15 different AP-1 family members and the rationale behind 
performing ChiP-seq on these 6 AP-1 family members is based on their relative expression levels in 
TGEMs (ATF3, Jun, JunD, JunB, FOSL2) and their KLA-responsiveness (FOS). The authors found 
that lowly expressed AP-1 members result in low number of binding sites but what about other highly 
expressed AP-1 members (ATF4) which are very likely to influence the global AP-1 binding 
landscape? ATF4 is the second most highly expressed ATF member in macrophages after ATF3 and 
it has been shown to be crucial for M-CSF signaling and osteoclast differentiation from mouse 
BMDMs , a process under AP-1 regulation.  
 
Our response: We modified Supplemental Figure 1A to include the expression level of ATF4, which 
is indeed highly expressed in comparison to the other AP-1 family members. This factor was omitted 
from the original figure because we were unable to obtain high quality ChIP-seq data for ATF4. We 
attempted ChIP-seq experiments targeting ATF4 after Vehicle and one hour KLA treatment using 
several antibodies and experimental protocols totaling to 6 attempts to perform ChIP-seq for ATF4 in 
each treatment condition. We added the following statement to the text: “Though ATF4 is highly 
expressed at the RNA level, we were unable to detect ATF4 by ChIP-seq using several conditions 
and several different antibodies” 
 
3. If there are no differences in mRNA levels of AP-1 monomers between BALB and C57BL6, how 
does TBE takes into account SNPs that may change their protein amounts in a post-transcriptional 
way? 
 
Our response: There are no variants in the protein coding sequences the AP-1 family members 
evaluated between BALB and C57BL6 mice that would directly result in differences in post 
transcriptional/post translational changes.  In addition, we tested and found similar levels of protein 
expression among AP-1 family members in both Veh and KLA using western blots. This has been 
added to Supplementary Figure 6. Further, a reduction in protein expression in one strain in 
comparison to the other would result in a global decrease in binding. We observe that the number of 
sites that gained binding was roughly the same as the number of sites that lost binding when 
comparing BALB/cJ and C57BL/6J (as exemplified by Atf3 shown in Fig. 6A).  
 
Minor:  
1.Figure 5A is not cited correctly (page 11). The text refers to 178 mRNA increasing 2-fold but the 
figure shows the heatmap in the change of binding.  
 
Our response: We thank Reviewer 3 for pointing out this error, which is now corrected in the revised 
manuscript. 
 
2.There is reference to a Figure 6H (page 15) which does not exist  
 
Our response: We thank Reviewer 3 for pointing out this error, which is now corrected in the revised 
manuscript. 
 



  
3.The abstract is written in a conceptual and vague style. It is not clear what was not known before, 
what this paper investigated, which methods and cells were used and what was concluded and how 
the research complements the current understanding of AP-1 in macrophages.  
 
Our response: The conceptual style of the abstract is enforced by the 150 word limit stipulated by the 
journal.  
 
We summarized what is not known in the first sentence: 
Mechanisms by which members of the AP-1 family of transcription factors play both redundant and 
non-redundant biological roles despite recognizing the same DNA sequence remain poorly 
understood.  (27 words) 
 
We summarized what this paper investigated, the methods and main results by the following four 
sentences: 
To address this question, we investigated the molecular functions and genome-wide DNA binding 
patterns of AP-1 family members in macrophages. ChIP-sequencing showed overlapping and distinct 
binding profiles for each factor that were remodeled following TLR4 ligation.  Development of a 
machine learning approach that jointly weighs hundreds of DNA recognition elements yielded dozens 
of motifs predicted to drive factor-specific binding profiles. Machine learning-based predictions were 
confirmed by analysis of the effects of mutations in genetically diverse mice and by loss of function 
experiments.   (82 words) 
 
We summarized the major conclusions with the following sentence: 
These findings provide evidence that non-redundant genomic locations of different AP-1 family 
members in macrophages largely result from collaborative interactions with diverse, locus-specific 
ensembles of transcription factors and suggest a general mechanism for encoding functional 
specificities of their common recognition motif. (41 words) 
Total 150 words 
 
We are open to suggestions for improving the abstract. 
 
4.There is no discussion on the potential biological impact of the findings. The collaboration between 
AP-1 and NF-KB is very well described in macrophage activation and Figure 5B confirms that. Even 
if the findings are confirmatory, the results should be discussed in the context of TLR4 activation in 
macrophages.  
 
Our response: We discussed potential biological impact of the findings in the final paragraph of the 
discussion as follows: 
 
Collectively, our findings suggest two classes of collaborative TFs: 1) highly ranked TFs that are 
strongly correlated with the binding of all AP-1 monomers, including TFs important to macrophage 
identity such as such as PU.1 and C/EBPs (Fig. 4A, black and grey boxes), and 2) moderately ranked 
TFs that specify the binding of individual AP-1 monomers (Fig. 4D, red and blue boxes). The former 
likely consists of TFs that play a role in opening chromatin while the latter class of TFs may allow for 
tuning the optimal level of transcriptional activation or response. These two classes of motifs were 
also seen in TLR4 activated macrophages where highly ranked motifs, such as NfkB, were correlated 
with the binding of all AP-1 family members (Supp Table 1), while a large set of moderately ranked 
motifs distinguished each AP-1 monomer (Supplementary Fig. 5C). Overall, these studies provide 



  
evidence that collaborative interactions of TFs allow a single DNA motif to be used in a wide variety 
of contexts, which may be a general principle for how transcriptional specificity is encoded by the 
genome. 
 
We are open to suggestions for improving this section. 
 
 



Reviewer #1 (Remarks to the Author):  

 

The authors have fully addressed my issues and now I strongly recommend this manuscript for 

publication  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have fully address all of my concerns.  

 

I have only one more minor comment: The caption for Supplementary Figure 7 currently states 

250,041 peaks detected in scramble IBMDMs while the response to reviewers states 25,042. I 

assume this is a typo?  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

In their revised manuscript, the authors clarified the following points:  

 

1. Transcription factor cistrome dependency on cell type, genomic sequence and the expression 

levels and activities of collaborative transcription factors. The context-dependency of the cistromes 

and the significance of the results in murine cells when compared to human macrophages were 

clarified in the revised text.  

 

2. Despite high mRNA levels, an undetectable JunB protein in vehicle samples by Western Blot 

explaining the lack of Chip-seq. The authors clarified this by adding a Western Blot in Supplementary 

Figure 2B.  

 



3. The iBMDM generation methods and a discussion on the biological impact of the findings were 

included. Furthermore, supplementary Figure 6 shows no protein differences between the two 

strain of mice, which argues against any post-transcriptional changes.  

 

However the issue of distinct model systems (TGEM vs iBMDMs, Figure 1) remains and is likely to 

influence the interpretation of the results. The lack of ChiP-seq signal for ATF4 (the third most 

expressed AP-1 member, Supplementary Figure 1a) precludes from drawing a conclusion on global 

AP-1 binding landscape. The abstract was not modified to include the cell type (TGEM, iBMDM). 



Detailed responses to Reviewer comments: 
 
REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have fully addressed my issues and now I strongly recommend this manuscript for 
publication 
 
Our response: We thank the reviewer for the thoughtful reviews. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have fully address all of my concerns.  
 
I have only one more minor comment: The caption for Supplementary Figure 7 currently states 
250,041 peaks detected in scramble IBMDMs while the response to reviewers states 25,042. I assume 
this is a typo? 
 
Our response: We thank the reviewer for the thoughtful reviews. We have fixed the caption in 
Supplementary Figure 7 to read 25,041 peaks. 
 
Reviewer #3 (Remarks to the Author): 
 
In their revised manuscript, the authors clarified the following points: 
 
1. Transcription factor cistrome dependency on cell type, genomic sequence and the expression levels 
and activities of collaborative transcription factors. The context-dependency of the cistromes and the 
significance of the results in murine cells when compared to human macrophages were clarified in 
the revised text. 
 
2. Despite high mRNA levels, an undetectable JunB protein in vehicle samples by Western Blot 
explaining the lack of Chip-seq. The authors clarified this by adding a Western Blot in 
Supplementary Figure 2B. 
 
3. The iBMDM generation methods and a discussion on the biological impact of the findings were 
included. Furthermore, supplementary Figure 6 shows no protein differences between the two strain 
of mice, which argues against any post-transcriptional changes. 
 
However the issue of distinct model systems (TGEM vs iBMDMs, Figure 1) remains and is likely to 
influence the interpretation of the results. The lack of ChiP-seq signal for ATF4 (the third most 
expressed AP-1 member, Supplementary Figure 1a) precludes from drawing a conclusion on global 
AP-1 binding landscape. The abstract was not modified to include the cell type (TGEM, iBMDM). 
 
Our response: We thank the reviewer for the thoughtful reviews. We agree that iBMDMs and 
TGEMs are different environments. However, we do believe that the AP-1 knockout data in 
iBMDMs in Figure 1 conclusively shows that AP-1 family members have distinct effects on the RNA 
transcriptome and that this result translates to other contexts as shown for JunD in Supplementary 
Figure 4 C,D. Similarly, though a high quality ATF4 ChIP-seq would have allowed us to draw clearer 
conclusions on the global AP-1 binding landscape, we believe that our results our representative of 



  
the binding of the AP-1 family in TGEMs . Specifically, we are still able to differentiate family 
member binding and conclude differences are a result of cooperative binding with other transcription 
factors. Both of these issues are unfortunate technical limitations.  
 
We have added " genome-wide DNA binding patterns of AP-1 family members in primary and 
immortalized mouse macrophages" to include reference to both TGEMs and iBMDMs in the 
available space.  
 
 
 


