The structure of the nucleoprotein of Influenza D shows that all *Orthomyxoviridae* nucleoproteins have a similar NP_{CORE}, with or without a NP_{TAIL} for nuclear transport

Amélie DONCHET¹, Justine OLIVA², Alice LABARONNE¹, Laura TENGO¹, Myriam MILOUDI¹, Francine C. A. GERARD¹, Caroline MAS³, Guy SCHOEHN¹, Rob W. H. RUIGROK¹, Mariette DUCATEZ² and Thibaut CREPIN^{1*}

¹ Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France

² IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France

³ Integrated Structural Biology Grenoble (ISBG) - UMS 3518 (CNRS-CEA-UJF-EMBL), 38044 Grenoble, France

Supplementary information

Supplementary Figure 1

Sequence alignment of NP from representative Influenza strains. The sequences used are the same as in Table 1. The figure has been drawn using ESPript ¹. The upper and lower secondary structures correspond to the X-ray structures of D/NP (PDB entry 5N2U) and A/NP (PDB entry 2IQH), respectively. The stars indicate the phosphorylation sites identified for A/NP (closed symbol) and B/NP (open symbol) by Hutchinson *et al.* (red)², Li *et al.* (green)³ and Monda *et al.* (blue)⁴.

Supplementary Figure 2

Effect of trimethylamine N-oxide (TMAO) on the folding of D/NP_{TAIL}. Far UV-circular dichroism spectra of either D/NP_{TAIL} alone (purple) or in presence of TMAO (0.5 M in yellow, 1M in red, 2M in blue and 3 M in green) were collected. Because of the high background induced by the presence of TMAO around 200 nm, spectra were cut when the voltage (right bottom insert) became too high (> 700 V).

References

- 1 Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res* **42**, W320-324, doi:10.1093/nar/gku316 (2014).
- 2 Hutchinson, E. C. *et al.* Mapping the phosphoproteome of influenza A and B viruses by mass spectrometry. *PLoS Pathog* **8**, e1002993, doi:10.1371/journal.ppat.1002993 (2012).
- Li, Y. *et al.* Phosphorylation and dephosphorylation of threonine 188 in nucleoprotein is crucial for the replication of influenza A virus. *Virology* 520, 30-38, doi:10.1016/j.virol.2018.05.002 (2018).
- 4 Mondal, A. *et al.* Influenza virus recruits host protein kinase C to control assembly and activity of its replication machinery. *Elife* **6**, doi:10.7554/eLife.26910 (2017).
- 5 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr* **66**, 12-21, doi:10.1107/S0907444909042073 (2010).

Supplementary Table 1: Crystallographic data collection and structure

refinement statistics. Values in parentheses are for highest resolution shell.

Crystal Parameters	D/NP
Data collection	
Beamline	ID30A3 - ESRF
Wavelength (Å)	0.9677
Space group	P1
Cell Dimensions a, b, c (Å)	75.17, 85.17, 103.39
<i>α, β,</i> γ(°)	91.20, 101.94, 101.02
Molecules per asymmetric unit	4
Wilson B-factor (Ų)	51.4
Resolution (Å)	40 - 2.4 (2.48 - 2.4)
Observed Reflections	191 888 (18 695)
Unique Reflections	87 824 (8 505)
Completeness (%)	91.3 (94.1)
R _{sym} (I) ^(a) (%)	9.3 (84.7)
<i σ(i)=""></i>	7.78 (1.05)
Model quality indicators	
R _{cryst} (%)	20.2 (21.9)
R _{free} (%)	25.2 (23.8)
Non-hydrogen atoms	14 646
Water atoms	235
Average B-factors (Å ²)	55.7
B-factors per chains (Ų)	59.8, 54.3, 52.8, 56.3
B-factors water (Å ²)	49.5
Ramachandran favoured / allowed (%)	94.0 / 5.1
rms deviations, bonds (Å) / angles (°)	0.009 / 1.15
Clashscore ^(b)	4.31
MolProbity score ^(b)	2.28

(a) $R_{sym} = \sum_{hkl} \sum_{j} |I_{hkl,j} - \langle I_{hkl} \rangle| / \sum_{hkl} \sum_{j} |I_{hkl,j} - \langle I_{hkl} \rangle|$

 $^{\rm (b)}$ calculated using MolProbity $^{\rm 5}$

