1	
2	Supplementary materials for
3	
4	Cost-effectiveness of screening and treatment or vaccination of hepatitis B in six high-risk populations in the
5	US
6	
7	November 12, 2018

9	Techni	cal Supplement – Detailed Methods and Additional Results	2
10	List of	Figures	3
11	List of	Tables	3
12	I. N	lodelling	5
13	1.	Model assumptions	5
14	2.	Markov structure	8
15	3.	Model structure – simplified graphics	11
16	II. Ⅳ	lodel Inputs	15
17	1.	Distribution of patients entering the model	15
18 19	2. trea	Transition probabilities for acute and chronic hepatitis B Markov health states: natural history and wit tment	
20	3.	Screening and linkage to care inputs	18
21	4.	Transition probabilities and risk reduction with chronic hepatitis B treatment	26
22	5.	Transmission probabilities	32
23	6.	Prevention	32
24	7.	Health related quality of life: Natural history and treatment	33
25	8.	Utility loss with anti-viral treatment	33
26	9.	Cost Inputs	34
27	10.	Sensitivity analyses methods	38
28	III.	Model Calibration and Validation	39
29	1.	Calibration and Validation of Natural History Model	39
30	2.	Validation of Treatment Model	44
31	IV.	Additional Base-Case Results	47
32	1.	Results by strategy and program for each study population	47
33	2.	Results by comparative broad strategies for each study population	52
34	V. So	cenario Analysis	54
35	1.	Improved screening and linkage to care – ICER Calculations	54
36	2.	Improved screening and linkage to care - Clinical Outcomes	57
37	VI.	Additional One-Way Analyses	59
38	1.	Tornado Analyses:	59
39	2.	Effect of uncertainty around population-specific prevalence and incidence rates on ICER	66
40	VII.	References	67

42 List of Figures

43	FIGURE S1: MARKOV STATE DIAGRAM OF NATURAL HISTORY OF ACUTE AND CHRONIC HEPATITIS B	9
44	FIGURE S2: SIMPLIFIED TREATMENT MODEL TREE STRUCTURE	11
45	FIGURE S3: SIMPLIFIED SCREEN AND TREAT (TREATMENT ONLY) MODEL TREE STRUCTURE	12
46	FIGURE S4: SIMPLIFIED SCREEN AND VACCINATE (VACCINATION ONLY) MODEL TREE STRUCTURE	13
47	FIGURE S5: SIMPLIFIED SCREEN AND TREAT OR VACCINATE (INCLUSIVE) MODEL TREE STRUCTURE	14
48	FIGURE S6: PERCENT OF PATIENTS TRANSITIONING FROM IMMUNE TOLERANT PHASE TO CHRONIC HEPATITIS B	40
49	FIGURE S7: CUMULATIVE PROBABILITIES OF CIRRHOSIS AND HCC IN THE NATURAL HISTORY MODEL AND EPIDEMIOLOGY DATA	42
50	FIGURE S8: CUMULATIVE PROBABILITIES GRAPHS FROM REVEAL-HBV STUDY	43
51	FIGURE S9: PERCENT REDUCTION OF KEY CLINICAL OUTCOMES OF CHRONIC HEPATITIS B WITH TREATMENT	46
52	FIGURE S10: SHORT-TERM AND INTERMEDIATE CLINICAL OUTCOMES FOR EACH POPULATION IN SCENARIO ANALYSIS	57
53	FIGURE S11: LONG-TERM CLINICAL OUTCOMES FOR EACH POPULATION IN SCENARIO ANALYSIS	58
54	FIGURE S12: SENSITIVITY ANALYSIS FOR THE INCLUSIVE STRATEGY COMPARED TO NO INTERVENTION FOR ASIAN AND PACIFIC ISLANDERS	60
55	FIGURE S13: SENSITIVITY ANALYSIS FOR THE INCLUSIVE STRATEGY COMPARED TO NO INTERVENTION FOR AFRICA BORN BLACK POPULATION	61
56	FIGURE S14: SENSITIVITY ANALYSIS FOR THE INCLUSIVE STRATEGY COMPARED TO NO INTERVENTION FOR INCARCERATED INDIVIDUALS	62
57	FIGURE S15: SENSITIVITY ANALYSIS FOR THE INCLUSIVE STRATEGY COMPARED TO NO INTERVENTION FOR REFUGEES	63
58	FIGURE S16: SENSITIVITY ANALYSIS FOR THE INCLUSIVE STRATEGY COMPARED TO NO INTERVENTION FOR PEOPLE WHO INJECT DRUGS	64
59	FIGURE S17: SENSITIVITY ANALYSIS FOR THE INCLUSIVE STRATEGY COMPARED TO NO INTERVENTION FOR MEN WHO SEX WITH MEN	65
60		

61 List of Tables

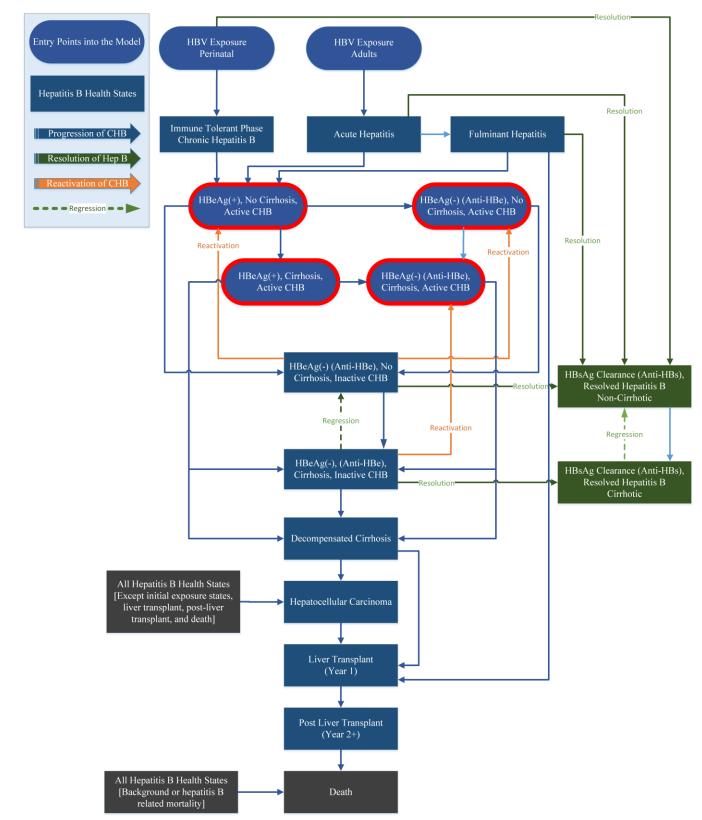
62	TABLE S1: DISTRIBUTION OF PATIENTS ENTERING THE MODEL, BY HEALTH STATE	15
63	TABLE S2: ANNUAL TRANSITION PROBABILITIES - NATURAL HISTORY OF ACUTE AND CHRONIC HEPATITIS B (WITHOUT TREATMENT)	17
64	TABLE S3: POPULATIONS WITH HIGH PREVALENCE OF CHRONIC HEPATITIS B	18
65	TABLE S4: PROPORTION OF PERSONS SUSCEPTIBLE TO HEPATITIS B, BY SUBGROUP	19
66	TABLE S5: SPECIFICITY AND SENSITIVITY OF HEPATITIS B SCREENING TESTS	19
67	TABLE S6: SCREENING AND LINKAGE TO CARE (TREATMENT OR VACCINATION) STRATEGIES MODELED, BY POPULATION	23
68	TABLE S7: SCREENING PROGRAM EFFECTIVENESS OF REFERRAL AND LINKAGE TO TREATMENT, BY POPULATION	24
69	TABLE S8: SCREENING PROGRAM EFFECTIVENESS OF REFERRAL AND LINKAGE TO VACCINATION, BY POPULATION	25
70	TABLE S9: TRANSITION PROBABILITIES WITH ANTI-VIRAL TREATMENT, YEAR 1	27
71	TABLE S10: ANNUAL PROBABILITIES WITH ANTI-VIRAL TREATMENT, YEAR 2+	28
72	TABLE S11: ANNUAL PROBABILITIES FOR DEVELOPING RESISTANCE TO NUCLEOS(T)IDE THERAPIES	29
73	TABLE S12: PROPORTION OF PATIENTS RETREATED ON AN ANNUAL BASIS AFTER DISCONTINUATION OF THERAPY OR DEVELOPMENT OF RESISTANCE	E.29
74	TABLE S13: PROPORTION OF PATIENTS WITH SUPPRESSED HEPATITIS B DNA IN THE FIRST YEAR OF TREATMENT AND SUBSEQUENT YEARS	30
75	TABLE S14: RISK REDUCTION OF ADVANCED LIVER DISEASE WITH SUPPRESSED HEPATITIS B VIRUS DNA WITH TREATMENT	31
76	TABLE S15: ANNUAL INCIDENCE OF HORIZONTAL ACUTE INFECTION AMONGST SUSCEPTIBLE ADULTS WITHIN A POPULATION	32
77	TABLE S16: HEPATITIS B VACCINE EFFECTIVENESS RATES AMONG THOSE COMPLETING THE 3-DOSE SERIES, BY NUMBER OF DOSES	32
78	TABLE S17: HEALTH STATE UTILITIES	33
79	TABLE S18: ANNUAL UTILITY LOSS DUE TO TREATMENT	33
80	TABLE S19: HEPATITIS B HEALTH STATE COSTS (ANNUAL EXCEPT AS NOTED WITH E FOR EPISODE)	34
81	TABLE S20: INITIAL DIAGNOSTIC TESTS, FREQUENCY OF TESTING AND RELATED COSTS	35
82	TABLE S21: TESTS FOR MONITORING TREATMENT, FREQUENCY OF TESTING AND RELATED COSTS	36
83	TABLE S22: ADMINISTRATIVE COSTS OF SCREENING PROGRAMS	37
84	TABLE S23: COST OF TREATMENTS	37
85	TABLE S24: COST OF HEPATITIS B VACCINES	38
86	TABLE S25:ANNUAL COST OF MEDICAL MANAGEMENT OF TREATMENT RELATED ADVERSE EVENTS	38
87	TABLE S26: Age dependent transitions from Immune Tolerant to Immune Active Phase	39
88	TABLE S27: CHB NATURAL HISTORY MODEL VALIDATION FOR CIRRHOSIS AND HCC WITH REVEAL-HBV STUDY	
89	TABLE S28: RESULTS OF 25,000 NATURAL HISTORY MODEL SIMULATIONS OVER VARYING TIME-HORIZONS	42

90	TABLE S29: TREATMENT VALIDATION TEST COHORT AND TREATMENT CHARACTERISTICS	44
91	TABLE S30: BASE-CASE RESULTS FOR SCREEN AND VACCINATE STRATEGY BY PROGRAM, BY POPULATION	47
92	TABLE S31: BASE-CASE RESULTS FOR SCREEN AND TREAT (WITH TENOFOVIR) STRATEGY BY PROGRAM, BY POPULATION	48
93	TABLE S32: BASE-CASE RESULTS FOR SCREEN AND TREAT (WITH ENTECAVIR) STRATEGY BY PROGRAM, BY POPULATION	49
94	TABLE S33: BASE-CASE RESULTS FOR SCREEN AND VACCINATE OR TREAT (WITH TENOFOVIR) STRATEGY BY PROGRAM, BY POPULATION	50
95	TABLE S34: BASE-CASE RESULTS FOR SCREEN AND VACCINATE OR TREAT STRATEGY BY PROGRAM, BY POPULATION	51
96	TABLE S35: BASE-CASE RESULTS FOR SCREENING AND LINKAGE TO CARE (TENOFOVIR TREATMENT) STRATEGIES, BY POPULATION	52
97	TABLE S36: BASE-CASE RESULTS FOR SCREENING AND LINKAGE TO CARE (ENTECAVIR TREATMENT) STRATEGIES, BY POPULATION	53
98	TABLE S37: SCENARIO ANALYSIS - IMPROVED SCREENING AND LINKAGE TO CARE, USING TENOFOVIR BASED TREATMENT AND RETREATMENT - IC	ER
99	CALCULATIONS	55
100	TABLE S38: SCENARIO ANALYSIS - IMPROVED SCREENING AND LINKAGE TO CARE, USING ENTECAVIR BASED TREATMENT AND RETREATMENT - ICE	ER
101	CALCULATIONS	56
102	TABLE S39: EFFECT OF PREVALENCE AND INCIDENCE ON COST-EFFECTIVENESS OF THE INCLUSIVE STRATEGY, BY POPULATION	66

103 I. Modelling

104 1. Model assumptions

105 Modelling natural history: Key assumptions


106	1.	Patients entered the model in one of two ways:
107		a. To reflect the current population distribution of chronic hepatitis B at diagnosis, patients
108		started the simulation in one of seven CHB health states:
109		i. Immune tolerant (after perinatal transmission)
110		1. Perinatal infection and immune tolerant state were built into the model for
111		completeness of the natural history and to allow for full calibration of the
112		model. This study does not analyze perinatal infection.
113		ii. Inactive HBeAg <i>negative</i> . This group can be:
114		1. Non-cirrhotic
115		2. Cirrhotic
116		iii. Active HBeAg positive chronic hepatitis B. This group can be:
117		1. Non-cirrhotic
118		2. Cirrhotic
119		iv. Active HBeAg negative chronic hepatitis B. This group can be:
120		1. Non-cirrhotic
121		2. Cirrhotic
122		b. New infections (perinatal and horizontal adult exposures) could enter via the initial exposure
123		and acute hepatitis B state, and may progress to the states above. Detail below.
124	2.	Adult patients who acquired hepatitis B while in the model through transmission entered the acute
125		hepatitis B state and transitioned into either chronic hepatitis B, immune active phase (HBeAg+), or
126		achieve hepatitis B surface antigen (HBsAg) clearance. Asymptomatic and symptomatic acute
127		hepatitis, fulminant hepatitis (amongst symptomatic patients), and death and liver transplant from
128		fulminant hepatitis was modeled in this state.
129	3.	Perinatal transmissions of hepatitis B did not enter the acute hepatitis state; these patients entered
130		the immune tolerant or surface antigen clearance state.
131	4.	Horizontal transmission for children under 5 was not be modeled.
132	5.	Immune tolerant patients experienced annual progression to immune active phase of chronic
133		hepatitis B into the non-cirrhotic, HBeAg positive and HBsAg positive state.
134	6.	Progression from immune tolerant phase to active phase was age-specific so that all patients enter
135		active hepatitis B before 40 years of age. This was based on epidemiological findings that majority of
136		patients will transition into active hepatitis B between the ages of 20 and 40, based on genotype of
137		hepatitis B virus. ^{1,2}
138	7.	Patients in HBeAg <i>positive</i> status with active disease, both non-cirrhotic and cirrhotic, were able to
139		transition to active corresponding HBeAg negative states.
140	8.	HBeAg+ can jump to inactive state without going through the HBeAg- active state.
141	9.	Inactive states were HBeAg- (with suppressed HBV DNA (<2000 IU/ml) and normal liver enzymes)
142		and Anti-HBe.
143	10.	Patients in active HBeAg positive and HBeAg negative states (both non-cirrhotic and cirrhotic), can
144		transition into HBeAg negative, anti-HBe (inactive stat in which antibodies to HBeAg have
145		developed) state.
146	11.	Patients who seroconvert to anti-HBe and are in the <i>inactive</i> state were able to experience
147		reactivation of HBeAg negative and HBeAg positive active hepatitis.

148	12. Cirrhosis regression in natural history was not be modeled for patients who achieved anti-HBs.
149	13. Cirrhosis regression in natural history was not be modeled for HBeAg+ and HBeAg- who entered
150	inactive states.
151	14. Non-cirrhotic patients who achieved HBsAg clearance/anti-HBs status were allowed to progress to
152	cirrhosis, in sensitivity analyses.
153	15. Inactive chronic hepatitis B state in this model were marked by anti-HBe positive with normal ALT
154	and low DNA levels.
155	16. Chronic hepatitis B patients who achieve inactive state were eligible for HBsAg seroconversion to
156	anti-HBs (used interchangeably with HBsAg seroclearance and "resolved").
157	17. Patients who seroconverted to anti-HBs (i.e. enter the resolved state) did not experience
158	reactivation of chronic hepatitis B (not modeled).
159	18. Reoccurrence of hepatitis B in patients who underwent liver transplantation was not be modeled.
160	19. Patients were able to transmit the virus, on an annual basis, to a susceptible individual, adjusted for
161	a given population, in any state except after seroconversion of HBsAg to anti-HBs (or resolved) state
162	20. For perinatal infections, risk for infection and establishment of chronic hepatitis B were stratified
163	according to mother's HBeAg status as negative or positive.
164	21. Patients could develop hepatocellular carcinoma from any state except initial exposure/acute
165	hepatitis states, resolved, and post-liver transplant.
166	22. The model did not distinguish between patient sex or hepatitis B virus genotype, although these
167	factors can influence clinical outcomes.
168	23. Patients experienced age-specific background mortality based on US life tables.
169	24. Hepatitis B related excess mortality was modeled in active and inactive hepatitis B states, non-
170	cirrhotic and cirrhotic.
171	25. Hepatitis B related mortality for advanced states (fulminant failure, liver failure, liver carcinoma,
172	liver transplantation and post-liver transplant) was also be modeled. Background mortality in these
173	states will not be portrayed.
174	Modelling treatment: Key assumptions
175	26. The model included treatment naïve and lamivudine-experienced patients.
176	27. Treatment was only initiated in active CHB (HBeAg- or HBeAg+). Treatment was not be modeled in
177	immune tolerant phase, decompensated cirrhosis or liver cancer.
178	28. Lamivudine experienced or resistance patients, if retreated, were eligible only for tenofovir therapy,
179	due to evidence of developing high levels of resistance with entecavir therapy. ³
180	29. Entecavir experienced or resistance patients, if retreated, were eligible for only tenofovir switch.
181	30. Patients who experienced tenofovir resistance will go into natural history of CHB and were not
182	allowed retreatment.
183	31. Treatment of CHB occurred in the immune active phases, depending on the status of DNA, ALT, and
184	histological disease. It increased the transition from active phases to the inactive phase, and
185	indirectly to resolved disease.
186	32. Treatment, depending on drug and duration, increased transition of HBeAg positive / HBsAg
187	positive, both non-cirrhotic and cirrhotic, to HBeAg negative / HBsAg positive. Transition
188	probabilities for HBeAg seroconversion with treatment were varied over time (higher in the first
189	year).
190	33. Transition probabilities for drug resistance were varied over the first five years for each treated
191	patient, remaining constant in subsequent years.

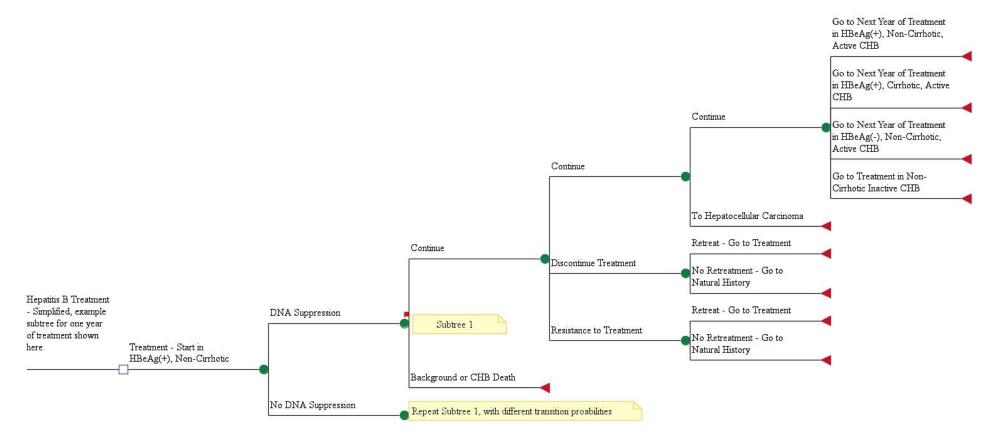
192	34. Transition probabilities for viral suppression (lower DNA) were varied over time. In the Markov this
193	is represented as transition to HBeAg negative state and inactive disease.
194	35. Transition probabilities for HBsAg seroconversion were varied over time, dependent on treatment.
195	36. For all HBeAg- and cirrhotic HBeAg+ patients, treatment was modeled to continue until HBsAg loss.
196	37. For non-cirrhotic HBeAg+, treatment was continued for 12 months after achieving inactive disease
197	(i.e. seroconversion to anti-HBe), regardless of HBsAg status. Once in the inactive state, patients
198	followed the natural history. And those who experienced reactivation of CHB to HBeAg+ or HBeAg-
199	states, if retreated, were eligible for tenofovir therapy.
200	38. Patients who discontinued treatment (either tenofovir or entecavir) entered natural history. These
201	patients, if retreated, were eligible for tenofovir treatment only.
202	39. Cirrhosis regression in treatment was modeled for patients who achieved anti-HBs.
203	40. Cirrhosis regression in treatment was modeled for HBeAg+ and HBeAg- who entered inactive states.
204	Modelling prevention: Key assumptions
205	41. For susceptible high-risk adults, prevention with hepatitis B vaccine was modeled, taking into
206	consideration the probability of completing one, two or all three doses of the series.
207	42. Data for completing vaccine series was derived from population specific literature when possible.
208	Assumptions, based on other high-risk populations, was used when population-specific data were
209	unavailable.
210	Modelling screening and linkage to care: Key assumptions
211	43. High risk, high prevalence populations were modeled for targeted screening and linkage to care.
212	44. 'Care' in the model will consist of treatment (for those with active CHB) or vaccination for
213	susceptible adults.
214	45. Three screening and linkage options were modeled: 1) screen and treat; 2) screen and vaccinate;
215	and 3) screen and treat or vaccinate.
216	46. For each screening and linkage option, population and program specific inputs were used. When
217	population specific program inputs for screening and linkage were not available, data from other
218	hepatitis B programs or other disease (such as hepatitis C) screen and linkage programs was used.
219	47. The model took into account the probability of false negatives and false positives with screening
220	tests and allocated costs and patient disposition accordingly.
221	Transmission: Key assumptions
222	48. Within population transmission based on annual incidence rates of acute hepatitis B in high-risk
223	populations were modeled for susceptible adult patients.
224	49. Populations did not interact with each other in this model.

226 2. Markov structure

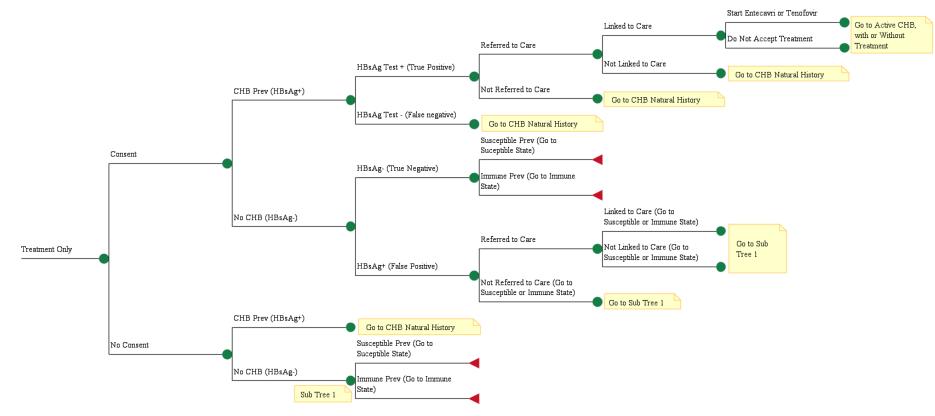
- 227 Markov tree and stages: Figure 4 below is a detailed portrayal of the Markov disease state structure. It
- shows the natural history of acute HBV infection and chronic hepatitis B Markov with transitions from
- source to target states. It uses mainly *annual* transition probabilities between health states.

230

231 Figure S1: Markov state diagram of natural history of acute and chronic hepatitis B

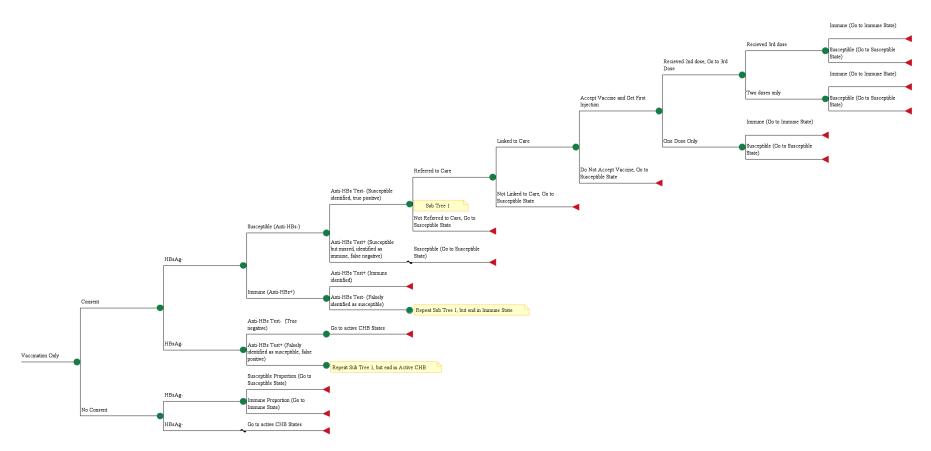

232 Supplement Figure 1 description: The figure depicts the natural history of hepatitis B virus infection from initial

exposure and infection (acute HBV) to development of chronic hepatitis B (CHB) health states (blue boxes). The

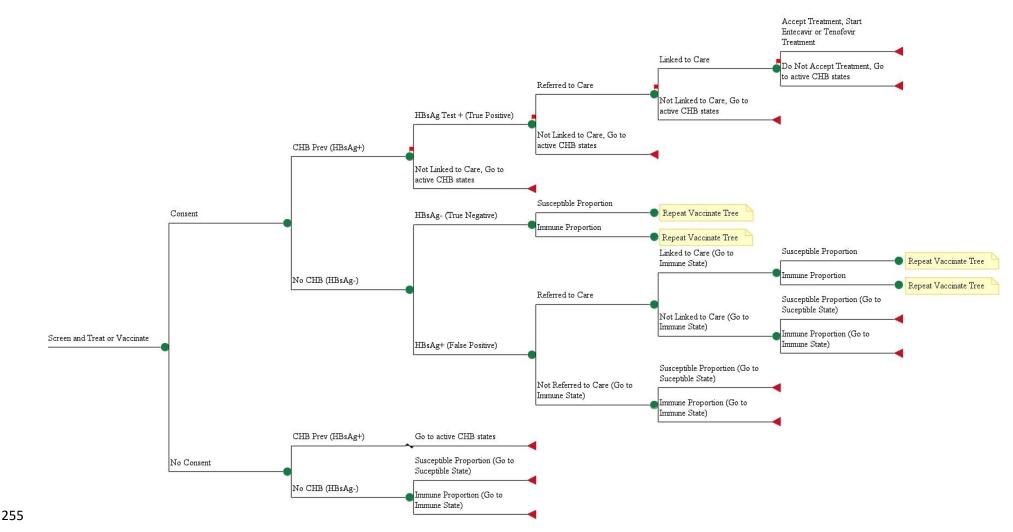

- 234 diagram flows from top (initial exposure, initial health states) to bottom (advanced liver diseases and death). The
- 235 blue arrows show progression from a health state of lower severity to higher severity. Solid green arrows depict
- resolution of HBV infection, defined as hepatitis B surface antigen clearance and/or development of antibody to
- the surface antigen (green boxes). Dashed green arrows show the potential for regression of liver cirrhosis to a
- 238 non-cirrhotic state from inactive hepatitis B or resolved states. Orange arrows show reactivation of hepatitis B
- from inactive (HBeAg- and anti-HBe) states to either HBeAg- or HBeAg+ active hepatitis B. The ovals with red
- outline indicate health states in which treatment can initiate for patients with chronic hepatitis B.

241 3. Model structure – simplified graphics

To illustrate how the hepatitis B model was operationalized, in addition to **Figure 1** in the main paper, simplified figures of the model's tree structure are produced below for reference.



- 245 Figure S2: Simplified treatment model tree structure
- 246 Caption: The figure shows how the patients progress through the treatment model by using a simplified visualization of year 1 of treatment. Patients
- 247 progress through the model to either achieve DNA suppression or not, depending on treatment selected and year of treatment, followed by CHB related and
- 248 background death, discontinuation, development of resistance, and hepatocellular carcinoma. Patients then transition into HBeAg- state, inactive CHB state,
- 249 cirrhosis or next year of treatment in the same state. In the model, the probabilities for many of the outcomes differ depending which year treatment the
- 250 patients are in and whether or not DNA suppression has been successful.


251

252 Figure S3: Simplified screen and treat (treatment only) model tree structure

253

254 Figure S4: Simplified screen and vaccinate (vaccination only) model tree structure

256 Figure S5: Simplified screen and treat or vaccinate (inclusive) model tree structure

257 II. Model Inputs

Below, input values for the model are listed by category. Multiple sources were used to collect data on input
parameters. We conducted literature reviews of published primary and economic analyses of hepatitis B.
The annual probabilities, patient distribution proportions, costs, utilities, and effectiveness of drugs and
prevention methods are extracted from literature, including previously published cost-effectiveness studies.
When annual transition probabilities for natural history were unavailable or refinement of estimates was
indicated, data were extracted from primary studies and annual probabilities calculated. Expert estimates
will be used for input parameters when necessary.

For calculation of annual probabilities from results over longer time periods, we followed established
 methods⁴ as provided by the following equations:

267 Equation 1:
$$r = -\frac{1}{t} \ln(1-p)$$

268 Equation 2: $p = 1 - e^{-rt}$

269 where *r* = rate or risk; *t* = time; and *p* = cumulative proportion or probability

270 1. Distribution of patients entering the model

- A. Distribution of patients in immune tolerant, inactive and active (HBeAg positive and negative) states was determined from primary literature.⁵ There are, however, limited data to inform status of cirrhosis in immune active and inactive phases. Thus, based on a previous economic analysis, it was assumed that, in the initial entry cohort, 5% of patients in each of the immune active phases (HBeAg- and HBeAg+) and the inactive phase are cirrhotic.⁶ The number of patients in any given state were dynamically adjusted over time based on the transition probabilities listed in the next section.
- 276 277

271

272

273 274

275

278 Table S1: Distribution of patients entering the model, by health state

Markov entry state	Base-case (%)	Lower Limit (%)	Upper Limit (%)	Ref
Immune Tolerant Phase	5.74	4.31	7.18	5
Imr	nune Active Phase	(HBeAg+)	·	
HBeAg+, Non-Cirrhotic	21.02	15.77	26.28	5
HBeAg+, Cirrhotic*	1.11	0.83	1.38	5
Imn	nune Active Phase	(HBeAg-)^	·	
HBeAg-, Non-Cirrhotic	31.12	23.34	38.90	5
HBeAg-, Cirrhotic*	1.64	1.23	2.05	5
	Immune Inactive	Phase^	·	
HBeAg-, Inactive CHB, Non-Cirrhotic	37.40	28.05	46.75	5
HBeAg-, Inactive CHB, Cirrhotic*	1.97	1.48	2.46	5
*Prevalence of cirrhosis was assumed to	-	-		otic

patients calculated by authors based on the absolute numbers provided in the study. ^Distribution of patients in the immune active HBeAg- and in the HBeAg- inactive phase were calculated by the authors from the study data. Immune active HBeAg- patients were defined as those with detectable DNA and elevated ALT (> 1 x Upper Normal Limit), as reported in the study.

HBeAg+/-: Hepatitis B e-antigen positive or negative; CHB: Chronic Hepatitis B; Ref: Reference

Transition probabilities for acute and chronic hepatitis B Markov health states: natural history and with treatment

A. Natural history

Probabilities for initial exposure and acute hepatitis in perinatal and adult horizontal infection were collected from literature and previously published economic analyses.⁶⁻¹⁶ We also collected and meta-analyzed primary data when there was wide variability in published estimates or refinement was needed, for example on the probability of mother to infant transmission by HBeAg status.¹⁷⁻³¹ Similarly, mortality from fulminant hepatitis B was aggregated from primary literature.³²⁻³⁷ Wide variability in point estimates on annual probability of HBsAg clearance was observed^{6,9,11,12,38} so we calculated annual probability of clearing HBsAg by combining primary literature.³⁸⁻⁵² There was a dearth of data in published economic evaluations on development of hepatocellular carcinoma following HBsAg clearance, thus we calculated annual probabilities from primary studies.^{45,49-53} Similar steps were taken to collect and refine data for development of cirrhosis^{54,55} and hepatocellular carcinoma⁵⁵ based on cirrhosis status in inactive phase of chronic hepatitis B.

295 B. Development of HCC in Africa Born populations

296Evidence suggests that for sub-Saharan Africa born Black population, there is a higher incidence of297hepatocellular carcinoma at a younger age.⁵⁶⁻⁶¹ Although there is substantial heterogeneity in the298data, for this study, we assumed that the annual incidence of HCC in this population to be 1.5 times299higher (with a range of 1 to 2.5) than baseline rates used in the model for other populations. This300increase in annual probability of HCC is applied to all hepatitis B health states from which HCC can301develop.

302 C. Development of chronic hepatitis B in people who inject drugs

Evidence also suggests that PWIDs may have twice the risk of developing chronic hepatitis from exposure than the general population.⁶² In this model, we simulated the transition from acute to chronic hepatitis for PWIDs to be 10% (varied from 5 to 15%), compared the 5% for other populations.

308Literature generally did not distinguish probabilities between active HBeAg negative vs positive309hepatitis B, so we assumed the probabilities to be equivalent. When confidence intervals were310unavailable for input parameters we used +/- 25% of the base case estimate to portray uncertainty.

311 Table S2: Annual Transition Probabilities - Natural History of Acute and Chronic Hepatitis B (without treatment)

HBV Exposure, Perinatal, HBeAg- motherNeonatNeonatal InfectionImmunImmune Tolerant PhaseHBeAgHBV exposure, adultHBV Exposure, AdultAcute Hepatitis, AdultAcute HAcute Hepatitis, AdultAcute H	al Infection al Infection e Tolerant Phase g+, Active CHB, No Cirrhosis Hepatitis, Adult Hepatitis, Adult, Symptomatic Hepatitis, Adult, Asymptomatic ant Hepatitis ² g+, Active CHB, No Cirrhosis g Clearance (Resolved)	100.0 30.0	(%) 73.3 6.0 85.0 c-Dependen 95.0 20.0 ptomatic He 3.0	100.0 40.0	17-23,25-31 17-21,23,24,27,28,30 63 Calculated Assumption 16
HBV Exposure, Perinatal, HBeAg+ motherNeonatHBV Exposure, Perinatal, HBeAg- motherNeonatNeonatal InfectionImmunImmune Tolerant PhaseHBeAgHBV exposure, adultHBV Exposure, AdultAcute Hepatitis, AdultAcute HAcute Hepatitis, AdultAcute H	al Infection e Tolerant Phase g+, Active CHB, No Cirrhosis Hepatitis, Adult Hepatitis, Adult, Symptomatic Hepatitis, Adult, Asymptomatic ant Hepatitis ² g+, Active CHB, No Cirrhosis g Clearance (Resolved)	14.0 90.0 Age 100.0 30.0 1 - Symp 4.0	6.0 85.0 -Dependen 95.0 20.0 otomatic He	24.0 95.0 t ¹ 100.0 40.0	17-21,23,24,27,28,30 63 Calculated Assumption
HBV Exposure, Perinatal, HBeAg- motherNeonatalNeonatal InfectionImmuniImmune Tolerant PhaseHBeAgHBV exposure, adultHBVHBV Exposure, AdultAcute HAcute Hepatitis, AdultAcute HAcute Hepatitis, AdultAcute H	e Tolerant Phase g+, Active CHB, No Cirrhosis Hepatitis, Adult Hepatitis, Adult, Symptomatic Hepatitis, Adult, Asymptomatic ant Hepatitis ² g+, Active CHB, No Cirrhosis g Clearance (Resolved)	90.0 Age 100.0 30.0 1 – Symp 4.0	85.0 e-Dependen 95.0 20.0 otomatic He	95.0 t ¹ 100.0 40.0	63 Calculated Assumption
Immune Tolerant PhaseHBeAgHBV exposure, adultHBV Exposure, AdultHBV Exposure, AdultAcute HAcute Hepatitis, AdultAcute HAcute Hepatitis, AdultAcute H	g+, Active CHB, No Cirrhosis Hepatitis, Adult Hepatitis, Adult, Symptomatic Hepatitis, Adult, Asymptomatic ant Hepatitis ² g+, Active CHB, No Cirrhosis g Clearance (Resolved)	Age 100.0 30.0 1 – Symp 4.0	Dependen 95.0 20.0 otomatic He	t ¹ 100.0 40.0	Calculated
HBV exposure, adultHBV Exposure, AdultAcute Hepatitis, AdultAcute Hepatitis, AdultAcute Hepatitis, AdultAcute Hepatitis, Adult	Hepatitis, Adult Hepatitis, Adult, Symptomatic Hepatitis, Adult, Asymptomatic ant Hepatitis ² g+, Active CHB, No Cirrhosis g Clearance (Resolved)	100.0 30.0 1 – Symp 4.0	95.0 20.0 ptomatic He	100.0 40.0	Assumption
HBV Exposure, AdultAcute IAcute Hepatitis, AdultAcute IAcute Hepatitis, AdultAcute I	Hepatitis, Adult, Symptomatic Hepatitis, Adult, Asymptomatic ant Hepatitis ² g+, Active CHB, No Cirrhosis g Clearance (Resolved)	30.0 1 – Symp 4.0	20.0 otomatic He	40.0	
Acute Hepatitis, AdultAcute HAcute Hepatitis, AdultAcute H	Hepatitis, Adult, Symptomatic Hepatitis, Adult, Asymptomatic ant Hepatitis ² g+, Active CHB, No Cirrhosis g Clearance (Resolved)	30.0 1 – Symp 4.0	20.0 otomatic He	40.0	
Acute Hepatitis, Adult Acute I	Hepatitis, Adult, Asymptomatic ant Hepatitis ² g+, Active CHB, No Cirrhosis g Clearance (Resolved)	1 – Symp 4.0	otomatic He		16
-	ant Hepatitis ² g+, Active CHB, No Cirrhosis g Clearance (Resolved)	4.0		epatitis	
	g+, Active CHB, No Cirrhosis g Clearance (Resolved)		3.0	Partis	16
Acute Hepatitis, Adult, Symptomatic Fulmin	clearance (Resolved)	7.1	5.0	5.0	8,16
Fulminant Hepatitis HBeAg			5.3	8.9	9,11
Fulminant Hepatitis HBsAg		1 – HBe.	Ag+, Active	e CHB	Calculated
Fulminant Hepatitis Liver T	ransplant	1.70	1.69	4.50	64
Fulminant Hepatitis Death,	Hepatitis B related	67.0	50.3	83.8	32-36
Acute Hepatitis, Adult, Asymptomatic ³ HBeAg	g+, Active CHB, No Cirrhosis	5.0	1.0	10.0	15,65,66
Acute Hepatitis, Adult, Asymptomatic HBsAg	clearance (Resolved)	1 - HBe	Ag+, Active	e CHB	15
Acute Hepatitis, Adult, Symptomatic ³ HBeAg	g+, Active CHB, No Cirrhosis	5.0	1.0	10.0	15,65,66
Acute Hepatitis, Adult, Symptomatic HBsAg	clearance (Resolved)	1 – HBe.	Ag+, Active	e CHB	15
CHB, HBeAg+					
	g+, Active CHB, Cirrhotic	2.4	0.7	3.8	12,15
	g-, Active CHB, Non-Cirrhotic	1.9	1.0	3.8	12
HBeAg+, Active CHB, Cirrhotic HBeAg	g-, Active CHB, Cirrhotic	1.9	1.0	3.8	12
HBeAg+, Active CHB, Non-Cirrhotic HBeAg	g-, Inactive CHB, Non-Cirrhotic	9.5	7.1	11.9	16
HBeAg+, Active CHB, Cirrhotic HBeAg	g-, Inactive CHB, Cirrhotic	9.5	7.1	11.9	16
CHB, HBeAg-					
	g-, Active CHB, Cirrhotic	4.6	0.5	15.0	12,15
HBeAg-, Active CHB, Non-Cirrhotic HBeAg	g-, Inactive CHB, Non-Cirrhotic	1.6	0.0	11.0	12
HBeAg-, Active CHB, Cirrhotic HBeAg	g-, Inactive CHB, Cirrhotic	1.6	0.0	11.0	12
	g-, Inactive CHB, Cirrhotic	0.6	0.4	0.7	54,55
Reactivation of CHB					
HBeAg-, Inactive CHB, Non-Cirrhotic HBeAg	g+, Active CHB, Non-Cirrhotic	0.200	0.185	0.300	67
HBeAg-, Inactive CHB, Non-Cirrhotic HBeAg	g-, Active CHB, Non-Cirrhotic	1.6	1.2	2.0	67
HBeAg-, Inactive CHB, Cirrhotic HBeAg	g-, Active CHB, Cirrhotic	0.7	0.5	0.9	67
Progression to DC					
HBeAg+, Active CHB, Cirrhotic Decom	pensated Cirrhosis	5.0	2.3	9.5	6,15
HBeAg-, Active CHB, Cirrhotic Decom	pensated Cirrhosis	5.0	2.3	9.5	51,53
	pensated Cirrhosis	0.0	0.0	0.1	Assumption
Progression to HCC ⁴					
Immune Tolerant Phase Hepato	cellular Carcinoma	0.060	0.045	0.075	68
HBeAg+, non-cirrhotic, Active CHB Hepato	cellular Carcinoma	0.5	0.2	0.7	6,8,16
HBeAg+, Active CHB, Cirrhotic Hepato	cellular Carcinoma	2.4	0.2	8.1	6,8,16
HBeAg-, Active CHB, Non-Cirrhotic Hepato	cellular Carcinoma	0.5	0.2	0.7	6,8,16
HBeAg-, Active CHB, Cirrhotic Hepato	cellular Carcinoma	2.4	0.2	8.1	6,8,16
HBeAg-, Inactive CHB, Non-Cirrhotic Hepato	cellular Carcinoma	0.100	0.075	0.125	55
	cellular Carcinoma	1.1	0.9	1.4	55
	cellular Carcinoma	6.3	3.0	7.0	15
• •	cellular Carcinoma	0.7	0.5	0.9	45,49-53
Progression to Liver Transplant					
• •	ransplant	1.70	1.69	4.50	64
-	ransplant	1.70	1.69	4.50	64
CHB related mortality	-				
Immune Tolerant Phase Death		0.7	0.0	0.9	9,14

HBeAg+, non-cirrhotic, Active CHB	Death	1.0	0.3	2.8	15		
HBeAg+, Active CHB, Cirrhotic	Death	3.0	1.3	4.8	15		
HBeAg-, Active CHB, Non-Cirrhotic	Death	1.0	0.3	2.8	15		
HBeAg-, Active CHB, Cirrhotic	Death	3.0	1.3	4.8	15		
HBeAg-, Inactive CHB, Non-Cirrhotic	Death	0.7	0.4	0.9	15		
HBeAg-, Inactive CHB, Cirrhotic	Death	0.7	0.4	0.9	Assumption		
Decompensated Cirrhosis	Death	12.9	10.3	15.5	69		
Hepatocellular Carcinoma	Death	42.7	34.2	51.2	69		
Anti-HBs	Death	0.0	0.0	0.9	6		
Liver transplant related mortality							
Liver Transplant	Death	10.7	9.0	13.0	69		
Post Liver Transplant	Death	4.9	3.9	5.9	69		
Clearance of HBsAg							
HBeAg-, Inactive CHB, Non-Cirrhotic	Anti-HBs, Non-Cirrhotic	0.8	0.6	0.9	38-52		
HBeAg-, Inactive CHB, Cirrhotic	Anti-HBs, Cirrhotic	0.8	0.6	0.9	38-52		
Regression of Cirrhosis							
HBeAg-, Inactive CHB, Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	0.0	0.0	0.5	Assumption		
Anti-HBs, Cirrhotic	Anti-HBs, Non-Cirrhotic	0.0	0.0	0.5	Assumption		
Progression of cirrhosis post-HBs Clearance							
Anti-HBs, Non-Cirrhotic	Anti-HBs, Cirrhotic	0.0	0.0	0.5	Assumption		
1. Model calibrated to match natural history data Section III of Symplement for details							

1: Model calibrated to match natural history data. See Section III of Supplement for details.

2: Development of fulminant hepatitis applied only to patients who develop symptomatic acute hepatitis (i.e. 4% risk of fulminant hepatitis among 30% who develop acute hepatitis in base-case)

3: Double for PWID

4: 1.5x baseline for Africa born Blacks

HBeAg+/-: Hepatitis B e-antigen positive or negative; HBV: Hepatitis B Virus; CHB: Chronic Hepatitis B; HBs – Hepatitis B Surface Antigen ; Anti-HBs – Antibody to Hepatitis B Surface Antigen;

312

313 3. Screening and linkage to care inputs

- 314 The following section details the strategies for screening and linking to care (treatment or vaccination) by
- 315 various populations of interest to this model. The data for prevalence of active hepatitis B and susceptibility
- 316 are also shown for each population.
- A. Prevalence of chronic hepatitis B, by subgroup
- The table below shows the data for prevalence of chronic hepatitis B (HBsAg+) in adults (age 18 and over) within selected populations.

³²⁰ Table S3: Populations with high prevalence of chronic hepatitis B

Populations with high prevalence of	Group level prevalence of chronic hepatitis B				
chronic hepatitis B	Base Case (%)	Lower Limit (%)	Upper Limit (%)		
Foreign born Asian and Pacific Islanders	7.9	5.9^	9.9^	70	
Incarcerated persons	1.4	0.3	3.1	71	
People who inject drugs	11.8	3.5	20	72	
Men who have sex with men	2.3	1.7	2.9	73	
Africa born	9.7	7.3^	12^	74	
Refugees	6.3*	4.7^	7.9^	75	
^Author selected to be +/- 25% of base-case v.		011 and 2014	•	•	
*Calculated from study data based on refugees Ref: Reference	s screened between 2	2011 and 2014			

B. Proportion of persons susceptible to hepatitis B, by subgroup

- The table below shows the proportion of adult (age 18 and over) populations that are expected to be susceptible to hepatitis B virus. This is excluding individuals who are positive for HBsAg (i.e. CHB) and
- have natural or vaccine induced immunity.

326	Table S4: Proportion	of persons	susceptible to	hepatitis B,	by subgroup
-----	----------------------	------------	----------------	--------------	-------------

	Group level susceptibility to hepatitis B virus			
Populations at high risk of hepatitis B	Base Case (%)*	Lower Limit (%)^	Upper Limit (%)^	Ref
Foreign born Asian and Pacific Islanders	41	31	51	76
Incarcerated persons	53	40	66	77,78
People who inject drugs	44	33	55	79
Men who have sex with men	62	47	78	73
Africa born	48	36	61	76
Refugees	55	41	69	80
*Calculated from study data. All values rou ^Author selected to be +/- 25% of base-cas			hole number.	•

327

Ref: Reference

328	C. Screening tests for hepatitis B
329	Numerous types of hepatitis B surface antigen and surface antibody tests are available, most are
330	highly specific and sensitive. ^{81,82} For the purposes of screening patients in this model, HBsAg and
331	anti-HBs assay tests will be modeled using the specificity and sensitivity as described in the table
332	below. HBsAg test is used to detect acute and chronic hepatitis B infection. Anti-HBs is used to
333	detect presence of immunity, either due to resolved past infection or vaccine-induced immunity.

334 Table S5: Specificity and Sensitivity of hepatitis B screening tests

Test	Specificity	Sensitivity	Lower Limit^	Upper Limit^	Ref.	
Hepatitis B Surface Antigen (HBsAg)*	99.97%	99.80%	0.95	1	83	
Hepatitis B Surface Antibody Test (Anti-HBs)	97.90%	99.80%	0.95	1	15,81	
*ARCHITECT HBsAg qualitative test (Abbott Laboratories, North Chicago, IL, USA)						
^Same limits for both specificity and sensitivity						
Ref: Reference						

335

342

336

D. Screening strategies and associated efficacy, by population

- 337The goal of screening strategies is to identify hepatitis B susceptible persons or non-338treated/managed hepatitis B infected patients and connect them to care.⁸⁴ Care in the model is339modeled by either vaccination of susceptible persons or treatment of those with chronic hepatitis B.340The table below shows the various screening strategies that were modeled to either link patients to341treatment or to vaccination (**Table 28**).
- As a comparator, a no intervention strategy (no screening and no linkage to care) was modeled for each population. In the no intervention strategy individuals with active chronic hepatitis B progresses through the natural history model. Those susceptible to hepatitis B enter a 'susceptible' stage in the model, through which persons can become infected with hepatitis B according to a population specific annual incidence rate. Among those who become infected, they progress to acute or chronic hepatitis B, per natural history probabilities discussed above. Those with prior immunity (either natural or due to vaccination) enter the immune state of the model.

Much of the data for screening and linkage to care comes from two major initiatives, Hepatitis Testing and Linkage to Care (HepTLC) and San Francisco Hepatitis B Free (SFHBF).^{70,74,75,85-90} Evidence for effectiveness of screening and linkage to care is not available for all populations; in such circumstances the best available evidence from related screening programs was used. For example, due to lack of evidence showing screening and linking the refugee population to vaccination, this model uses the data from the SFHBF and assumptions were varied in sensitivity analyses. Other exceptions are noted below in the tables as appropriate.

359Interventions specific to each modeled population for screening and treatment and screening and360vaccination are discussed below. The efficacies of each program by population are shown in Tables36129 and 30:

362

363

364

365

366

367 368

369

370

371

372

373

374

375

376

377

378

388

389

390

391 392

358

1. Foreign born persons: Asia and Pacific Islanders (APIs)

For Asian and Pacific Islander (APIs) foreign born persons, three strategies for linkage to treatment and two strategies for linkage to vaccination were modelled. Strategies for linkage to treatment include: 1) no screening and no care; 2) screening and linkage to care based on the data from HepTLC; and 3) screening and linkage to care based on the data from SFHBF program. Strategies for vaccination (for susceptible individuals) included: 1) no screening and vaccination based on the San Francisco Hepatitis B Free program.

A. Linkage to treatment of APIs:

<u>Intervention 1:</u> This strategy modeled the efficacy according to the HepTLC program. The HepTLC strategy focused on community based, testing and linking to treatment populations born in moderate to high prevalence countries (=>2% HBsAg).⁹⁰ The HepTLC program recruited foreign born persons through community-based programs and partnering with medical providers to conduct screening. Components of the program used various methods to reach and link patients to care, including patient navigators, however, detailed data on the effectiveness of such efforts are not available.⁷⁴ But data on effectiveness of linkage to care for Asia and Africa born populations are available.⁹⁰

- 379 Intervention 2: Standalone testing and vaccination sites with treatment referral and 380 community outreach.⁷⁰ San Francisco Hepatitis B Free program established seven testing 381 and vaccination sites for susceptible individuals and referral for medical care for those 382 with chronic hepatitis B.⁷⁰ Majority (80%) of the individuals covered by the program 383 were Asian/Pacific Islanders, of whom 66% were foreign born.⁷⁰ The data in the table 384 below for linkage to medical care and vaccination are from the entire cohort in the 385 program, but are adopted for foreign born Asian/Pacific Islanders for the purposes on 386 this analysis.
- **387** B. Linkage to vaccination of APIs:

<u>Intervention</u>: Using data from San Francisco Hepatitis B Free initiative, for those identified as susceptible, the model used the vaccination rates shown in the table below.⁷⁰ Those vaccinated enter the immune state in the model. If patients only receive one or two doses, a subset experience protection (according to probabilities discussed in a later section) while others go into the 'susceptible' stage.⁹

393 2. Foreign born persons: Africa Born Persons 394 For Africa born persons, two strategies for linkage to treatment and two strategies for 395 linkage to vaccination were modelled. Strategies for linkage to treatment include: 1) no 396 screening and no care; and 2) screening and linkage to care based on the data from HepTLC 397 program.⁷⁴ Due to the lack of direct evidence for vaccination strategies in this population, 398 strategies for vaccination (for those found to susceptible) include: 1) no screening and no 399 vaccination; and 2) screening and vaccination based on the San Francisco Hepatitis B Free 400 program.⁷⁰ 401 A. Linkage to treatment of Africa born persons: 402 Intervention: This strategy modeled the efficacy according to the HepTLC program. Program 403 described above.⁷⁴ 404 B. Linkage to vaccination of Africa born persons: 405 Intervention: Reliable data specific to screening and linking Africa born persons who are 406 susceptible to hepatitis B was not identified. Thus for this population data from the San 407 Francisco Hepatitis B Free initiative was used to simulate the possible effects of a screening and vaccination program (described above).⁷⁰ Assumptions were varied in sensitivity 408 409 analyses. 410 3. Foreign born persons: Refugees 411 For recently immigrated to the US refugee population, two strategies for screening and 412 linkage to treatment and 2 strategies for screening and linkage to vaccination were 413 modeled. Strategies for linkage to treatment include: 1) no screening and no care; and 2) screening and linkage to care based on the data from HepTLC program.⁷⁵ Due to the lack of 414 415 direct evidence for vaccination strategies in this population, strategies for vaccination (for 416 those found to susceptible) included: 1) no screening and no vaccination; and 2) screening 417 and vaccination based on the San Francisco Hepatitis B Free program.⁷⁰ 418 A. Linkage to treatment of Refugees: 419 Intervention: The HepTLC strategy includes supplementation of the existing Minnesota 420 Department of Public Health's programs for screening refugees and linking the infected 421 person to health care.⁷⁵ The HepTLC begin supplementing Minnesota's existing program in 2012, which has shown an increase in linkage to care.⁷⁵ 422 423 B. Linkage to vaccination of Refugees: 424 Intervention: Data specific to screening and linking refugees who are susceptible to 425 hepatitis B has not been identified. Thus for this population data from the San Francisco 426 Hepatitis B Free initiative (program described above) was used to simulate the possible 427 effects of a screening and vaccination program.⁷⁰ Assumptions were varied in sensitivity 428 analyses. 429 4. Incarcerated persons 430 For incarcerated persons, two strategies for linkage to treatment and two strategies for 431 linkage to vaccination were modelled. Strategies for linkage to treatment included: 1) no 432 screening and no care; and 2) a universally offered screening and treatment. Strategies for 433 vaccination included: 1) no screening and no vaccination; and 2) screening and vaccination 434 based on the available population specific evidence. The model does not explicitly model

- 435individuals who are released and re-enter their respective communities. Release may result436in lower follow up with treatment and reduce the chance of completing vaccination series.
- **437** A. Linkage to treatment for Incarcerated Persons:
- 438Intervention:This includes offering universal screening to incarcerated population. Among439those that accept screening, universal treatment was offered and linked to care.
 - B. Linkage to vaccination for Incarcerated Persons:

<u>Intervention</u>: Universal screen and vaccine offer. Data based on prison programs screening and offering vaccination was used, as shown is table below. Those vaccinated enter the immune state in the model. If patients only receive one or two doses, a subset experience protection (according to probabilities discussed in a later section) while others go into the 'susceptible' stage.

446 5. Persons who inject drugs

440

441

442

443

444

445

447

448

449

450

451

452

453

454

455

456

468

469

470

471

472

474

475

476

477

For persons who inject drugs (PWID), two strategies for linkage to treatment and two strategies for linkage to vaccination were modelled. Strategies for linkage to treatment included: 1) no screening and no care; and 2) a screening and treatment at syringe service programs.⁷⁹ In this model, we assume a program in which the syringe service site works in collaboration with local health care providers to link to care. Local provider network may include community health centers, opioid substance treatment clinics, and primary care providers. Strategies for vaccination (for susceptible individuals) include: 1) no screening and no vaccination; and 2) screening and vaccination based on the available population specific evidence.⁷⁹ Incentive pay to recruit patients for screening and to encourage patients to complete the vaccine series was modeled.⁷⁹

- 457 A. Linkage to treatment for PWIDs:
- 458 Intervention: This includes offering universal screening to PWIDs presenting at syringe 459 exchange programs. Among those that accept screening, treatment was offered and linked 460 to care. Syringe service sites are uniquely positioned to screen and help link target population to care.^{91,92} Experience from other screening programs with the PWID has 461 462 shown significant challenges in successful linkage to care for this population, with 463 treatment uptake between 2 to 10%.^{93,94} Population specific data for screening and linkage 464 to treatment at syringe exchange sites for hepatitis B was not available, thus the data for 465 referring to and linking to care data form hepatitis C programs or assumptions as identified in the table below are used.^{74,93,94} 466
- 467 B. Linkage to vaccination for PWIDs:

<u>Intervention</u>: Universal screen and vaccine offer was provided to PWIDs presenting at syringe service programs. The participants who accept and return for vaccination were offered compensation. Those vaccinated enter the immune state in the model. If patients only receive one or two doses, a subset experience protection (according to probabilities discussed in a later section) while others go into the 'susceptible' stage.

- 473 6. Men who have sex with men
 - For men who have sex with men (MSM), two strategies for linkage to treatment and two strategies for linkage to vaccination were modelled. Strategies for linkage to treatment included: 1) no screening and no care; and 2) a screening and treatment at sexually transmitted infections (STI) clinics based on assumed data. Strategies for vaccination (for

- 478susceptible individuals) included: 1) no screening and no vaccination; and 2) screening and479vaccination based on data from STI clinics.
- 480 A. Linkage to treatment for MSMs:
- 481Intervention:This includes offering universal screening to MSMs presenting at STI clinics.482Among those that accept screening, treatment was offered and men were linked to care.483Population specific data for screening and linkage to treatment at STI clinics was not484available, thus the data for referring to and linking to care are assumed based on other485available data.⁷⁴
- B. Linkage to vaccination: *Intervention:* Universal screen and vaccine offer was provided to MSMs presenting at STI
 clinics.⁹⁵ Those vaccinated enter the immune state in the model. If patients only receive
 one or two doses, a subset experience protection (according to probabilities discussed in a
 later section) while others go into the 'susceptible' stage.

491 Table S6: Screening and linkage to care (treatment or vaccination) strategies m	nodeled, by population
---	------------------------

Population/Strategy	Link to Treatment Strategies	Link to Vaccination	Link to Treatment or
		Strategies	Vaccination Strategies
Asia and Pacific Islanders			
Program 1	No screening and care	No screening and care	No screening and care
Program 2	Community outreach/clinic partnership*	Community outreach/clinic referral	Community outreach/clinic referral
Program 3	Community outreach/clinic referral^		
Africa born			
Program 1	No screening and care	No screening and care	No screening and care
Program 2	Community outreach/clinic partnership	Community outreach/clinic referral	Community outreach/clinic referral
Refugees			
Program 1	No screening and care	No screening and care	No screening and care
Program 2	Community outreach/clinic partnership	Community outreach/clinic referral	Community outreach/clinic referral
Incarcerated			
Program 1	No screening and care	No screening and care	No screening and care
Program 2	Universal screening offer	Universal screening offer	Universal screening offer
PWID			
Program 1	No screening and care	No screening and care	No screening and care
Program 2	Syringe services programs	Syringe services programs	Syringe services programs
MSMs			
Program 1	No screening and care	No screening and care	No screening and care
Program 2	STI Clinics	STI Clinics	STI Clinics

#When multiple options were available (clinic referral or partnership), most effective of the screening programs was used in this strategy

PWID = People who inject drugs; MSM = Men who have sex with men; STI = Sexually Transmitted Infections

493	Table S7: Screening program effectiveness of referral and linkage to treatment, by population
-----	---

Population and Intervention	Base-Case (%)	Lower Limit (%)*	Upper Limit (%)*	Ref
All Populations and Interventions				
Acceptance of Screening for HBsAg	70.0	40.0	100.0	15
Accept anti-viral treatment	75.0	50.0	100.0	
Asian and Pacific Islander Population / HepTLC				
Refer to Medical Care ¹	98.0	73.5	100.0	74
Linked to Medical Care ^{1,2}	45.6	34.2	57.0	74
Asian and Pacific Islander Population / SFHBF				
Refer to Medical Care	100.0	73.5	100.0	70
Linked to Medical Care ³	69.0	52.0	86.0	70
Africa Born Population / HepTLC				
Refer to Medical Care ¹	98.0	73.5	100.0	74
Linked to Medical Care ^{1,2}	71.9	54.0	90.0	74
Refugee Population / HepTLC				
Refer to Medical Care ⁴	98.0	73.5	100.0	74
Linked to Medical Care	93.1	70.0	100.0	75
Incarcerated Population / Universal Screening				
Refer to Medical Care ⁵	100.0	75.0	100.0	Assumption
Linked to Medical Care ⁵	90.0	67.5	100.0	Assumption
Persons Who Inject Drugs / Needle Exchange Clinics				
Refer to Medical Care ⁶	75.0	56.0	94.0	Assumption
Linked to Medical Care ⁶	8.6	6.0	40.0	94
Accept Treatment ⁶	6.0	1.6	40.0	93,94
Men who Have Sex with Men / STI Clinics				
Refer to Medical Care ⁶	98.0	73.5	100.0	74
Linked to Medical Care ⁶	45.6	34.2	57.0	74

*Author selected ranges of +/- 25% of base-case value.

HBsAg= Hepatitis B Surface Antigen; HepTLC = Hepatitis Testing and Linkage to Care initiative; SFHBF = San Francisco Hepatitis B Free initiative; STI = Sexually Transmitted Infections; Ref = References

1: Author calculated from study data.

2: Attended 1st medical appointment.

3: The paper refers to patients "enrolled in follow-up clinical care;" authors assume this entails successful linkage to a medical professional for anti-viral treatment.

4: The paper does not specifically state the rate of referral thus 98% referral rate, based on other HepTLC data, was assumed. 5: It is assumed that due the nature of incarceration, all patients positive for HBsAg will be referred to care and 90% will be successfully linked and initiate treatment.

6: Population specific data for referral and linkage to treatment in syringe exchange sites not available; data from hepatitis C literature used to assume linkage to care and acceptance of treatment. Base-case values subjected to wide author-selected sensitivity ranges.

495 Table S8: Screening program effectiveness of referral and linkage to vaccination, by population

Population and Intervention	Base-Case (%)	Lower Limit (%)*	Upper Limit (%)*	Ref
All Populations and Interventions				
Acceptance of Screening for Anti-HBs	70.0	40.0	100.0	15
Asian and Pacific Islander Population / SFHBF				
Refer to Medical Care	100.0	73.5	100.0	70
Linked to Medical Care ¹	69.0	52.0	86.0	70
Accept and receive 1 st dose of vaccine	52.0	39.0	65.0	70
2 nd dose of vaccine received ²	50.0	25.0	75.0	Assumption
3 rd dose of vaccine received	49.0	44.0	74.0	70
Africa Born Population / SFHBF				
Refer to Medical Care	100.0	73.5	100.0	70
Linked to Medical Care ¹	69.0	52.0	86.0	70
Accept and receive 1 st dose of vaccine	52.0	39.0	65.0	70
2 nd dose of vaccine received ²	50.0	25.0	75.0	Assumption
3 rd dose of vaccine received	49.0	44.0	74.0	70
Refugee Population / SFHBF				
Refer to Medical Care	100.0	73.5	100.0	70
Linked to Medical Care ¹	69.0	52.0	86.0	70
Accept and receive 1 st dose of vaccine	52.0	39.0	65.0	70
2 nd dose of vaccine received ²	50.0	25.0	75.0	Assumption
3 rd dose of vaccine received	49.0	44.0	74.0	70
Incarcerated Population / Universal Screening				
Refer to Medical Care ³	100.0	75.0	100.0	Assumption
Linked to Medical Care ³	90.0	67.5	100.0	Assumption
Accept and receive 1st dose of vaccine	70.0	40.0	100	77,78
2 nd dose of vaccine received ⁴	65.0	49.0	81.0	Assumption
3 rd dose of vaccine received ⁴	60.0	45.0	75.0	Assumption
Persons Who Inject Drugs / Needle Exchange Clinics				
Refer to Medical Care ⁵	98.0	73.5	100.0	74
Linked to Medical Care ⁵	45.6	34.2	57.0	74
Accept and receive 1st dose of vaccine	69.0	52.0	86.0	79
2 nd dose of vaccine received	53.0	40.0	67.0	79
3 rd dose of vaccine received	40.0	30.0	50.0	79
Men who Have Sex with Men / STI Clinics				
Refer to Medical Care ⁵	98.0	73.5	100.0	74
Linked to Medical Care ⁵	45.6	34.2	57.0	74
Accept and receive 1st dose of vaccine	62.6	47.0	78.0	95
2 nd dose of vaccine received	50.8	38.0	64.0	95
3 rd dose of vaccine received	35.0	26.0	43.0	95

*Author selected ranges of +/- 25% of base-case value.

HBsAg= Hepatitis B Surface Antigen; HepTLC = Hepatitis Testing and Linkage to Care initiative; SFHBF = San Francisco Hepatitis B Free initiative; STI = Sexually Transmitted Infections; Ref = References

1: The paper refers to patients "enrolled in follow-up clinical care;" authors assume this entails successful linkage to a medical professional for anti-viral treatment.

2: Data for completion of two doses not presented in paper; consistent with literature, authors assumed a reduction in completion in second dose compared to first.

3: It is assumed that due the nature of incarceration, all patients positive for HBsAg will be referred to care and 90% will be successfully linked and initiate treatment.

4: Given that the incarcerated individuals will be stationary with scheduled care, it is assumed that vaccine completion rates, once accepted will be high. A reduction in second and third dose completion is modeled for patients who may choose not to complete the series.

5: Population specific data for referral and linkage to treatment not available; HepTLC data used for referral and link to care.

496	4. Transition probabilities and risk reduction with chronic hepatitis B treatment
497	A. Chronic hepatitis B with treatment
498	The goals of treatment of chronic hepatitis B with anti-viral medicines is to increase the probability
499	of transitioning from active hepatitis B to inactive state by reducing DNA replication and normalizing
500	ALT levels, as well as to increase seroconversion rate of HBeAg+ to HBeAg ^{96,97} The desired outcome
501	of HBsAg clearance is rare with therapy. ^{96,98} As a result of lower levels of HBV DNA and
502	seroconversion to HBeAg-, other benefits of therapy include reduction in incidence of cirrhosis,
503	hepatic decompensation, and hepatocellular carcinoma. ⁹⁹⁻¹⁰⁵ Transition to inactive hepatitis B,
504	including HBeAg seroconversion is higher in the first year of nucelos(t)ide treatment, but continues
505	with ongoing therapy, albeit at a decreased rate. ¹⁰⁶
506	
507	In this study, success of therapy is defined transitioning to inactive state of hepatitis B. For HBeAg+
508	patients this entails undetectable DNA, normal ALT and HBeAg loss in a given year of treatment. For
509	HBeAg- patients, treatment success will be indicated by undetectable DNA and ALT normalization
510	after 1 year of therapy. For entecavir and tenofovir, in both treatment naïve and lamivudine-
511	experienced patients, data on efficacy (transitioning from active to inactive states and loss of
512	HBsAg), were collected from clinical trials, follow up post-market studies, and other published
513	literature including economic studies. ^{6,107-119} Clinical data show that response to therapy is higher in
514	the first year of treatment (Table S9) compared to subsequent years (Table S10). Annual
515	probabilities for efficacy and resistance were calculated using data from clinical trials and post-
516	market studies per the methods described above.

517 Table S9: Transition probabilities with anti-viral treatment, year 1

Source State	Target State	Base- Case (%)	Lower Limit (%)	Upper Limit (%)	Ref
Tenofovir, Treatment Naïve, Year 1					
HBeAg+, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	21.0	10.5	31.5	107
HBeAg+, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	21.0	10.5	31.5	107
HBeAg-, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	76.0	38.0	100.0	107
HBeAg-, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	76.0	38.0	100.0	107
HBeAg-, Inactive CHB, Non-Cirrhotic	Anti-HBs, Non-Cirrhotic	1.80	0.90	2.70	107
HBeAg-, Inactive CHB, Cirrhotic	Anti-HBs, Cirrhotic	1.80	0.90	2.70	107
Discontinuation rate ¹		3.50	1.75	5.25	109
Tenofovir, Treatment Experienced, Year 1					
HBeAg+, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	21.0	10.5	31.5	107
HBeAg+, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	21.0	10.5	31.5	107
HBeAg-, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	76.0	38.0	100.0	107
HBeAg-, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	76.0	38.0	100.0	107
HBeAg-, Inactive CHB, Non-Cirrhotic	Anti-HBs, Non-Cirrhotic	1.0	0.8	1.3	107
HBeAg-, Inactive CHB, Cirrhotic	Anti-HBs, Cirrhotic	1.0	0.8	1.3	107
Discontinuation rate ¹		3.50	1.75	5.25	109
Entecavir, Treatment Naïve, Year 1					
HBeAg+, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	22.0	16.5	27.5	120
HBeAg+, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	22.0	16.5	27.5	120
HBeAg-, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	78.0	58.5	97.5	119
HBeAg-, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	78.0	58.5	97.5	119
HBeAg-, Inactive CHB, Non-Cirrhotic	Anti-HBs, Non-Cirrhotic	1.0	0.8	1.3	120
HBeAg-, Inactive CHB, Cirrhotic	Anti-HBs, Cirrhotic	1.0	0.8	1.3	120
Discontinuation rate ¹		5.2	3.9	6.5	111
HBeAg+/-= Hepatitis B eAntigen positive o B; Ref = References	r negative; Anti-HBs = Antibody of Hepat	itis B Surface	Antigen; CHE	B = Chronic He	patitis

518

520 Table S10: Annual probabilities with anti-viral treatment, year 2+

Source State	Target State	Base- Case (%)	Lower Limit (%)	Upper Limit (%)	Ref
Tenofovir, Treatment Naïve, Year 2+					
HBeAg+, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	11.40	5.70	17.09	109
HBeAg+, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	17.60	8.78	26.33	109
HBeAg-, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	13.80	6.90	20.69	117
HBeAg-, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	13.80	6.90	20.69	117
HBeAg-, Inactive CHB, Non-Cirrhotic	Anti-HBs, Non-Cirrhotic	1.00	0.50	1.50	109
HBeAg-, Inactive CHB, Cirrhotic	Anti-HBs, Cirrhotic	1.00	0.50	1.50	109
Discontinuation rate ¹		3.50	1.75	5.25	109
Tenofovir, Treatment Experienced, Year 2+					
HBeAg+, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	11.40	5.70	17.09	109
HBeAg+, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	17.60	8.78	26.33	109
HBeAg-, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	13.80	6.90	20.69	117
HBeAg-, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	13.80	6.90	20.69	117
HBeAg-, Inactive CHB, Non-Cirrhotic	Anti-HBs, Non-Cirrhotic	1.00	0.50	1.50	109
HBeAg-, Inactive CHB, Cirrhotic	Anti-HBs, Cirrhotic	1.00	0.50	1.50	109
Discontinuation rate ¹		3.50	1.75	5.25	109
Entecavir, Treatment Naïve, Year 2+					
HBeAg+, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	5.20	2.60	7.79	111
HBeAg+, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	5.20	2.60	7.79	111
HBeAg-, Active CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	5.20	2.60	7.79	111
HBeAg-, Active CHB, Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic	5.20	2.60	7.79	111
HBeAg-, Inactive CHB, Non-Cirrhotic	Anti-HBs, Non-Cirrhotic	0.70	0.33	0.98	111
HBeAg-, Inactive CHB, Cirrhotic	Anti-HBs, Cirrhotic	0.70	0.33	0.98	111
Discontinuation rate ¹		5.20	2.58	7.74	111

1: for PWIDs modeled as 2x baseline

HBeAg+/-= Hepatitis B eAntigen positive or negative; Anti-HBs = Antibody of Hepatitis B Surface Antigen; CHB = Chronic Hepatitis B; Ref = References

521

522

B. Resistance to nucleos(t)ide therapies

Clinical evidence indicates that it is possible to develop resistance to nucleos(t)ide therapies leading 523 to treatment failure, which may result in progression liver disease due to CHB.¹²¹ With the exception 524 of tenofovir, resistance to other anti-viral drugs has been seen observed in clinical trials and long-525 term post-market studies.^{3,116,117,122-125} The risk of developing resistance increases with increase 526 duration of therapy, as observed with lamivudine and entecavir.^{3,108,115,116,126} Furthermore, risk of 527 cross-resistance is higher for patients who may have failed another nucleos(t)ide therapy and 528 response to another anti-viral with a prior treatment failure.^{3,110} For this model, based on the 529 530 available clinical data, annual probability of developing resistance, based on treatment naïve or experienced status was portrayed. When applicable, the risk of developing resistance will increase 531 532 per year for the first five years of therapy, followed by constant annual probability equal to year 5 of treatment. 3,6,117,123,124,127 533

535 Table S11: Annual probabilities for developing resistance to nucleos(t)ide therapies

Therapy (patient population)	Year of	Ann	ual probability of re	sistance	
	Treatment	Base Case (%)	Lower Limit (%)	Upper Limit (%)	Ref
Entecavir (Treatment Naïve,	1	0.4	0.0	0.9	3,6,123
HBeAg+ and - patients, cirrhotic	2	0.4	0.0	0.9	3,6,123
and non-cirrhotic)	3	0.7	0.0	2.0	3,6,123
	4	0.8	0.0	2.5	3,6,123
	5+	0.8	0.0	2.5	3,6,123
Tenofovir (Treatment Naïve,	1	0.0	0.0	1.0	117,124,127
HBeAg+ and - patients, cirrhotic	2	0.0	0.0	1.2	117,124,127
and non-cirrhotic)*	3	0.0	0.0	1.4	117,124,127
	4	0.0	0.0	1.6	117,124,127
	5+	0.0	0.0	1.8	117,124,127
Tenofovir (in treatment	1	0.0	0.0	1.2	117,124,127
experienced, lamivudine resistant	2	0.0	0.0	1.4	117,124,127
patients, HBeAg+ and - patients, cirrhotic and non-cirrhotic)*	3	0.0	0.0	1.6	117,124,127
en moue unu non-en moue)	4	0.0	0.0	1.8	117,124,127
	5+	0.0	0.0	2.0	117,124,127

*Author assumed upper limit for annual probability to develop resistance associated variants (RAV). HBeAg+/-= Hepatitis B eAntigen positive or negative; Ref = References

536

537

C. Retreatment after discontinuation or RAV development

538Patients may discontinue therapy for any reason according to the treatment-specific annual539probabilities listed above. Patients may also develop resistance forcing them to stop a given540therapy. For the base-case scenario, we assumed that up to 75% of the patients who discontinue541therapy may be retreated annually. If patients develop resistance to entecavir, up to 75% may be542retreated with tenofovir. If patients develop resistance to tenofovir (although not yet reported),543they will enter natural history model.

544 Table S12: Proportion of patients retreated on an annual basis after discontinuation of therapy or development of resistance

	Base-Case (%)	Lower Limit (%)	Upper Limit (%)	Reference	
Discontinuation of Ther	ару				
Entecavir	75	25	100	Assumption	
Tenofovir	75	25	100	Assumption	
Development of Resistance Associated Variant (RAV)					
Entecavir	75	25	100	Assumption	

545

546

547

548

549

550

551 552

553

D. Probability of DNA suppression, reduction in advanced liver disease and regression of cirrhosis with treatment

One of the key outcomes of treatment with anti-viral drugs is a marked reduction in DNA level of hepatitis B virus. A reduction in hepatitis B virus DNA has been linked to a reduction in development of advanced liver disease chronic hepatitis B, particularly hepatocellular carcinoma and cirrhosis.^{68,128-131} Clinical studies for both tenofovir and entecavir have shown a reduction in hepatitis B virus DNA levels within the first year of treatment.^{107,119,120} As seen in Table S13, the DNA reduction is dependent on HBeAg status; less HBeAg positive patients experience a DNA reduction

- 554than HBeAg negative patients. And a greater number of tenofovir patients, in clinical studies,555reached undecteable DNA levels than did entecavir patients. Proportion of patients experiencing556DNA reduction in treatment year 2 and beyond were reduced by approximately 40% based on a557previously published estimate, which was varied widely in sensitivity analyses (Table S13).⁶ During558long term (5 to 6 years) follow up of patients in clinical trials, treatment has also been shown to559reverse cirrhosis at high rates; we used data from clinical trials to estimate annual regression rates560from cirrhosis to no cirrhosis in inactive and anti-HBs states.^{132,133}
- 562Table S14 shows the relative risk reductions for progression to cirrhosis, decompensated cirrhosis,563and hepatocellular carcinoma in patients who achieve DNA suppression with treatment.⁶ The annual564probability of regression from cirrhosis is also listed.⁶ Patients who do not achieve DNA suppression565(per ratios listed in Table S13), will experience annual natural history transition probabilities.

566 Table S13: Proportion of patients with suppressed hepatitis B DNA in the first year of treatment and subsequent years

Treatment	Base-case (%)	Lower-Limit (%)	Upper-Limit (%)	Reference
Year 1 of treatment				
Tenofovir				
HBeAg(+)^	76.00	57.00	95.00	107
HBeAg(-)^	93.00	70.00	1.00	107
Entecavir				
HBeAg(+)^	67.00	5.00	84.00	120
HBeAg(-)^	90.00	68.00	1.00	119
Year 2+ of treatment				
Ratio of year 1	62.99	47.24	78.74	6
probability				
^Author selected lower and	upper limits of +/-2	25%.		
HBeAg+/-= Hepatitis B eA	ntigen positive or ne	egative		

567

568 Table S14: Risk reduction of advanced liver disease with suppressed hepatitis B virus DNA with treatment

Source State	Target State	Base Case	Lower Limit	Upper Limit	Ref
Progression to Cirrhosis					
HBeAg+, Active CHB, Non-Cirrhotic	HBeAg+, Active CHB, Cirrhotic				97
HBeAg-, Active CHB, Non-Cirrhotic	HBeAg-, Active CHB, Cirrhotic	0.	.55 (0.38-0.78	$(3)^{1}$	97
HBeAg-, Inactive CHB, Non-Cirrhotic	HBeAg-, Inactive CHB, Cirrhotic				97
Progression to Decompensated Cirrhosis					
HBeAg+, Active CHB, Cirrhotic	Decompensated Cirrhosis				97
HBeAg-, Active CHB, Cirrhotic	Decompensated Cirrhosis	0.	.45 (0.22-0.89	$(\partial)^1$	97
HBeAg-, Inactive CHB, Cirrhotic	Decompensated Cirrhosis				Assumption
Progression to Hepatocellular Carcinoma					
HBeAg+, Active CHB, Non-Cirrhotic	Hepatocellular Carcinoma				6
HBeAg-, Active CHB, Non-Cirrhotic	Hepatocellular Carcinoma	0.52	209 (0.391-0.6	551) ¹	6
HBeAg-, Inactive CHB, Non-Cirrhotic	Hepatocellular Carcinoma				6
HBeAg+, Active CHB, Cirrhotic	Hepatocellular Carcinoma				97
HBeAg-, Active CHB, Cirrhotic	Hepatocellular Carcinoma	0.	.54 (0.41-0.72	$(2)^{1}$	97
HBeAg-, Inactive CHB, Cirrhotic	Hepatocellular Carcinoma				97
CHB related mortality					
HBeAg+, Active CHB, Non-Cirrhotic	Death				6
HBeAg-, Active CHB, Non-Cirrhotic	Death	0.169	5 (0.0469-0.6	5098) ¹	6
HBeAg-, Inactive CHB, Non-Cirrhotic	Death				6
HBeAg+, Active CHB, Cirrhotic	Death				97
HBeAg-, Active CHB, Cirrhotic	Death	$0.68 (0.00-0.90)^{1,2}$		97	
HBeAg-, Inactive CHB, Cirrhotic	Death				97
Regression of Cirrhosis					
HBeAg-, Inactive CHB, Cirrhotic	HBeAg-, Inactive CHB, Non-Cirrhotic	0.24	0.18	0.30	132,133
Anti-HBs, Cirrhotic	Anti-HBs, Non-Cirrhotic	0.24	0.18	0.30	132,133
1: Relative risk reduction compared to nat	ural history probability with detectable DN	ΙA			

2: Author selected range

HBeAg+/-= Hepatitis B eAntigen positive or negative; Anti-HBs = Antibody of Hepatitis B Surface Antigen; CHB = Chronic Hepatitis B; Ref = References

570 5. Transmission probabilities

571 Annual incidence of acute hepatitis B for each of the high-risk population groups was determined from 572 published literature, when available. For Africa born and refugee population, due to lack of quality and 573 reliable data on annual incidence of acute hepatitis B, we used a rate equivalent of high-risk Asian Pacific

- 574 Islander population.
- 575 Table S15: Annual incidence of horizontal acute infection amongst susceptible adults within a population

Source	Susceptible	Base-Case (%) annual	Lower	Upper	Ref
population	population	incidence of acute	limit (%)	limit (%)	
		hepatitis B			
FB API ¹	FB API	0.64	0.47	0.81*	134
Incarcerated	Incarcerated	2.31^2	0.82	3.80	77
PWID	PWID	10.00	8.30	12.20	135,136
MSM	MSM	0.96	0.85	1.10	137
Africa Born	Africa Born	0.64	0.47	0.81*	Assumption ³
Refugee	Refugee	0.64	0.47	0.81*	Assumption ³

*Author selected upper range; the source had listed the range as 0.47 to 0.61, in which the upper range is lower than the base-case value. Authors adjusted the upper range value by the same factor as lower range value from base-case value.

1: Incidence rate for high-risk Asian Pacific Islander population used.

2: Calculated mean from min and max range.

3: Due to lack of quality population specific data, the annual incidence is assumed to be higher than the general population incidence rate and equivalent of high-risk Asian Pacific Islander population. FB = Foreign Born; API = Asian Pacific Islander; PWID = People who inject drugs; MSM = Men who have sex with men; Ref = Reference

576

578

579

580

581

582

583

584

585

577 6. Prevention

A. Hepatitis B vaccine

Two vaccines are available, however, since there is no difference in doses, efficacy or adverse events, we modeled "vaccine" intervention. The cost of the vaccines may differ and was modeled accordingly using a range to cover the uncertainty. Immunity due to vaccination was assumed to continue for life without the need for boosters.^{138,139} Due to their rare occurrence, adverse events to the vaccine were not modeled.¹⁶

B. Vaccination effectiveness by number of doses

Vaccine efficacy varies by number of doses a patient receives, as presented in the table below.

586 Table S16: Hepatitis B vaccine effectiveness rates among those completing the 3-dose series, by number of doses

Number of Doses	Base-Case (%)	Lower Limit (%)	Upper Limit (%)	Ref
Efficacy with 1 Dose	14.50	13.78^	15.23^	9
Efficacy with 2 Doses	81.00	79.50	82.90	9
Efficacy with 3 Doses	98.10	93.12^	1.00^	9
^Author calculated for +/- 25% of base-case	e value	·		
Ref = Reference				

588 7. Health related quality of life: Natural history and treatment

Health related quality of life was estimated using health state utility values based on a literature review
of published primary studies and economic evaluation of hepatitis B.^{6,7,9,10,12,13,15,16,140-148} The utility
values vary widely in literature. Thus, whenever possible we relied on primary studies conducted in
hepatitis B-infected individuals.^{141,147} For perinatal exposure and asymptomatic acute hepatitis states,
we assumed no loss of quality of life and patients would not be aware of their status nor would they feel
physical symptoms.

595 Table S17: Health state utilities

Health State	Base case	Lower Limit	Upper Limit	Ref
Susceptible	0.99	0.98	1.00	15
Immune	0.99	0.98	1.00	15
HBV Exposure, Perinatal	0.99	0.97	1.00	Assumption*
Acute Hepatitis, Adult, asymptomatic	0.99	0.95	1.00	Assumption*
Acute Hepatitis, Adult, symptomatic	0.70	0.63	0.77	142
Fulminant Hepatitis	0.37	0.333	0.407	140
Immune Tolerant Phase	0.95	0.84	1.00	146
HBeAg+, Active CHB, Non-Cirrhotic	0.670	0.603	0.737	141
HBeAg+, Active CHB, Cirrhotic	0.660	0.594	0.726	141
HBeAg-, Active CHB, Non-Cirrhotic	0.670	0.603	0.737	141
HBeAg-, Active CHB, Cirrhotic	0.660	0.594	0.726	141
HBeAg-, Inactive CHB, Non-Cirrhotic	0.850	0.765	0.935	6
HBeAg-, Inactive CHB, Cirrhotic	0.850	0.765	0.935	6
Decompensated Cirrhosis	0.370	0.333	0.407	141
Hepatocellular Carcinoma	0.430	0.387	0.473	141
Liver Transplant	0.570	0.513	0.627	141
Post Liver Transplant	0.640	0.576	0.704	141
Anti-HBs, Non-Cirrhotic	0.860	0.774	0.946	6
Anti-HBs, Cirrhotic	0.860	0.774	0.946	6
*It is assumed that if patients are not aw	are of their in	nfection and are	not symptomatic	, there would be
minimal to no loss of quality of life, thus	we used a ut	tility of 0.99 to in	ndicate near perfe	ect health.
HBeAg+/-= Hepatitis B eAntigen positiv	ve or negative	e; Anti-HBs = Ar	tibody of Hepati	itis B Surface
Antigen; CHB = Chronic Hepatitis B; Re	ef = Referenc	es		

597 8. Utility loss with anti-viral treatment

598 Utility loss due to adverse events with entecavir and tenofovir was calculated by weighting the frequency of

adverse events from clinical trials with the disutility weights for common and serious side-effects.^{107,119,120}

- 600 The disutility weights are adjusted under the assumption that most patients will experience adverse at most
- 601 25% of the time.

Drug	Base Case (annual)*	Lower Limit*	Upper Limit*	Ref			
Entecavir	-0.029	-0.043	0.000	111,119,120,149			
Tenofovir	-0.031	-0.047	0.000	107,109			
* (-) represents utility loss; it does not imply a negative utility.							
Ref = Refer	Ref = Reference						

⁵⁹⁶

604 9. Cost Inputs

605 A. Healthcare costs

606 Costs related to medical management of acute and chronic hepatitis B through its natural history were collected from economic evaluations of the disease.^{7,8,10,11,16,69,150-153} When data for specific health states 607 were not available, we relied on educated and expert assumptions. For example, costs of managing 608 609 initial exposure in infants and asymptomatic acute infection in adults were assumed to be zero. The 610 reason is that in majority of patients with initial exposure, the acute infection is asymptomatic; and if patients are not aware of their status, no medical care will be sought. Cost of managing patients in 611 612 inactive phase of hepatitis B was assumed to be half of the costs in active state. Cost of managing 613 patients following HBeAg clearance (or development of anti-HBe), was assumed to be half of the costs of managing patients in inactive phase. HBeAg cleared patients are still at risk of developing advanced liver 614 diseases, including hepatocellular carcinoma, as such require continuous monitoring.^{45,49-53} Costs in 615 616 literature are not segregated between active HBeAg positive and negative states; in this model we 617 assumed that the costs of management in the active phase were same, regardless of HBeAg status. 618

Further, for advanced liver disease, we assumed that cost of management would not differ significantly
 that those established for advanced liver disease in hepatitis C. Advanced liver disease in this context is
 considered to be cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, and liver transplant
 (including post-liver transplant). Therefore, we used the data for management of advanced liver
 conditions from a recent hepatitis C economic evaluation.⁶⁹

625 When available, confidence intervals around point estimates of costs from published sources were used. 626 When not available we used values of +/- 50% of the base-case estimate; however, for active and 627 inactive non-cirrhotic and cirrhotic states, as well as HBs cleared states, we used an interval of 50% to 628 300% to compensate for the variation in the point estimates observed in the literature.^{7,10,11,16}

629

624

Health State	Base Case (\$/year)	Lower Limit	Upper Limit	Ref
HBV Exposure, Perinatal	0	0	622	Assumption*
Acute Hepatitis, Adult, asymptomatic	0	0	622	Assumption*
Acute Hepatitis, Adult, symptomatic	357	185	622	16
Fulminant Hepatitis (E)	17,309	17,362	46,489	16
Immune Tolerant Phase	520	265	1,059	151
HBeAg+, Active CHB, Non-Cirrhotic	1,293	647	3,880	152
HBeAg+, Active CHB, Cirrhotic	2,714	1,357	8,141	69
HBeAg-, Active CHB, Non-Cirrhotic	1,293	647	3,880	152
HBeAg-, Active CHB, Cirrhotic	2,714	1,357	8,141	69
HBeAg-, Inactive CHB, Non-Cirrhotic	647	323	1,940	Assumption^
HBeAg-, Inactive CHB, Cirrhotic	1,357	678	4,070	Assumption^
Decompensated Cirrhosis	32,134	30,159	34,111	69
Hepatocellular Carcinoma	51,258	46,002	56,507	69
Liver Transplant (E)	203,489	187,651	219,323	69
Post Liver Transplant	44,318	36,213	52,423	69
Anti-HBs, Non-Cirrhotic	323	162	970	Assumption ^{&}
Anti-HBs, Cirrhotic	678	339	2,035	Assumption ^{&}

630 Table S19: Hepatitis B health state costs (annual except as noted with E for episode)

*Assumed that with initial asymptomatic exposure when patients are unaware of infection status, there would be no healthcare associated costs.

^Assumed to be 50% of the costs in active phase of chronic hepatitis B.

&Assumed to be 50% of the costs in inactive phase of chronic hepatitis B.

HBeAg+/-= Hepatitis B eAntigen positive or negative; Anti-HBs = Antibody of Hepatitis B Surface Antigen; CHB = Chronic Hepatitis B; Ref = Reference

- B. Diagnostic, and monitoring tests for hepatitis B
- 633 1. Initial diagnostic tests, frequency of testing and related costs
- If HBsAg is positive, patients will be referred for medical management, which will initiate with
 number of baseline tests as shown in the table below. The cost of the tests was determined using
 clinical laboratory and physician fee schedules of Centers for Medicare and Medicaid Services.^{154,155}
- 637 Table S20: Initial diagnostic tests, frequency of testing and related costs

Tests for Initial Evaluation	Base Case (\$/unit)	Lower Limit	Upper Limit	Ref
Hepatitis B e-Antigen (HBeAg)	15.70	7.85	23.55	154
Hepatitis B e-Antigen Antibody (anti-HBe)	15.76	7.88	23.64	154
Hepatitis B Surface Antibody (anti-HBs)	14.63	7.32	21.95	154
Hepatitis B Core Antigen (anti-HBc)	16.41	8.21	24.62	154
IgM Antibody to Hepatitis B Core Antigen (IgM anti-HBc)^	16.04	8.02	24.06	154
Hepatitis B DNA Quantification	58.35	29.18	87.53	154
Liver Function Tests	11.13	5.57	16.70	154
Complete Blood Count	10.59	5.30	15.89	154
Hepatitis C Virus	19.44	9.72	29.16	154
Hepatitis D virus	23.38	11.69	35.07	154
Human immunodeficiency virus	18.67	9.34	28.01	154
Renal function panel	11.83	5.92	17.75	154
Alpha-fetoprotein serum (age >40, clinical decision <40)	22.85	11.43	34.28	154
Ultrasound (Right Upper Quadrant ultrasound)	101.31	50.66	151.97	155

HBeAg= Hepatitis B eAntigen; Anti-HBs = Antibody to Hepatitis B Surface Antigen; Anti-HBc = Antibody to Hepatitis B Core Antigen; IgM = Immunoglobulin M; CHB = Chronic Hepatitis B; Ref = References

638 639

640

641 642

643

644

631

632

2. Tests for monitoring for patients with or without ongoing treatment, frequency of testing and related costs

Patients who are linked to care, and are being treated with antiviral drugs will be monitored using the following tests at regular intervals. Patients who are not undergoing treatment or have completed treatment but remain in care will be monitored at regular intervals using the indicated tests.

645The frequency of tests is determined by clinical experience; the cost of the tests was determined646using clinical laboratory and physician fee schedules of Centers for Medicare and Medicaid647Services.^{154,155}

648 Table S21: Tests for monitoring treatment, frequency of testing and related costs

Test for monitoring	No treatment (#/year)	With treatment (#/year)	Base Case (\$/unit)	Lower Limit	Upper Limit	Ref
Hepatitis B e-Antigen (HBeAg)	0	2	15.70	7.85	23.55	154
Hepatitis B e-Antigen Antibody (anti-HBe)	0	2	15.76	7.88	23.64	154
Hepatitis B Surface Antigen^	0	1	14.07	7.04	21.11	154
Hepatitis B Surface Antibody (anti-HBs)*	0	1	14.63	7.32	21.95	154
Hepatitis B DNA Quantification	2	4	58.35	29.18	87.53	154
Liver Function Tests	2	4	11.13	5.57	16.70	154
Complete Blood Count	0	1	10.59	5.30	15.89	154
Renal function panel	0	4	11.83	5.92	17.75	154
Bone density scan/DEXA (Tenofovir therapy)	0	Q3 years	45.37	22.69	68.06	155
Alpha-Fetoprotein Serum	2	2	22.85	11.43	34.28	154
Ultrasound (RUQ ultrasound)	2	2	101.31	50.66	151.97	155

^Seroconverted patients only

*One time only test, only on HBsAg loss

HBeAg= Hepatitis B eAntigen; anti-HBe= Antibody to Hepatitis B eAntigen; Anti-HBs = Antibody to Hepatitis B Surface Antigen; Anti-HBc = Antibody to Hepatitis B Core Antigen; IgM = Immunoglobulin M; CHB = Chronic Hepatitis B; RUQ = Right Upper Quadrant; Q3 years = Every 3 Years; Ref = References

649

650

C. Costs of screening strategies

651 The model takes into account total cost per person for administration of a given strategy, plus 652 cost of screening tests, vaccines and medicines according to costs listed elsewhere in this 653 document. The administration costs include human resources to manage the program, cost to 654 administer the initial screening test, and advertising (e.g. printed materials/flyers and other 655 adverts) for recruiting, as applicable, by each type of program. However, if program specific 656 costs were not available we used per person costs per screening from similar program 657 categories reported in literature.⁸⁹ The modeled programs can be generally categorized into the 658 following categories: 1) community clinic program (for incarcerated persons and MSM outreach 659 via prison clinics and sexually transmitted infection clinics, respectively); 2) community outreach 660 program (for PWID outreach via syringe exchange sites); 3) Community outreach and partnership program (for outreach and linkage to care via HepTLC program); and 4) community 661 outreach and clinic program (San Francisco Hepatitis B Free program). From the published 662 663 program costs, we subtracted the cost of the hepatitis B screening tests to estimate the 664 administrative costs of the program. The administrative costs were then adjusted to 2016 dollars using the medical component of the Consumer Price Index (Table 31). To test the 665 666 potential uncertainty in our estimates program costs, the values were varied widely from 75% to 300% of the base-case values. 667

668Total cost for each modeled program include administrative costs (as reported in table below),669cost of initial screening test (either HBsAg or anti-HBs), cost of full set of tests when referred to670care, cost of vaccine or treatment, and cost of lifetime management of hepatitis B, with or671without treatment or vaccination.

673 Table S22: Administrative costs of screening programs

Cost Component by Screening Program ¹	Base-Case	Lower Limit	Upper Limit	Ref
	(USD, Cost/person)	(USD)^	(USD)^	
Vaccine Administration				
All programs	16	12	48	134
Program Administration				
HepTLC ²	178	134	534	89
SFHBF ³	140	105	420	89
Prison based clinic ⁴	27	20	81	89
Syringe Exchange Sites ⁵	97	73	291	89
Incentive Pay ⁶	15	10	45	79
STI Clinics ⁴	27	20	81	89

^Author selected ranges of 75% to 300% of base-case.

HepTLC = Hepatitis Testing and Linkage to Care initiative; SFHBF = San Francisco Hepatitis B Free initiative; STI = Sexually Transmitted Infections; USD = United States Dollars; Ref = References

1: All cost inflation adjusted to 2016 using medical component of Consumer Price Index. Costs rounded to the nearest whole dollar.

2: Community outreach and partnership model costs applied

3: Community outreach and clinic model costs applied, author calculated from study data by adding separate costs of

community outreach and clinic model.

4: Clinic model costs applied

5: Community outreach model costs applied

6: Incentive pay applied to the first screening visit for screened patients; and for each subsequent vaccine visit for patients requiring vaccination.

674

676

675 D. Treatmen

D. Treatment and vaccines related costs

1. Treatment (drug) costs

Wholesale acquisition price (WAC) form Red Book Online is used for cost of drugs.¹⁵⁶ The base-case cost
will be set at 80% of listed WAC price with confidence bounds of 50% to 100% for sensitivity analyses.
The 80% of WAC for base-case is selected because it is likely that most, if not all payers, receive
discounts from the listed retail cost.¹⁵⁷ The upper bound of the sensitivity analyses is equal to the retail
cost listed in RedBook as it is unlikely that payers would acquire the drugs for a price greater than the
WAC. Other prices, such as discounted prices for certain payers may also be modeled in scenario
analyses.

684

685 *Table S23: Cost of treatments*

Drug	Dose/day	Base Case (\$/month) [†]	Lower Limit [‡]	Upper Limit [‡]	Ref				
Entecavir	0.5 mg	560	350	700	156				
Tenofovir	300 mg	798	499	998	156				
[†] 80% of Wholesale Acquisition Cost (WAC) monthly cost from RedBook online. [‡] Lower limit is set at 50% of WAC monthly cost from RedBook online; upper limit is set equal to the WAC monthly cost from RedBook online.									
Ref = Referen	•	ibook onnie.							

687

2. Vaccination costs

688Costs for adult and pediatric vaccine formulations will be modeled as this model will be analyzing689strategies to prevent hepatitis B infections in high-risk adult populations through immunization and690in infants through vaccination and post-exposure prophylaxis.

691 Table S24: Cost of hepatitis B vaccines

Vaccine	# of injections	Base Case (\$/unit) †	Lower Limit‡	Upper Limit ‡	Ref				
Adult	3	42.00 26.25 52.50		156					
*Runt 5 42.00 20.25 52.50 *80% of Wholesale Acquisition Cost (WAC) monthly cost from RedBook online. \$ \$ *Lower limit is set at 50% of WAC monthly cost from RedBook online; upper limit is set equal to the WAC monthly cost from RedBook online. \$ Ref = References \$									

692 693

697

3. Annual cost of treatment related adverse events

- 694Annual cost of medical management of adverse events are calculated by weighting the frequency of695common and serious adverse events observed in clinical trials^{107,109,111,119,120,149} to which published
- 696 costs of similar adverse events were applied.¹⁵⁸

Table S25:Annual cost of medical management of treatment related adverse events

Drug	Base case (\$/year) [†]	Lower Limit [‡]	Upper Limit [‡]	Ref
Entecavir	658	329	987	Calculated
Tenofovir	732	366	1,098	Calculated

[†]Based on cost of serious adverse events of \$2,801 and cost of common adverse events of \$534. Costs are weighted by frequency of serious and common adverse events and summed to calculate the costs in the table. [‡]The lower and upper bounds for sensitivity analyses are set at 50%-150% of base case value. Ref = References

698

699 10. Sensitivity analyses methods

700 A. One-way sensitivity analyses

701In one-way sensitivity analyses, each input is varied across the lower and upper limits, one-by-one and702results noted in terms of the effect on the cost-effectiveness ratio. In other words, the base-case value is703substituted with the lower value of the input estimate and the model is run to get an ICER; same is done704for the upper limit. The inputs that have the greatest impact on the ICER, relative to the base-case705scenario, are considered to be the most sensitivity for model results. These are then presented in a706tornado-diagram – a graph that orders the input values from the most sensitive to the least sensitive707from top to bottom.

708 B. Probabilistic (multi-way) sensitivity analyses

709 In probabilistic analyses, all variables are simultaneously varied using defined distributions for each 710 variable and the model is run to get an ICER. In our model, we conducted 10,000 simulations. We use 711 normal distribution (with mean and standard deviation) for costs and triangular distributions (with a 712 mode, lower and upper limits) for probabilities and proportions. The results are presented in cost-713 effectiveness acceptability curves for each strategy, by population, indicating at what dollar threshold is 714 a given strategy consider to be 'acceptable.' For triangular distributions in this model, the base-case 715 (point-estimate) value is the triangular mode, and lower and upper limits of the input values are the 716 lower/upper limits of the triangular distribution, respectively.

717 III. Model Calibration and Validation

1. Calibration and Validation of Natural History Model

719 The chronic hepatitis B natural history Markov model was calibrated using epidemiology data for 720 transitioning from immune tolerant phase to active chronic hepatitis B and for outcomes of three major 721 complications of CHB – cirrhosis, hepatocellular carcinoma, and liver decompensation. REVEAL-HBV, a large 722 longitudinal study in Taiwan on hepatitis B, provided data for the 48-year cumulative incidence of cirrhosis 723 and hepatocellular carcinoma (HCC) in patients with chronic hepatitis B; ¹²⁸ and for decompensation 5-year 724 cumulative probability data provided by American Association for the Study of Liver Diseases (AASLD) was 725 used. To validate, epidemiology data was matched with model outcomes; to do this the natural history 726 model was run for 100,000 trials (using microsimulations) for 48-year or 5-year time-horizons, depending on 727 outcome of interest.

- 1. Progression to active chronic hepatitis B from immune tolerant phase
- 729Based on available data and expert hepatologist input, the model was calibrated to ensure that majority730of the patients in the immune tolerant phase would transition into active, non-cirrhotic, chronic
- 731 hepatitis B by age 40. **Table 40** lists the probabilities used to meet this target. The calibration was based
- on epidemiological findings that majority of patients will transition into active hepatitis B between the
- ages of 20 and 40, based on genotype of hepatitis B virus.^{1,2} In our model, 50% of patients transition into
- 734 active CHB by age 21, and 100% transition to active CHB by age 37 (**Supplement A, Figure 5**).
- 735

718

Age	Transition to CHB (%)	Age	Transition to CHB (%)	Age	Transition to CHB (%)
0	0.00	19	8.21	38	46.11
1	0.00	20	9.40	39	48.95
2	0.01	21	10.67	40	51.87
3	0.04	22	12.04	41	54.87
4	0.10	23	13.50	42	57.93
5	0.19	24	15.05	43	61.07
6	0.33	25	16.69	44	64.28
7	0.51	26	18.43	45	67.56
8	0.75	27	20.25	46	70.90
9	1.05	28	22.17	47	74.31
10	1.42	29	24.18	48	77.78
11	1.85	30	26.27	49	81.32
12	2.36	31	28.45	50	84.91
13	2.95	32	30.72	51	88.56
14	3.61	33	33.08	52	92.26
15	4.36	34	35.52	53	96.02
16	5.19	35	38.05	54	99.84
17	6.11	36	40.65	55	100.00
18	7.12	37	43.34	56+	100.00

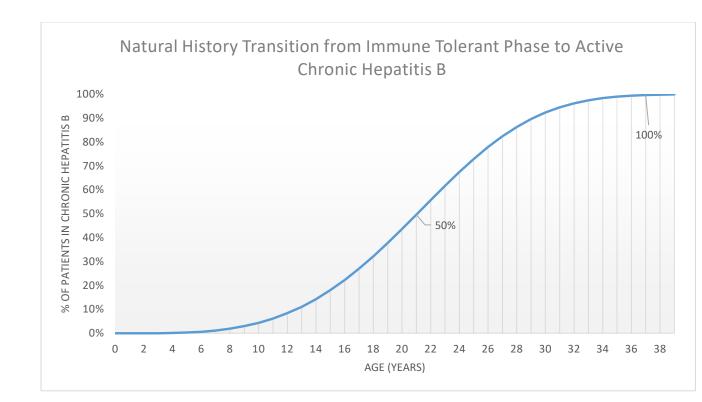


Figure S6: Percent of patients transitioning from immune tolerant phase to chronic hepatitis B

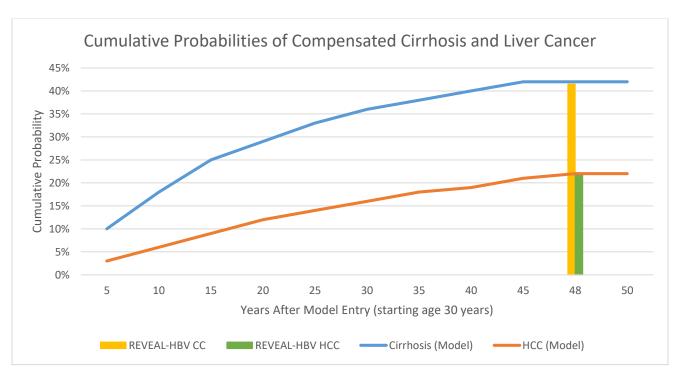
Technical Supplement – Detailed Methods and Additional Results

```
740
```

- 2. Development of cirrhosis and HCC:
- As seen in

- Table S27, REVEAL-HBV data are very closely related to model outcomes of cirrhosis and HCC. In the
 REVEAL-HBV study, the cumulative probability of cirrhosis and hepatocellular carcinoma over a 48-year
 period were 41.5 and 21.7, respectively. In this model, the cumulative probabilities after 25,000
 simulations, over a 48-year period were 42 and 22 for cirrhosis and HCC respectively.
- 748 Further, Supplement Table S28 and Figure S7 show the model outcomes for cirrhosis and HCC in 5-year 749 increments. Figure S8 shows graphs of cumulative probability of cirrhosis and liver cancer from the 750 REVEAL-HBV study. The cumulative probability curves of HCC in the REVEAL study indicates slower 751 development at earlier ages and increased incidence at older ages (Figure 8a). This trend is not 752 replicated by the model, which is parameterized for annual incidence regardless of age or other factors that may affect development of HCC.¹²⁹ Given the lack of data to fit an exponential model, we opted to 753 use a linear approach to approximating incidence of HCC. This approach is consistent with previous 754 published economic evaluation studies.^{6,12,15,159} Comparatively, with the cumulative probability line in 755 756 the REVEAL-HBV (Figure 8) and line produced by this model (Figure 7), it is observed that development 757 of cirrhosis seems to follow a linear progression (Figure 8b).

759	Table S27: CHB natural history model validation for cirrhosis and HCC with REVEAL-HBV study
-----	---


REVEA	REVEAL-HBV Data (Chen 2011)							
Location	Taiwan	Inputs and Results						
Ν	3653	N/A						
Age	30 to 65 years	30 years (starting age)						
HBeAg+	565 (15.5)	15.5						
HBeAg-	3088 (84.5)	84.5						
Time Horizon	Calculated over 48 years	48-year model run						
	Cumulative Probabilities (outcome	mes)						
Cirrhosis	41.50	42						
Liver Cancer	21.70	22						
HBeAg-/+= Hepa	HBeAg-/+= Hepatitis B eAntigen negative or positive							

760

761 Table S28: Results of 25,000 natural history model simulations over varying time-horizons

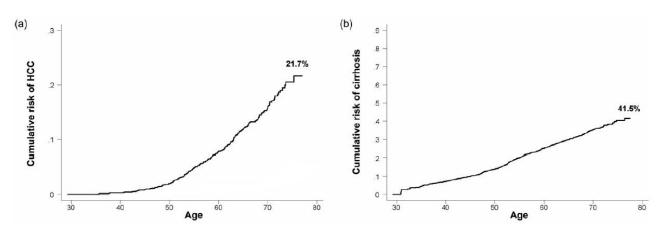
СНВ	Number of Years after Entry into Natural History Model and Model Outcomes											
Complication	5-years	10	15	20	25	30	35	40	45	48 *	50	
Compensated Cirrhosis	10	18	25	29	33	36	38	40	42	42	42	
Hepatocellular Carcinoma	3	6	9	12	14	16	18	19	21	22	22	
*Corresponds to RE CHB = Chronic He		V study c	lata for c	umulativ	ve proba	bilities.						

763

764 Figure S7: Cumulative probabilities of cirrhosis and HCC in the natural history model and epidemiology data

Supplement Figure 7 caption: The figure shows results of the natural history model in five-year increments. The
 results were generated using 25,000 microsimulations of the model. Cirrhosis cumulative probability is show in

blue line, with the height of the yellow vertical bar (41.5) showing epidemiology data from REVEAL-HBV. The
 orange line shows the cumulative probability of developing liver cancer, with the height of the green bar (21.7)


orange line shows the cumulative probability of developing liver cancer, with
 indicating cumulative probability from the REVEAL-HBV study.

770

771

777

780

772 Figure S8: Cumulative probabilities graphs from REVEAL-HBV study

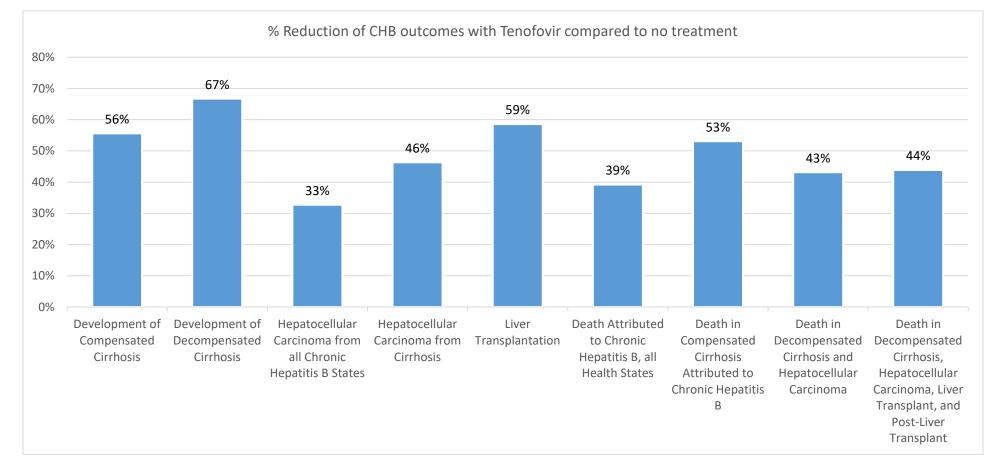
Supplement Figure 8 caption: reproduced from Chen, et al. 2011 (REVEAL-HBV) with slight modification to
remove a non-relevant line from the graph (a). The graphs show cumulative probability of hepatocellular
carcinoma (HCC, graph (a)) and cirrhosis (graph (b)).

- 776 3. Development of liver decompensation:
- 778The natural history model was validated for decompensated cirrhosis by matching epidemiology data779with cumulative probability of incidence of decompensation amongst CHB cirrhotic patients.
- 781Epidemiology data: amongst patients with cirrhosis, the cumulative probability of develop liver782decompensation is 20.97 We ran the model with a cirrhotic cohort of 50 HBeAg(+) and 50 HBeAg(-) for78325,000 simulations for a time-horizon of 5 years. The model result was 18 cumulative probability of784decompensation over a 5-year period, closely correlated with epidemiological data.
- 785

Conclusion of model validation: Overall, the model predictions of the outcome of the three major CHB
 complications (cirrhosis, hepatocellular carcinoma and liver decompensation) are closely aligned with the
 an identical state. And transition of notion to from immune tolerant to immune active phase is denicted.

epidemiological data. And transition of patients from immune tolerant to immune active phase is depicted
 appropriately according to natural history data.

791 2. Validation of Treatment Model


- 792 To determine how our treatment model compares with the calibrated natural history model, we ran 793 100,000 microsimulations to determine clinical outcomes for an active chronic hepatitis B prevalent 794 cohort. Data from observational and clinical trials show that chronic hepatitis B outcomes of cirrhosis, 795 decompensation, hepatocellular carcinoma and death can be reduced, but not completely eliminated, with anti-viral therapy.^{97,160-168} The estimates of percent reduction in outcomes, however, are not well 796 797 defined with wide ranges reported in literature from no difference to 30 to 80% reduction in cirrhosis, decompensation and liver cancer.^{97,163,165} When available, we used data published by American 798 799 Association for the Study of Liver Disease to model relative risk reductions in development of cirrhosis, decompensation, hepatocellular carcinoma, and CHB related death.⁹⁷ In other instances, data from a 800 801 previously published hepatitis B economic evaluation were used.⁶
- 802 We compared treatment with tenofovir with no intervention to determine the reduction of key clinical 803 outcomes with treatment. For the purposes of validation test, we assumed complete adherence to 804 treatment and complete suppression of HBV DNA. Relevant cohort and treatment characteristics for the 805 validation test are shown in the Supplement Table 29 below. The clinical outcomes measured were 806 development of 1) compensated cirrhosis; 2) decompensated cirrhosis; 3) hepatocellular carcinoma 807 from all CHB health states; 4) hepatocellular from cirrhotic states only; 5) liver transplantation; 6) death 808 attributed to chronic hepatitis B from all health states; 7) death in compensated cirrhosis, attributed to 809 chronic hepatitis B; 8) death from advanced liver disease (decompensated cirrhosis and hepatocellular 810 carcinoma); and 9) death from decompensated cirrhosis, hepatocellular carcinoma, liver transplantation 811 and post-liver transplantation.
- 812 Table S29: Treatment validation test cohort and treatment characteristics

Cohort Characteristics	Base-case
Model horizon	Life-time
Cohort Age	30 Years
Distribution in Active CHB Stat	tes
Immune Tolerant Phase	5.74
Immune Active Phase (eAg+)	
HBeAg+, Non-Cirrhotic	21.02
HBeAg+, Cirrhotic*	1.11
Immune Active Phase (eAg-)	
HBeAg-, Non-Cirrhotic	31.12
HBeAg-, Cirrhotic*	1.64
Immune Inactive Phase	
HBeAg-, Inactive CHB, Non-Cirrhotic	37.40
HBeAg-, Inactive CHB, Cirrhotic*	1.97
Treatment Characteristics	
Hepatitis B virus DNA suppression	100%
Adherence to therapy	100%
Development of resistance to tenofovir therapy	0%
HBeAg-/+= Hepatitis B eAntigen negative or positive Hepatitis B	; CHB = Chronic

814 Supplement Figure 9 below shows the outcomes of the model, represented as percent reduction in 815 clinical outcomes with tenofovir treatment compared to no treatment. Overall, the model predicts 816 appropriate levels of reduction in all key clinical outcomes. Reduction in development of cirrhosis, 817 decompensation and hepatocellular carcinoma ranges from 33% to 67%, in general congruence with 818 reported data and patterns. For example, Papatheodoridis, et al. reported an overall treatment related 819 reduction of liver cancer of approximately 30%, our model predicts a reduction of 33% (light gray box in 820 the figure below).¹⁶³ It has also been observed that reduction in hepatocellular carcinoma with treatment is higher in patients with cirrhosis.^{97,162} In our model patients with cirrhosis experienced 46% 821 822 increased reduction in liver cancer compared to overall reduction of 33%.

824

825

826 Figure S9: Percent reduction of key clinical outcomes of chronic hepatitis B with treatment

827 Supplement Figure 9 caption: The figure shows percent reduction of key clinical outcomes measured by the model for treatment with tenofovir compare to no 828 treatment.

829 IV. Additional Base-Case Results

830 1. Results by strategy and program for each study population

a. Screen and Vaccinate

832 Table S30: Base-case results for screen and vaccinate strategy by program, by population

Strategy, by Population	Cost (USD)	Incremental Cost (USD)	QALYs	Incremental QALYs	ICER (USD/QALY)	Drug Costs (USD)	Health Care Costs (USD)	Screening Costs [^] (USD)	Life Years		
Asian and Pacific Islanders											
No Intervention	\$3,902	-	23.780	-	-	\$0	\$3,902	\$0	24.369		
Community Outreach/Clinic Referral	\$4,001	\$99	23.787	0.007	13,397	\$0	\$3,876	\$125	24.373		
	Africa Born Black Population										
No Intervention	\$4,928	-	23.551	-	-	\$0	\$4,928	\$0	24.205		
Community Outreach/Clinic Referral	\$5,024	\$96	23.559	0.009	11,086	\$0	\$4,897	\$127	24.210		
			Incarce	rated Persons							
Universal Screening	\$999	-	24.415	-	-	\$0	\$932	\$67	24.755		
No Intervention	\$1,105	\$106	24.365	-0.050	Dominated	\$0	\$1,105	\$0	24.726		
			Refuge	e Population							
No Intervention	\$3,183	-	23.934	-	-	\$0	\$3,183	\$0	24.463		
Community Outreach/Clinic Referral	\$3,278	\$95	23.944	0.010	9,453	\$0	\$3,147	\$130	24.468		
			People W	ho Inject Drugs							
No Intervention	\$6,924	-	23.070	-	-	\$0	\$6,924	\$0	23.950		
Syringe services programs	\$6,974	\$50	23.078	0.008	6,438	\$0	\$6,894	\$80	23.954		
			Men Who Ha	ave Sex With Men							
No Intervention	\$1,354	-	24.325	-	-	\$0	\$1,354	\$0	24.701		
STI Clinics	\$1,361	\$8	24.336	0.011	695	\$0	\$1,316	\$46	24.707		
USD: United States Dollar; QALYs: Qu	ality-Adjusted L	ife-Years; ICER:	Incremental Co	ost-Effectiveness R	atio; STI: Sexuall	y Transmitted In	nfections				
^Screening costs include vaccination cost	sts.										

834 b. Screen and Treat with Tenofovir

835 Table S31: Base-case results for screen and treat (with tenofovir) strategy by program, by population

Strategy, by Population	Cost (USD)	Incremental Cost (USD)	QALYs	Incremental QALYs	ICER (USD/QALY)	Drug Costs (USD)	Health Care Costs (USD)	Screening Costs^ (USD)	Life Years
			Asian and	d Pacific Islander	'S				
No Intervention	\$3,902	-	23.780	-	-	\$0	\$3,902	\$0	24.369
Community Outreach/Clinic Partnership	\$4,911	\$1,009	23.827	0.048	21,159	\$1,006	\$3,762	\$143	24.413
Community Outreach/Clinic Referral	\$5,360	\$449	23.853	0.026	17,314	\$1,553	\$3,686	\$121	24.437
			Africa Bor	n Black Populati	on				
No Intervention	\$4,928	-	23.551	-	-	\$0	\$4,928	\$0	24.205
Community Outreach/Clinic Partnership	\$6,739	\$1,811	23.646	0.096	18,947	\$1,927	\$4,662	\$151	24.296
· · · · ·			Incarc	erated Persons					
No Intervention	\$1,105	-	24.365	-	-	\$0	\$1,105	\$0	24.726
Universal Screening	\$1,446	\$341	24.382	0.017	20,032	\$359	\$1,055	\$32	24.742
			Refug	gee Population					
No Intervention	\$3,183	-	23.934	-	-	\$0	\$3,183	\$0	24.463
Community Outreach/Clinic Partnership	\$4,746	\$1,563	24.011	0.078	20,066	\$1,642	\$2,955	\$148	24.535
			People V	Who Inject Drugs					
No Intervention	\$6,924	-	23.070	-	-	\$0	\$6,924	\$0	23.950
Syringe services programs	\$7,016	\$92	23.071	0.001	96,657	\$15	\$6,922	\$80	23.951
			Men Who	Have Sex With M	len				
No Intervention	\$1,354	-	24.325	-	-	\$0	\$1,354	\$0	24.701
STI Clinics	\$1,637	\$283	24.338	0.014	20,412	\$293	\$1,313	\$31	24.713
USD: United States Dollar; QALYs: Quality	-Adjusted I	Life-Years; ICER	: Incrementa	al Cost-Effective	ness Ratio; STI: S	exually Transmi	itted Infections		

^Screening costs include vaccination costs.

c. Screen and Treat with Entecavir

837 838

839 Table S32: Base-case results for screen and treat (with entecavir) strategy by program, by population

Strategy, by Population	Cost (USD)	Incremental Cost (USD)	QALYs	Incremental QALYs	ICER (USD/QALY)	Drug Costs (USD)	Health Care Costs (USD)	Screening Costs^ (USD)	Life Years
Asian and Pacific Islanders									
No Intervention	\$3,902	\$0	23.780	0.000	\$0	\$0	\$3,902	\$0	24.369
Community Outreach/Clinic Partnership	\$4,586	\$685	23.819	0.039	\$17,587	\$652	\$3,792	\$143	24.406
Community Outreach/Clinic Referral	\$4,859	\$273	23.840	0.021	\$12,878	\$1,007	\$3,732	\$121	24.426
Africa Born Black Population									
No Intervention	\$4,928	\$0	23.551	0.000	\$0	\$0	\$4,928	\$0	24.205
Community Outreach/Clinic Partnership	\$6,114	\$1,186	23.629	0.078	\$15,169	\$1,245	\$4,718	\$151	24.281
Incarcerated Persons									
No Intervention	\$1,105	\$0	24.365	0.000	\$0	\$0	\$1,105	\$0	24.726
Universal Screening	\$1,330	\$225	24.378	0.014	\$16,207	\$233	\$1,066	\$32	24.740
Refugee Population									
No Intervention	\$3,183	\$0	23.934	0.000	\$0	\$0	\$3,183	\$0	24.463
Community Outreach/Clinic Partnership	\$4,216	\$1,033	23.997	0.064	\$16,248	\$1,065	\$3,003	\$148	24.523
People Who Inject Drugs									
No Intervention	\$6,924	\$0	23.070	0.000	\$0	\$0	\$6,924	\$0	23.950
Syringe services programs	\$7,013	\$89	23.071	0.001	\$90,881	\$11	\$6,923	\$80	23.951
Men Who Have Sex With Men									
No Intervention	\$1,354	\$0	24.325	0.000	\$0	\$0	\$1,354	\$0	24.701
STI Clinics	\$1,543	\$189	24.336	0.011	\$16,672	\$190	\$1,322	\$31	24.711

841 d. Screen and Treat (with Tenofovir) or Vaccinate

842 Table S33: Base-case results for screen and vaccinate or treat (with tenofovir) strategy by program, by population

Strategy, by Population	Cost (USD)	Incremental Cost (USD)	QALYs	Incremental QALYs	ICER (USD/QALY)	Drug Costs (USD)	Health Care Costs (USD)	Screening Costs^ (USD)	Life Years
			Asia	an and Pacific Isl	anders				
No Intervention	\$3,902	-	23.780	-	-	\$0	\$3,902	\$0	24.369
Community Outreach/Clinic Referral	\$5,361	\$1,459	23.861	0.081	18,009	\$1,553	\$3,661	\$148	24.441
			Afric	a Born Black Po	oulation				
No Intervention	\$4,928	-	23.551	-	-	\$0	\$4,928	\$0	24.205
Community Outreach/Clinic Referral	\$6,676	\$1,748	23.653	0.102	17,089	\$1,887	\$4,636	\$153	24.299
			I	Incarcerated Pers	ons				
No Intervention	\$1,105	-	24.365	-	-	\$0	\$1,105	\$0	24.726
Universal Screening	\$1,321	\$216	24.432	0.067	3,203	\$359	\$882	\$80	24.770
				Refugee Populat	on				
No Intervention	\$3,183	-	23.934	-	-	\$0	\$3,183	\$0	24.463
Community Outreach/Clinic Referral	\$4,716	\$1,534	24.021	0.088	17,432	\$1,642	\$2,920	\$154	24.540
			Peo	ople Who Inject	Drugs				
No Intervention	\$6,924	-	23.070	-	-	\$0	\$6,924	\$0	23.950
Syringe services programs	\$7,144	\$220	23.090	0.020	11,160	\$184	\$6,869	\$91	23.966
			Men V	Who Have Sex W	ith Men				
No Intervention	\$1,354	-	24.325	-	-	\$0	\$1,354	\$0	24.701
STI Clinics	\$1,626	\$272	24.349	0.025	10,954	\$293	\$1,275	\$58	24.719
USD: United States Dollar; QALYs: Qu ^Screening costs include vaccination cost	• •	sted Life-Years;	ICER: Incre	emental Cost-Eff	ectiveness Ratio;	STI: Sexually T	ransmitted Infect	ions	

Technical Supplement – Detailed Methods and Additional Results Screen and Treat (with Entecavir) or Vaccinate

844 e.

845

846 Table S34: Base-case results for screen and vaccinate or treat strategy by program, by population

Strategy, by Population	Cost (USD)	Incremental Cost (USD)	QALYs	Incremental QALYs	ICER (USD/QALY)	Drug Costs (USD)	Health Care Costs (USD)	Screening Costs^ (USD)	Life Years
Asian and Pacific Islanders									
No Intervention	\$3,902	\$0	23.780	0.000	\$0	\$0	\$3,902	\$0	24.369
Community Outreach/Clinic Referral	\$4,860	\$958	23.847	0.068	\$14,198	\$1,007	\$3,706	\$148	24.430
Africa Born Black Population									
No Intervention	\$4,928	\$0	23.551	0	\$0	\$0	\$4,928	\$0	24.205
Community Outreach/Clinic Referral	\$6,064	\$1,136	23.636	0.085	\$13,323	\$1,220	\$4,691	\$153	24.285
Incarcerated Persons									
No Intervention	\$1,105	\$0	24.365	0	\$0	\$0	\$1,105	\$0	24.726
Universal Screening	\$1,205	\$100	24.429	0.064	\$1,558	\$233	\$892	\$80	24.768
Refugee Population									
No Intervention	\$3,183	\$0	23.934	0	\$0	\$0	\$3,183	\$0	24.463
Community Outreach/Clinic Referral	\$4,186	\$1,004	24.007	0.074	\$13,626	\$1,065	\$2,968	\$154	24.529
People Who Inject Drugs									
No Intervention	\$6,924	\$0	23.070	0	\$0	\$0	\$6,924	\$0	23.950
Syringe services programs	\$7,109	\$185	23.090	0.020	\$9,194	\$131	\$6,886	\$91	23.968
Men Who Have Sex With Men									
No Intervention	\$1,354	\$0	24.325	0	\$0	\$0	\$1,354	\$0	24.701
STI Clinics	\$1,531	\$178	24.347	0.022	\$7,970	\$190	\$1,284	\$58	24.717
USD: United States Dollar; QALYs: Qu ^Screening costs include vaccination co	• •	fe-Years; ICER: I	Incremental C	Cost-Effectiveness	s Ratio; STI: Sexua	lly Transmitted	Infections		

2. Results by comparative broad strategies for each study population

a. Primary base-case results with drug (with tenofovir), health and screening costs plus life years

850 Table S35: Base-case results for screening and linkage to care (tenofovir treatment) strategies, by population

Strategy*, by Population	Cost (USD)	Incremental Cost (USD)	QALYs	Incremental QALYs	ICER (USD/QALY)	Drug Costs (USD)	Health Care Costs (USD)	Screening Costs^ (USD)	Life Years		
	(050)	Cost (CSD)	Asi	an and Pacific Isl	· • /	(050)			I cars		
No Intervention	\$3,902	-	23.780	-	-	\$0	\$3,902	\$0	24.369		
Vaccination Only	\$4,001	\$99	23.787	0.007	13,397	\$0	\$3,876	\$125	24.373		
Treatment Only	\$5,360	\$1,359	23.853	0.066	20,519	\$1,553	\$3,686	\$121	24.437		
Inclusive	\$5,361	\$1	23.861	0.007	129	\$1,553	\$3,661	\$148	24.441		
Africa Born Black Population											
No Intervention	\$4,928	-	23.551	-	_	\$0	\$4,928	\$0	24.205		
Vaccination Only	\$5,024	\$96	23.559	0.009	11,086	\$0	\$4,897	\$127	24.210		
Inclusive	\$6,676	\$1,652	23.653	0.094	17,645	\$1,887	\$4,636	\$153	24.299		
Treatment Only	\$6,739	\$63	23.646	-0.007	Dominated	\$1,927	\$4,662	\$151	24.296		
Incarcerated Persons											
Vaccination Only	\$999	-	24.415	-	-	\$0	\$932	\$67	24.755		
No Intervention	\$1,105	\$106	24.365	-0.050	Dominated	\$0	\$1,105	\$0	24.726		
Inclusive	\$1,321	\$322	24.432	0.017	18,922	\$359	\$882	\$80	24.770		
Treatment Only	\$1,446	\$125	24.382	-0.050	Dominated	\$359	\$1,055	\$32	24.742		
Refugee Population											
No Intervention	\$3,183	-	23.934	-	-	\$0	\$3,183	\$0	24.463		
Vaccination Only	\$3,278	\$95	23.944	0.010	9,453	\$0	\$3,147	\$130	24.468		
Inclusive	\$4,716	\$1,438	24.021	0.078	18,465	\$1,642	\$2,920	\$154	24.540		
Treatment Only	\$4,746	\$29	24.011	-0.010	Dominated	\$1,642	\$2,955	\$148	24.535		
			Pe	ople Who Inject	Drugs						
No Intervention	\$6,924	-	23.070	-	-	\$0	\$6,924	\$0	23.950		
Vaccination Only	\$6,974	\$50	23.078	0.008	6,438	\$0	\$6,894	\$80	23.954		
Inclusive	\$6,999	\$24	23.079	0.001	25,551	\$15	\$6,892	\$91	23.955		
Treatment Only	\$7,016	\$18	23.071	-0.008	Dominated	\$15	\$6,922	\$80	23.951		
			Men	Who Have Sex W	ith Men						
No Intervention	\$1,354	-	24.325	-	-	\$0	\$1,354	\$0	24.701		
Vaccination Only	\$1,361	\$8	24.336	0.011	695	\$0	\$1,316	\$46	24.707		
Inclusive	\$1,626	\$264	24.349	0.014	19,052	\$293	\$1,275	\$58	24.719		
Treatment Only	\$1,637	\$11	24.338	-0.011	Dominated	\$293	\$1,313	\$31	24.713		

*Specific screen and linkage to care programs for each broad strategy are shown in Table S6.

USD: United States Dollar; QALYs: Quality-Adjusted Life-Years

^Screening costs include vaccination costs.

b. Base-case results with drug (with entecavir), health and screening costs plus life years

852 853

Table S36: Base-case results for screening and linkage to care (entecavir treatment) strategies, by population

Strategy*, by Population	Cost (USD)	Incremental Cost (USD)	QALYs	Incremental QALYs	ICER (USD/QALY)	Drug Costs (USD)	Health Care Costs (USD)	Screening Costs^ (USD)	Life Years	
Asian and Pacific Islanders										
No Intervention	\$3,902	-	23.780	0.000	-	-	\$3,902	-	24.369	
Vaccination Only	\$4,001	\$99	23.787	0.007	\$13,397	-	\$3,876	\$125	24.373	
Treatment Only	\$4,859	\$858	23.840	0.053	\$16,283	\$1,007	\$3,732	\$121	24.426	
Inclusive	\$4,860	\$1	23.847	0.007	\$129	\$1,007	\$3,706	\$148	24.430	
Africa Born Black Population										
No Intervention	\$4,928	-	23.551	0.000	-	-	\$4,928	-	24.205	
Vaccination Only	\$5,024	\$96	23.559	0.009	\$11,086	-	\$4,897	\$127	24.210	
Inclusive	\$6,064	\$1,039	23.636	0.077	\$13,577	\$1,220	\$4,691	\$153	24.285	
Treatment Only	\$6,114	\$50	23.629	-0.007	Dominated	\$1,245	\$4,718	\$151	24.281	
				Incarcerated Pers	ons					
Vaccination Only	\$999	-	24.415	0.000	-	-	\$932	\$67	24.755	
No Intervention	\$1,105	\$106	24.365	-0.050	Dominated	-	\$1,105	-	24.726	
Inclusive	\$1,205	\$206	24.429	0.014	\$14,847	\$233	\$892	\$80	24.768	
Treatment Only	\$1,330	\$125	24.378	-0.050	Dominated	\$233	\$1,066	\$32	24.740	
Refugee Population										
No Intervention	\$3,183	-	23.934	0.000	-	-	\$3,183	-	24.463	
Vaccination Only	\$3,278	\$95	23.944	0.010	\$9,453	-	\$3,147	\$130	24.468	
Inclusive	\$4,186	\$909	24.007	0.064	\$14,288	\$1,065	\$2,968	\$154	24.529	
Treatment Only	\$4,216	\$29	23.997	-0.010	Dominated	\$1,065	\$3,003	\$148	24.523	
			Pe	ople Who Inject	Drugs					
No Intervention	\$6,924	-	23.070	0.000	-	-	\$6,924	-	23.950	
Vaccination Only	\$6,974	\$50	23.078	0.008	\$6,438	-	\$6,894	\$80	23.954	
Inclusive	\$6,996	\$21	23.079	0.001	\$21,897	\$11	\$6,894	\$91	23.955	
Treatment Only	\$7,013	\$18	23.071	-0.008	Dominated	\$11	\$6,923	\$80	23.951	
			Men	Who Have Sex W	Vith Men					
No Intervention	\$1,354	-	24.325	0.000	-	-	\$1,354	-	24.701	
Vaccination Only	\$1,361	\$8	24.336	0.011	\$695	-	\$1,316	\$46	24.707	
Inclusive	\$1,531	\$170	24.347	0.011	\$15,006	\$190	\$1,284	\$58	24.717	
Treatment Only	\$1,543	\$11	24.336	-0.011	Dominated	\$190	\$1,322	\$31	24.711	

*Specific screen and linkage to care programs for each broad strategy are shown in Table S6.

USD: United States Dollar; QALYs: Quality-Adjusted Life-Years

^Screening costs include vaccination costs.

V. Scenario Analysis

857

- 1. Improved screening and linkage to care ICER Calculations
- 859
- This scenario assumes 90% consent to screening, followed by 100% referral rate for those found susceptible or infected, followed by 90% successful linkage to treatment. Acceptance of treatment is modeled at 90% and acceptance of 1st, 2nd and 3rd dose of vaccine at 80% for each dose.
- 862 See Tables S37 and S38 on the next two pages.

863 a. Tenofovir based treatment and retreatment

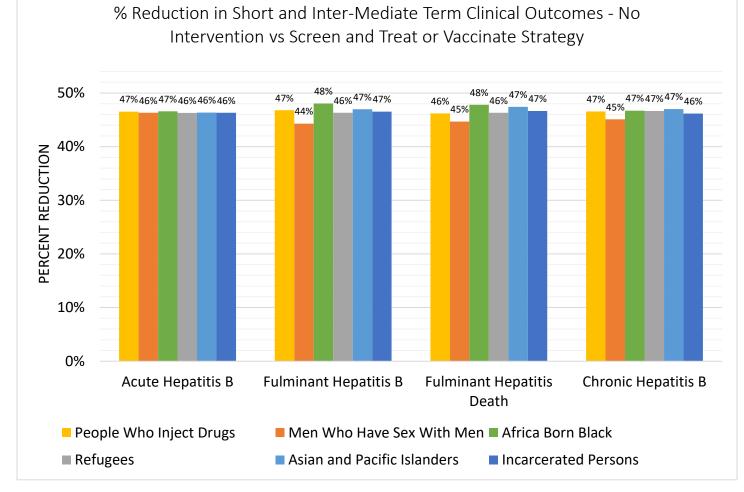
864 Table S37: Scenario analysis - Improved screening and linkage to care, using tenofovir based treatment and retreatment - ICER Calculations

Strategy*, by Population	Cost (USD)	Incremental Cost (USD)	QALYs	Incremental QALYs	ICER (USD/QALY)	Drug Costs (USD)	Health Care Costs (USD)	Screening Costs^ (USD)	Life Years
Asian and Pacific Islanders									
No Intervention	\$3,902	\$0	23.780	0.000	-	\$0	\$3,902	\$0	24.369
Vaccination Only	\$4,016	\$114	23.799	0.020	5,777	\$0	\$3,833	\$183	24.380
Inclusive	\$6,742	\$2,726	23.948	0.148	18,394	\$3,125	\$3,400	\$217	24.517
Treatment Only	\$6,754	\$12	23.928	-0.020	Dominated	\$3,125	\$3,468	\$160	24.506
Africa Born Black Population									
No Intervention	\$4,928	\$0	23.551	0.000	-	\$0	\$4,928	\$0	24.205
Vaccination Only	\$5,035	\$107	23.574	0.023	4,589	\$0	\$4,845	\$189	24.218
Inclusive	\$8,346	\$3,312	23.762	0.188	17,578	\$3,798	\$4,320	\$228	24.397
Treatment Only	\$8,400	\$54	23.739	-0.023	Dominated	\$3,798	\$4,403	\$200	24.384
Incarcerated Persons									
Vaccination Only	\$928	\$0	24.444	0.000	-	\$0	\$830	\$97	24.771
No Intervention	\$1,105	\$177	24.365	-0.080	Dominated	\$0	\$1,105	\$0	24.726
Inclusive	\$1,421	\$494	24.471	0.026	18,795	\$554	\$754	\$114	24.796
Treatment Only	\$1,623	\$201	24.391	-0.080	Dominated	\$554	\$1,028	\$41	24.751
Refugee Population									
No Intervention	\$3,183	\$0	23.934	0.000	-	\$0	\$3,183	\$0	24.463
Vaccination Only	\$3,287	\$104	23.961	0.027	3,866	\$0	\$3,089	\$198	24.478
Inclusive	\$5,470	\$2,183	24.079	0.119	18,416	\$2,500	\$2,742	\$228	24.587
Treatment Only	\$5,526	\$56	24.052	-0.027	Dominated	\$2,500	\$2,836	\$190	24.572
People Who Inject Drugs									
Vaccination Only	\$6,271	\$0	23.281	0.000	-	\$0	\$6,126	\$146	24.070
No Intervention	\$6,924	\$653	23.070	-0.211	Dominated	\$0	\$6,924	\$0	23.950
Inclusive	\$9,724	\$3,453	23.538	0.257	13,449	\$3,959	\$5,574	\$190	24.325
Treatment Only	\$10,465	\$740	23.327	-0.211	Dominated	\$3,959	\$6,373	\$132	24.204
Men Who Have Sex With Men									
Vaccination Only	\$1,302	\$0	24.370	0.000	-	\$0	\$1,195	\$107	24.726
No Intervention	\$1,354	\$52	24.325	-0.046	Dominated	\$0	\$1,354	\$0	24.701
Inclusive	\$2,105	\$803	24.413	0.043	18,604	\$910	\$1,069	\$126	24.766
Treatment Only	\$2,181	\$76	24.368	-0.046	Dominated	\$910	\$1,228	\$43	24.740
*Specific screen and linkage to care	programs for ea	ach broad strategy	are shown in	n Table S6.					
USD: United States Dollar; QALYs	: Quality-Adjust	ted Life-Years; ^S	creening cos	sts include vaccir	nation costs.				

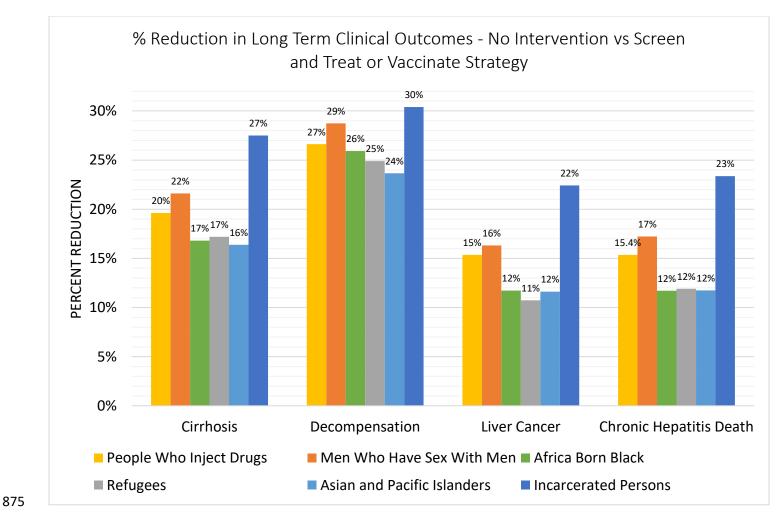
866 b. Entecavir based treatment and tenofovir retreatment

867

Table S38: Scenario analysis - Improved screening and linkage to care, using entecavir based treatment and retreatment - ICER Calculations


Strategy*, by Population	Cost (USD)	Incremental Cost (USD)	QALYs	Incremental QALYs	ICER (USD/QALY)	Drug Costs (USD)	Health Care Costs (USD)	Screening Costs^ (USD)	Life Years
Asian and Pacific Islanders									
No Intervention	\$3,902	\$0	23.780	0.000	\$0	\$0	\$3,902	-	24.369
Vaccination Only	\$4,016	\$114	23.799	0.020	\$5,777	\$0	\$3,833	\$183	24.380
Inclusive	\$5,734	\$1,718	23.920	0.121	\$14,201	\$2,026	\$3,491	\$217	24.495
Treatment Only	\$5,746	\$12	23.901	-0.020	Dominated	\$2,026	\$3,559	\$160	24.484
Africa Born Black Population									
No Intervention	\$4,928	\$0	23.551	0.000	\$0	\$0	\$4,928	-	24.205
Vaccination Only	\$5,035	\$107	23.574	0.023	\$4,589	\$0	\$4,845	\$189	24.218
Inclusive	\$7,114	\$2,079	23.728	0.154	\$13,495	\$2,454	\$4,431	\$228	24.368
Treatment Only	\$7,168	\$54	23.705	-0.023	Dominated	\$2,454	\$4,514	\$200	24.355
Incarcerated Persons									
Vaccination Only	\$928	\$0	24.444	0.000	\$0	\$0	\$830	\$97	24.771
No Intervention	\$1,105	\$177	24.365	-0.080	Dominated	\$0	\$1,105	-	24.726
Inclusive	\$1,243	\$315	24.466	0.021	\$14,692	\$359	\$770	\$114	24.792
Treatment Only	\$1,444	\$201	24.386	-0.080	Dominated	\$359	\$1,044	\$41	24.747
Refugee Population									
No Intervention	\$3,183	\$0	23.934	0.000	\$0	\$0	\$3,183	-	24.463
Vaccination Only	\$3,287	\$104	23.961	0.027	\$3,866	\$0	\$3,089	\$198	24.478
Inclusive	\$4,664	\$1,377	24.057	0.097	\$14,227	\$1,621	\$2,815	\$228	24.569
Treatment Only	\$4,720	\$56	24.030	-0.027	Dominated	\$1,621	\$2,909	\$190	24.555
People Who Inject Drugs									
Vaccination Only	\$6,271	\$0	23.281	0.000	\$0	\$0	\$6,126	\$146	24.070
No Intervention	\$6,924	\$653	23.070	-0.211	Dominated	\$0	\$6,924	-	23.950
Inclusive	\$8,962	\$2,691	23.546	0.265	\$10,165	\$2,831	\$5,941	\$190	24.361
Treatment Only	\$9,702	\$740	23.335	-0.211	Dominated	\$2,831	\$6,739	\$132	24.240
Men Who Have Sex With Men									
Vaccination Only	\$1,302	\$0	24.370	0.000	\$0	\$0	\$1,195	\$107	24.726
No Intervention	\$1,354	\$52	24.325	-0.046	Dominated	\$0	\$1,354	-	24.701
Inclusive	\$1,811	\$509	24.405	0.035	\$14,458	\$590	\$1,096	\$126	24.759
Treatment Only	\$1,887	\$76	24.360	-0.046	Dominated	\$590	\$1,254	\$43	24.734
*Specific screen and linkage to care USD: United States Dollar; QALYs: ^Screening costs include vaccination	Quality-Adju		gy are shown	n in Table S6.					

^Screening costs include vaccination costs.


2. Improved screening and linkage to care - Clinical Outcomes

870

- a. Short-, intermediate-, and long-term clinical outcomes
- 871Results of 1 million simulations with base-case values to determine the percent reduction in clinical872outcomes with a program that screens and treats or vaccinates compared to no intervention.

874 Figure S10: Short-term and intermediate clinical outcomes for each population in scenario analysis

876

6 Figure S11: Long-term clinical outcomes for each population in scenario analysis

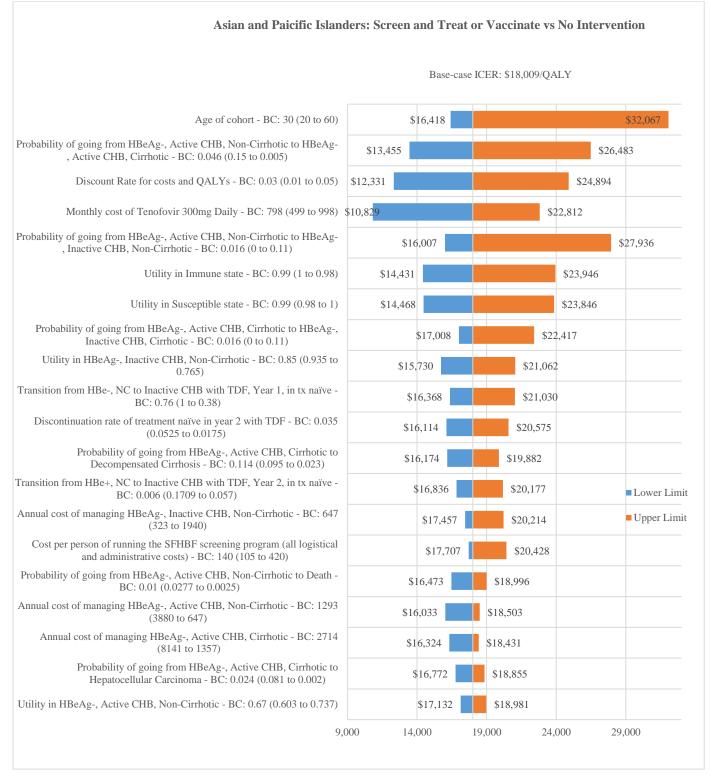
877 VI. Additional One-Way Analyses

This section presents additional one-way analyses. More in depth versions of tornado diagrams are shown. A table on the impact of hepatitis B population-specific prevalence and incidence rate on is shown in a table.

881 1. Tornado Analyses:

878

885


887

The main paper presents the top sex variables impacting the incremental cost-effectiveness ration
(ICER). These analyses provide more details (for the top 20 inputs) about the uncertainty around the
inputs and their impact on the model outputs.

886 Six tornado diagrams are shown, one for each population modeled.

888 <u>How to read the tornado diagrams:</u> the blue bars indicate the lower ICER for the value listed first in the 889 range; orange bars indicate an increase for the 2nd value in the range. These ranges are the uncertainty 890 around the input and the length of the bars reflects the impact on the ICER of the uncertainty. a. Asian and Pacific Islanders

891

894

b. Africa Born Black Population

Africa Bron Black Population: Screen and Treat or Vaccinate vs No Intervention

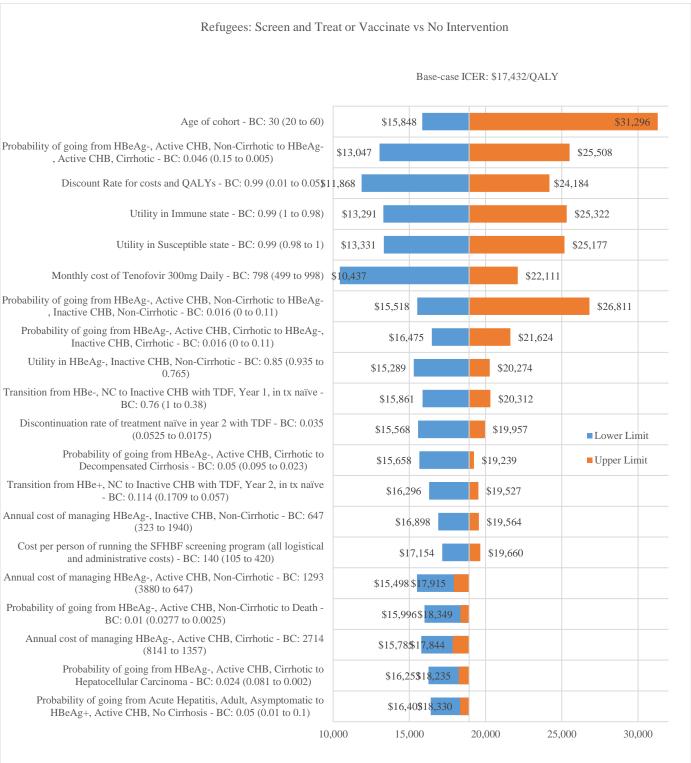
	Base-case ICER: \$17,089/QALY							
Age of cohort - BC: 30 (20 to 60)	\$15,649			\$2	9,832			
robability of going from HBeAg-, Active CHB, Non-Cirrhotic to HBeAg- , Active CHB, Cirrhotic - BC: 0.05 (0.15 to 0.005)	\$12,909		\$2	24,673				
Monthly cost of Tenofovir 300mg Daily - BC: 0.016 (499 to 998) \$	10,176	\$2	21,713					
Discount Rate for costs and QALYs - BC: 0.03 (0.01 to 0.05)	\$11,904		\$23,37	9				
robability of going from HBeAg-, Active CHB, Non-Cirrhotic to HBeAg- , Inactive CHB, Non-Cirrhotic - BC: 0.016 (0 to 0.11)	\$15,210			\$26	,447			
Utility in Immune state - BC: 0.99 (1 to 0.98)	\$13,945		\$22,062					
Utility in Susceptible state - BC: 0.99 (0.98 to 1)	\$13,978		\$21,981					
Utility in HBeAg-, Inactive CHB, Non-Cirrhotic - BC: 0.85 (0.935 to 0.765)	\$14,988	\$19,874						
ransition from HBe-, NC to Inactive CHB with TDF, Year 1, in tx naïve - BC: 0.76 (1 to 0.38)	\$15,510	\$20,011						
Probability of going from HBeAg-, Active CHB, Cirrhotic to HBeAg-, Inactive CHB, Cirrhotic - BC: 0.016 (0 to 0.11)	\$16,291	\$20,5	96					
Discontinuation rate of treatment naïve in year 2 with TDF - BC: 0.035 (0.0525 to 0.0175)	\$15,276	\$19,538		Lower Li	imit			
Transition from HBe+, NC to Inactive CHB with TDF, Year 2, in tx naïve - BC: 0.114 (0.1709 to 0.057)	\$15,959	\$19,166		Upper Li	mit			
Probability of going from HBeAg-, Active CHB, Cirrhotic to Decompensated Cirrhosis - BC: 0.05 (0.095 to 0.023)	\$15,615	\$18,525						
nnual cost of managing HBeAg-, Inactive CHB, Non-Cirrhotic - BC: 647 (323 to 1940)	\$16,555	\$19,221						
Probability of going from HBeAg-, Active CHB, Cirrhotic to Hepatocellular Carcinoma - BC: 0.024 (0.081 to 0.002)	\$15,783	\$18,175						
nnual cost of managing HBeAg-, Active CHB, Non-Cirrhotic - BC: 1293 (3880 to 647)	\$15,220	\$17,556						
Cost per person of running the SFHBF screening program (all logistical and administrative costs) - BC: 140 (420 to 105)	\$16,849	\$19,005						
Probability of going from HBeAg-, Active CHB, Non-Cirrhotic to Death - BC: 0.01 (0.0277 to 0.0025)	\$15,818	\$17,887						
Increased risk of HCC if Africa Born - BC: 1.5 (2.5 to 1)	\$15,884	\$17,851						
Annual cost of managing HBeAg-, Active CHB, Cirrhotic - BC: 2714 (1357 to 8141)	\$15,608	\$17,459						

895

896 Figure S13: Sensitivity analysis for the inclusive strategy compared to no intervention for Africa Born Black Population

c. Incarcerated Persons

897


Incarcerated Persons: Screen and Treat or Vaccinate vs No Intervention

Base-case ICER: \$3,203/QALY Prevalence of active CHB in Incarcerated Persons - BC: 0.014 \$565 \$6.848 (0.003 to 0.031) Annual incidence for developing acute hepatitis B in incarcerated \$1,716 \$8,134 persons - BC: 0.0231 (0.038 to 0.0082) Age of cohort - BC: 0.03 (20 to 60) \$2,572 \$8.930 Utility in Immune state - BC: 0.99 (0.98 to 1) \$7,131 2.065Discount Rate - BC: 0.03 (0.01 to 0.05) \$1,122 \$5,866 Probability of going from Acute Hepatitis, Adult, Asymptomatic \$5,935 \$1,277 to HBeAg+, Active CHB, No Cirrhosis - BC: 0.05 (0.1 to 0.01) Utility in Susceptible state - BC: 0.99 (0.98 to 1) \$2,099 \$6,751 Monthly cost of Tenofovir 300mg Daily - BC: 798 (499 to 998) \$1,208 \$4,537 Proportion of incarcerated accepting vaccination and getting 1st \$2,962 \$5,632 dose - BC: 0.7 (1 to 0.4) Incarcerated persons accepting treatment with Universal screening \$1.828 \$4.364 - BC: 0.75 (0.5 to 1) Probability of going from HBeAg-, Active CHB, Non-Cirrhotic to \$2.186 \$4.581 Lower HBeAg-, Active CHB, Cirrhotic - BC: 0.046 (0.15 to 0.005) Limit Susceptibility to HBV in Incarcerated Persons - BC: 0.53 (0.66 to Upper \$2,286 \$4,531 0.4)Limit Probability of going from Acute Hepatitis, Adult, Symptomatic to \$2,279 \$4,138 HBeAg+, Active CHB, No Cirrhosis - BC: 0.05 (0.1 to 0.01) Discontinuation rate of treatment naïve in year 2 with TDF - BC: \$2,551 \$4,108 0.035 (0.0175 to 0.0525) Probability of going from HBeAg-, Active CHB, Non-Cirrhotic to \$2.905 \$4.304 HBeAg-, Inactive CHB, Non-Cirrhotic - BC: 0.016 (0 to 0.11) Proportion of incarcerated getting 2nd dose - BC: 0.65 (0.81 to \$3.046 \$4,256 0.49Annual cost of managing HBeAg+, Active CHB, Non-Cirrhotic -\$2,374 \$3,410 BC: 1293 (3880 to 647) Annual cost of managing HBeAg-, Active CHB, Non-Cirrhotic -\$2,429 \$3,396 BC: 1293 (3880 to 647) Probability of going from HBeAg-, Active CHB, Cirrhotic to \$2,712 \$3,668 Decompensated Cirrhosis - BC: 0.05 (0.095 to 0.023) Probability of going from Acute Hepatitis, Adult to Acute \$2,798 \$3,694 Hepatitis, Adult, Symptomatic - BC: 0.3 (0.2 to 0.4) -1,000 1,000 3,000 5,000 7,000 9,000

899 Figure S14: Sensitivity analysis for the inclusive strategy compared to no intervention for Incarcerated Individuals

d. Refugees

900

903

e. People Who Inject Drugs

PWID: Screen and Treat or Vaccinate vs No Intervention Base-case ICER: \$8,514/QALY Total cost per person of running the PWID screening program at SSP - BC: \$6.598 \$24.007 97 (73 to 291) Age of cohort - BC: 30 (20 to 20) \$7,269 \$20,986 PWID linked to care after screening at SSP - BC: 0.1 (0.06 to 0.4) \$634 \$12,864 Discount Rate for costs and QALYs - BC: 0.03 (0.01 to 0.05) \$3,634 \$15,268 AHB to CHB transition probability for PWIDs - BC: 0.1 (0.15 to 0.05) \$5,198 \$15,265 Proportion of susceptible PWIDs - BC: 0.44 (0.55 to 0.33) \$11.979 \$6.312 PWID referred to care after screening at SSP - BC: 0.75 (0.95 to 0.56) \$6,401 \$11,920 Proportion of PWID getting 2nd dose - BC: 0.53 (0.67 to 0.4) \$6,839 \$10,630 Prevalence of active CHB in PWIDs (general population) - BC: 0.118 (0.035 \$7,003 \$10,029 to 0.2) PWID accepting treatment after screening at SSP - BC: 0.06 (0.016 to 0.4) \$8,101 \$10,330 Probability of going from HBeAg-, Active CHB, Non-Cirrhotic to HBeAg-, \$7,659 \$9,548 Active CHB, Cirrhotic - BC: 0.046 (0.15 to 0.005) Lower Limit Utility in Immune state - BC: 0.99 (1 to 0.98) \$7,706 \$9,512 Upper Limit Annual incidence for developing acute hepatitis B in PWID - BC: 0.1 (0.122 \$7,860 \$9,264 to 0.083) Utility in Susceptible state - BC: 0.99 (0.98 to 1) \$7,892 \$9,243 Annual cost of managing HBeAg+, Active CHB, Non-Cirrhotic - BC: 1293 \$7,450 \$8,780 (647 to 3880) Probability of going from Acute Hepatitis, Adult to Acute Hepatitis, Adult, \$7,904 \$9,211 Symptomatic - BC: 0.3 (0.4 to 0.2) Probability of going from HBeAg-, Active CHB, Non-Cirrhotic to HBeAg-, \$8,255 \$9,445 Inactive CHB, Non-Cirrhotic - BC: 0.016 (0.11 to 0) Probability of going from HBeAg+, Active CHB, Non-Cirrhotic to \$8,042 \$9,224 HBeAg+, Active CHB, Cirrhotic - BC: 0.024 (0.038 to 0.007) Proportion of PWID accepting vaccination and getting 1st dose - BC: 0.69 \$8,036 \$9,216 (0.86 to 0.52) Hepatitis B Surface Antibody (Anti-HBs) - BC: 14.63 (7.32 to 21.95) \$7.926 \$9.103 0 5,000 10,000 15,000 20,000

904

905 Figure S16: Sensitivity analysis for the inclusive strategy compared to no intervention for People Who Inject Drugs

906

f. Men Who Have Sex with Men

MSM: Screen and Treat or Vaccinate vs No Intervention

Base-case ICER: \$10,954/QALY Age of cohort - BC: 30 (20 to 60) \$9,533 \$22,924 Discount Rate for costs and QALYs - BC: 0.03 (0.01 to 0.05) \$6,57 \$16,480 Monthly cost of Tenofovir 300mg Daily - BC: 798 (499 to 998) \$6,538 \$13,908 Probability of going from HBeAg-, Active CHB, Non-Cirrhotic to HBeAg-\$8,474 \$14,895 , Active CHB, Cirrhotic - BC: 0.046 (0.15 to 0.005) Probability of going from Acute Hepatitis, Adult, Asymptomatic to \$8,470 \$13,727 HBeAg+, Active CHB, No Cirrhosis - BC: 0.05 (0.1 to 0.01) Probability of going from HBeAg-, Active CHB, Non-Cirrhotic to HBeAg-\$9,996 \$14,992 , Inactive CHB, Non-Cirrhotic - BC: 0.016 (0 to 0.11) Proportion of susceptible MSMs - BC: 0.62 (0.78 to 0.47) \$12,503 \$9,628 MSM accepting treatment with with screening at STI Clinics - BC: 0.75 \$9,303 \$12,086 (0.5 to 1) Probability of going from HBeAg-, Active CHB, Cirrhotic to HBeAg-, \$10,473 \$12,922 Inactive CHB, Cirrhotic - BC: 0.016 (0 to 0.11) Prevalence of active CHB in MSMs - BC: 0.023 (0.017 to 0.029) \$9,656 \$11,926 Probability of going from Acute Hepatitis, Adult, Symptomatic to \$9,828 \$11,988 HBeAg+, Active CHB, No Cirrhosis - BC: 0.05 (0.1 to 0.01) Lower Limit Probability of going from HBeAg-, Active CHB, Cirrhotic to Decompensated Cirrhosis - BC: 0.05 (0.023 to 0.095) \$9.897 Upper Limit \$11,996 Proportion of MSM getting 2nd dose - BC: 0.508 (0.38 to 0.64) \$12,093 \$10,060 Cost per person of running the MSM STI Clinic screening program (all \$10,757 \$12,475 logistical and administrative costs) - BC: 27 (81 to 20) Annual cost of managing HBeAg-, Active CHB, Non-Cirrhotic - BC: 1293 \$11,287 \$9,619 (3880 to 647) Probability of going from Acute Hepatitis, Adult to Acute Hepatitis, Adult, \$10.276 \$11,715 Symptomatic - BC: 0.3 (0.2 to 0.4) Annual incidence for developing acute hepatitis B in MSMs - BC: 0.0096 \$10,203 \$11,628 (0.0085 to 0.011) Annual cost of managing HBeAg-, Inactive CHB, Non-Cirrhotic - BC: 647 \$10,672 \$12,078 (1940 to 323) Annual cost of managing HBeAg-, Active CHB, Cirrhotic - BC: 2714 \$9,837 \$11,233 (1357 to 8141) Probability of going from HBeAg-, Active CHB, Cirrhotic to \$10.385 \$11.326 Hepatocellular Carcinoma - BC: 0.024 (0.002 to 0.081) 5,500 7,500 9,500 11,500 13,500 15,500 17,500 19,500 21,500 23,500

907 908

B Figure S17: Sensitivity analysis for the inclusive strategy compared to no intervention for Men Who Sex with Men

909 2. Effect of uncertainty around population-specific prevalence and incidence rates on ICER

910 The table below shows the effect of uncertainty around population-specific prevalence and incidence on the 911 cost-effectiveness of the inclusive strategy when compared to no intervention.

- The difference in ICER ranges listed in the table below show the maximum effect of the uncertainty for range for each variable in a given population in cost-effectiveness ratios. A low difference in ICERs means that the ICERs between the lower and the upper range of uncertainty were small, thus unlikely to effect the cost-effectiveness of a given strategy. While a large difference in the ICER range shows a greater impact of the uncertainty around that input on the cost-effectiveness ratios. The ICERs for incarcerated population, people who inject drugs, and men who have sex with men were most sensitive to the uncertainty ranges. However, a finding of note in these analyses was that across all uncertainty ranges, the ICERs remained below USD 50,000/QALY (or highly cost-
- 919 effective for the United States).

	Prevalence of he	epatitis B	Incidence rate of hepatitis B		
Population	Base-Case (Range)	Difference in	Base-Case (Range)	Difference in	
		ICER Range		ICER Range	
		(USD/QALY)		(USD/QALY)	
Asian and Pacific Islanders	0.079 (0.059 to 0.099)	\$240	0.0064 (0.0047 to 0.0081)	\$951	
Africa Born Blacks	0.097 (0.073 to 0.12)	\$299	0.0064 (0.0047 to 0.0081)	\$849	
Incarcerated Persons	0.014 (0.003 to 0.031)	\$7,413	0.0231 (0.0082 to 0.038)	\$6,418	
Refugees	0.063 (0.0474 to 0.079)	\$498	0.0064 (0.0047 to 0.0081)	\$1,164	
People Who Inject Drugs	0.118 (0.035 to 0.2)	\$3,026	0.10 (0.083 to 0.122)	\$1,404	
Men Who Have Sex with Men	0.023 (0.017 to 0.029)	\$2,270	0.0096 (0.0085 to 0.011)	\$1,425	

920 Table S39: Effect of prevalence and incidence on cost-effectiveness of the inclusive strategy, by population

922 VII. References

- 923 1. McMahon BJ. The natural history of chronic hepatitis B virus infection. *Hepatology*. 2009;49(5
 924 Suppl):S45-55.
- 925 2. Tseng TC, Kao JH. Treating Immune-tolerant Hepatitis B. *J Viral Hepat.* 2015;22(2):77-84.
- Tenney DJ, Rose RE, Baldick CJ, et al. Long-term monitoring shows hepatitis B virus resistance to
 entecavir in nucleoside-naive patients is rare through 5 years of therapy. *Hepatology*.
 2009;49(5):1503-1514.
- 929 4. Fleurence RL, Hollenbeak CS. Rates and probabilities in economic modelling: transformation,
 930 translation and appropriate application. *Pharmacoeconomics.* 2007;25(1):3-6.
- 931 5. Croagh CM, Bell SJ, Locarnini S, Desmond PV. Assessment of chronic hepatitis B: the importance
 932 of hepatitis B virus DNA testing. *Intern Med J.* 2012;42(2):170-175.
- 933 6. Dakin H, Bentley A, Dusheiko G. Cost-utility analysis of tenofovir disoproxil fumarate in the
 934 treatment of chronic hepatitis B. *Value Health.* 2010;13(8):922-933.
- 935 7. Eckman MH, Kaiser TE, Sherman KE. The cost-effectiveness of screening for chronic hepatitis B
 936 infection in the United States. *Clin Infect Dis.* 2011;52(11):1294-1306.
- 8. Hoerger TJ, Schillie S, Wittenborn JS, et al. Cost-effectiveness of hepatitis B vaccination in adults
 with diagnosed diabetes. *Diabetes Care.* 2013;36(1):63-69.
- 9. Jia Y, Li L, Cui F, et al. Cost-effectiveness analysis of a hepatitis B vaccination catch-up program
 940 among children in Shandong Province, China. *Hum Vaccin Immunother*. 2014;10(10):2983-2991.
- 10. Kanwal F, Gralnek IM, Martin P, Dulai GS, Farid M, Spiegel BM. Treatment alternatives for chronic
 hepatitis B virus infection: a cost-effectiveness analysis. *Ann Intern Med.* 2005;142(10):821-831.
- 943 11. Tilson L, Thornton L, O'Flanagan D, Johnson H, Barry M. Cost effectiveness of hepatitis B
 944 vaccination strategies in Ireland: an economic evaluation. *Eur J Public Health.* 2008;18(3):275945 282.
- 946 12. Toy M, Hutton DW, So SK. Cost-Effectiveness and Cost Thresholds of Generic and Brand Drugs in
 947 a National Chronic Hepatitis B Treatment Program in China. *PLoS One.* 2015;10(11):e0139876.
- 948 13. Hung HF, Chen HH. Cost-effectiveness analysis of prophylactic lamivudine use in preventing
 949 vertical transmission of hepatitis B virus infection. *Pharmacoeconomics*. 2011;29(12):1063-1073.
- 950 14. Lu SQ, McGhee SM, Xie X, Cheng J, Fielding R. Economic evaluation of universal newborn
 951 hepatitis B vaccination in China. *Vaccine*. 2013;31(14):1864-1869.
- 952 15. Rossi C, Schwartzman K, Oxlade O, Klein MB, Greenaway C. Hepatitis B screening and vaccination
 953 strategies for newly arrived adult Canadian immigrants and refugees: a cost-effectiveness
 954 analysis. *PLoS One.* 2013;8(10):e78548.
- 955 16. Kim SY, Billah K, Lieu TA, Weinstein MC. Cost effectiveness of hepatitis B vaccination at HIV
 956 counseling and testing sites. *Am J Prev Med.* 2006;30(6):498-506.
- 957 17. Okada K, Kamiyama I, Inomata M, Imai M, Miyakawa Y. e antigen and anti-e in the serum of
 958 asymptomatic carrier mothers as indicators of positive and negative transmission of hepatitis B
 959 virus to their infants. *N Engl J Med.* 1976;294(14):746-749.
- 960 18. Beasley RP, Trepo C, Stevens CE, Szmuness W. The e antigen and vertical transmission of
 961 hepatitis B surface antigen. *Am J Epidemiol.* 1977;105(2):94-98.
- 962 19. Stevens CE, Neurath RA, Beasley RP, Szmuness W. HBeAg and anti-HBe detection by
 963 radioimmunoassay: correlation with vertical transmission of hepatitis B virus in Taiwan. *J Med*964 *Virol.* 1979;3(3):237-241.

- 965 20. Reesink HW, Reesink-Brongers EE, Lafeber-Schut BJ, Kalshoven-Benschop J, Brummelhuis HG.
 966 Prevention of chronic HBsAg carriership in infants of HBsAg-positive mothers by hepatitis B
 967 immunoglobulin. Acta Haematol Pol. 1980;11(2):79-81.
- 968 21. Shiraki K, Yoshihara N, Sakurai M, Eto T, Kawana T. Acute hepatitis B in infants born to carrier
 969 mother with the antibody to hepatitis B e antigen. *J Pediatr.* 1980;97(5):768-770.
- 970 22. Beasley RP, Hwang LY, Lee GC, et al. Prevention of perinatally transmitted hepatitis B virus
 971 infections with hepatitis B immune globulin and hepatitis B vaccine. *Lancet.* 1983;2(8359):1099972 1102.
- 973 23. Goudeau A, Yvonnet B, Lesage G, et al. Lack of anti-HBc IgM in neonates with HBsAg carrier
 974 mothers argues against transplacental transmission of hepatitis B virus infection. *Lancet.*975 1983;2(8359):1103-1104.
- 976 24. Gussetti N, Pornaro E, Largajolli G, D'Elia R. Vertical transmission of HBV from mothers HBsAg
 977 positive, anti-HBe positive. *Dev Biol Stand.* 1983;54:405-408.
- 978 25. Marinier E, Barrois V, Larouze B, et al. Lack of perinatal transmission of hepatitis B virus infection
 979 in Senegal, West Africa. *J Pediatr.* 1985;106(5):843-849.
- 26. Xu ZY, Liu CB, Francis DP, et al. Prevention of perinatal acquisition of hepatitis B virus carriage
 using vaccine: preliminary report of a randomized, double-blind placebo-controlled and
 comparative trial. *Pediatrics.* 1985;76(5):713-718.
- 983 27. Nayak NC, Panda SK, Zuckerman AJ, Bhan MK, Guha DK. Dynamics and impact of perinatal
 984 transmission of hepatitis B virus in North India. *J Med Virol.* 1987;21(2):137-145.
- 985 28. Hyams KC, Osman NM, Khaled EM, et al. Maternal-infant transmission of hepatitis B in Egypt. J
 986 Med Virol. 1988;24(2):191-197.
- 987 29. Tsega E, Tsega M, Mengesha B, Nordenfelt E, Hansson BG, Lindberg J. Transmission of hepatitis B
 988 virus infection in Ethiopia with emphasis on the importance of vertical transmission. *Int J*989 *Epidemiol.* 1988;17(4):874-879.
- 99030.Hann HW, Hann RS, Maddrey WC. Hepatitis B virus infection in 6,130 unvaccinated Korean-991Americans surveyed between 1988 and 1990. Am J Gastroenterol. 2007;102(4):767-772.
- 99231.Lee SD, Lo KJ, Wu JC, et al. Prevention of maternal-infant hepatitis B virus transmission by993immunization: the role of serum hepatitis B virus DNA. *Hepatology*. 1986;6(3):369-373.
- 994 32. Bernuau J, Goudeau A, Poynard T, et al. Multivariate analysis of prognostic factors in fulminant
 995 hepatitis B. *Hepatology.* 1986;6(4):648-651.
- 33. Lettau LA, McCarthy JG, Smith MH, et al. Outbreak of severe hepatitis due to delta and hepatitis
 B viruses in parenteral drug abusers and their contacts. *N Engl J Med.* 1987;317(20):1256-1262.
- 998 34. Takahashi Y, Shimizu M. Aetiology and prognosis of fulminant viral hepatitis in Japan: a
 999 multicentre study. The Study Group of Fulminant Hepatitis. *J Gastroenterol Hepatol.*1000 1991;6(2):159-164.
- 1001 35. Acharya SK, Dasarathy S, Kumer TL, et al. Fulminant hepatitis in a tropical population: clinical course, cause, and early predictors of outcome. *Hepatology.* 1996;23(6):1448-1455.
- 1003 36. Ozasa A, Tanaka Y, Orito E, et al. Influence of genotypes and precore mutations on fulminant or
 1004 chronic outcome of acute hepatitis B virus infection. *Hepatology*. 2006;44(2):326-334.
- 1005 37. Chen X, Fu C, Liu J, Shan L, Liu C. Recent epidemiological and clinical features of acute hepatitis B
 1006 in a single center of China. *Int J Clin Exp Med.* 2015;8(9):16652-16657.
- **1007** 38. Chu CM, Liaw YF. HBsAg seroclearance in asymptomatic carriers of high endemic areas:
- appreciably high rates during a long-term follow-up. *Hepatology*. 2007;45(5):1187-1192.

- 39. Sampliner RE, Hamilton FA, Iseri OA, Tabor E, Boitnott J. The liver histology and frequency of
 clearance of the hepatitis B surface antigen (HBsAg) in chronic carriers. *Am J Med Sci.*1979;277(1):17-22.
- 40. Alward WL, McMahon BJ, Hall DB, Heyward WL, Francis DP, Bender TR. The long-term serological
 course of asymptomatic hepatitis B virus carriers and the development of primary hepatocellular
 carcinoma. J Infect Dis. 1985;151(4):604-609.
- 1015 41. Liaw YF, Sheen IS, Chen TJ, Chu CM, Pao CC. Incidence, determinants and significance of delayed
 1016 clearance of serum HBsAg in chronic hepatitis B virus infection: a prospective study. *Hepatology*.
 1017 1991;13(4):627-631.
- 1018 42. Villeneuve JP, Desrochers M, Infante-Rivard C, et al. A long-term follow-up study of
 1019 asymptomatic hepatitis B surface antigen-positive carriers in Montreal. *Gastroenterology*.
 1020 1994;106(4):1000-1005.
- 1021 43. Da Silva LC, Madruga CL, Carrilho FJ, et al. Spontaneous hepatitis B surface antigen clearance in a
 1022 long-term follow-up study of patients with chronic type B hepatitis. Lack of correlation with
 1023 hepatitis C and D virus superinfection. J Gastroenterol. 1996;31(5):696-701.
- 44. Fattovich G, Giustina G, Sanchez-Tapias J, et al. Delayed clearance of serum HBsAg in
 compensated cirrhosis B: relation to interferon alpha therapy and disease prognosis. European
 Concerted Action on Viral Hepatitis (EUROHEP). Am J Gastroenterol. 1998;93(6):896-900.
- Huo TI, Wu JC, Lee PC, et al. Sero-clearance of hepatitis B surface antigen in chronic carriers does
 not necessarily imply a good prognosis. *Hepatology*. 1998;28(1):231-236.
- McMahon BJ, Holck P, Bulkow L, Snowball M. Serologic and clinical outcomes of 1536 Alaska
 Natives chronically infected with hepatitis B virus. *Ann Intern Med.* 2001;135(9):759-768.
- 47. Sanchez-Tapias JM, Costa J, Mas A, Bruguera M, Rodes J. Influence of hepatitis B virus genotype
 on the long-term outcome of chronic hepatitis B in western patients. *Gastroenterology.*2002;123(6):1848-1856.
- 48. Manno M, Camma C, Schepis F, et al. Natural history of chronic HBV carriers in northern Italy:
 morbidity and mortality after 30 years. *Gastroenterology*. 2004;127(3):756-763.
- 49. Ahn SH, Park YN, Park JY, et al. Long-term clinical and histological outcomes in patients with
 spontaneous hepatitis B surface antigen seroclearance. *J Hepatol.* 2005;42(2):188-194.
- 1038 50. Arase Y, Ikeda K, Suzuki F, et al. Long-term outcome after hepatitis B surface antigen
 1039 seroclearance in patients with chronic hepatitis B. *Am J Med*. 2006;119(1):71 e79-16.
- 1040 51. Yuen MF, Wong DK, Fung J, et al. HBsAg Seroclearance in chronic hepatitis B in Asian patients:
 1041 replicative level and risk of hepatocellular carcinoma. *Gastroenterology*. 2008;135(4):1192-1199.
- 1042 52. Simonetti J, Bulkow L, McMahon BJ, et al. Clearance of hepatitis B surface antigen and risk of
 1043 hepatocellular carcinoma in a cohort chronically infected with hepatitis B virus. *Hepatology*.
 1044 2010;51(5):1531-1537.
- 1045 53. Chen YC, Sheen IS, Chu CM, Liaw YF. Prognosis following spontaneous HBsAg seroclearance in
 1046 chronic hepatitis B patients with or without concurrent infection. *Gastroenterology*.
 1047 2002;123(4):1084-1089.
- 1048 54. Chu CM, Liaw YF. Incidence and risk factors of progression to cirrhosis in inactive carriers of hepatitis B virus. *Am J Gastroenterol.* 2009;104(7):1693-1699.
- 1050 55. Yu MW, Hsu FC, Sheen IS, et al. Prospective study of hepatocellular carcinoma and liver cirrhosis
 1051 in asymptomatic chronic hepatitis B virus carriers. *Am J Epidemiol.* 1997;145(11):1039-1047.
- 1052 56. Kew MC. Epidemiology of hepatocellular carcinoma in sub-Saharan Africa. Ann Hepatol.
 1053 2013;12(2):173-182.

- 1054 57. Kirk GD, Lesi OA, Mendy M, et al. The Gambia Liver Cancer Study: Infection with hepatitis B and C
 1055 and the risk of hepatocellular carcinoma in West Africa. *Hepatology*. 2004;39(1):211-219.
 1056 58. Kremsdorf D, Soussan P, Paterlini-Brechot P, Brechot C. Hepatitis B virus-related hepatocellular
- 1057 carcinoma: paradigms for viral-related human carcinogenesis. *Oncogene*. 2006;25(27):38231058 3833.
- 1059 59. Ladep NG, Lesi OA, Mark P, et al. Problem of hepatocellular carcinoma in West Africa. World J
 1060 Hepatol. 2014;6(11):783-792.
- 1061 60. Mendy ME, Welzel T, Lesi OA, et al. Hepatitis B viral load and risk for liver cirrhosis and
 1062 hepatocellular carcinoma in The Gambia, West Africa. *J Viral Hepat.* 2010;17(2):115-122.
- 1063 61. Turner PC, Sylla A, Diallo MS, Castegnaro JJ, Hall AJ, Wild CP. The role of aflatoxins and hepatitis
 1064 viruses in the etiopathogenesis of hepatocellular carcinoma: A basis for primary prevention in
 1065 Guinea-Conakry, West Africa. J Gastroenterol Hepatol. 2002;17 Suppl:S441-448.
- Houdt Rv, Bruisten SM, Speksnijder AGCL, Prins M. Unexpectedly high proportion of drug users
 and men having sex with men who develop chronic hepatitis B infection. *J Hepatol.*2012;57(3):529-533.
- 1069 63. Mast EE, Weinbaum CM, Fiore AE, et al. A comprehensive immunization strategy to eliminate
 1070 transmission of hepatitis B virus infection in the United States: recommendations of the Advisory
 1071 Committee on Immunization Practices (ACIP) Part II: immunization of adults. *MMWR Recomm*1072 *Rep.* 2006;55(RR-16):1-33; guiz CE31-34.
- 1073 64. Razavi H, Elkhoury AC, Elbasha E, et al. Chronic hepatitis C virus (HCV) disease burden and cost in
 1074 the United States. *Hepatology*. 2013;57(6):2164-2170.
- **1075** 65. Lok AS, McMahon BJ. Chronic hepatitis B. *Hepatology*. 2007;45(2):507-539.
- 1076 66. Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP. Hepatitis B virus infection: epidemiology and vaccination. *Epidemiol Rev.* 2006;28:112-125.
- 1078 67. Chu CM, Hung SJ, Lin J, Tai DI, Liaw YF. Natural history of hepatitis B e antigen to antibody
 1079 seroconversion in patients with normal serum aminotransferase levels. *Am J Med.*1080 2004;116(12):829-834.
- 1081 68. Iloeje UH, Yang HI, Chen CJ. Natural history of chronic hepatitis B: what exactly has REVEAL
 1082 revealed? *Liver Int.* 2012;32(9):1333-1341.
- 1083 69. Chahal HS, Marseille EA, Tice JA, et al. Cost-effectiveness of Early Treatment of Hepatitis C Virus
 1084 Genotype 1 by Stage of Liver Fibrosis in a US Treatment-Naive Population. JAMA Intern Med.
 1085 2015:1-9.
- 108670.Bailey MB, Shiau R, Zola J, et al. San Francisco hep B free: a grassroots community coalition to1087prevent hepatitis B and liver cancer. J Community Health. 2011;36(4):538-551.
- 1088 71. Kamarulzaman A, Reid SE, Schwitters A, et al. Prevention of transmission of HIV, hepatitis B virus,
 1089 hepatitis C virus, and tuberculosis in prisoners. *The Lancet.* 2016.
- 1090 72. Nelson PK, Mathers BM, Cowie B, et al. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: results of systematic reviews. *Lancet.* 2011;378(9791):571-583.
- 1092 73. Weinbaum CM, Lyerla R, Mackellar DA, et al. The Young Men's Survey phase II: hepatitis B
 1093 immunization and infection among young men who have sex with men. *Am J Public Health*.
 1094 2008;98(5):839-845.
- 1095 74. Harris AM, Schoenbachler BT, Ramirez G, Vellozzi C, Beckett GA. Testing and Linking Foreign1096 Born People with Chronic Hepatitis B Virus Infection to Care at Nine U.S. Programs, 2012-2014.
 1097 Public Health Rep. 2016;131 Suppl 2:20-28.

1098 75. Linde AC, Sweet KA, Nelson K, Mamo B, Chute SM. Impact of the Hepatitis Testing and Linkage to 1099 Care (HepTLC) Initiative on Linkage to Care for Minnesota Refugees with Hepatitis B, 2012-2014. 1100 Public Health Rep. 2016;131 Suppl 2:112-118. 76. Rossi C, Shrier I, Marshall L, et al. Seroprevalence of Chronic Hepatitis B Virus Infection and Prior 1101 1102 Immunity in Immigrants and Refugees: A Systematic Review and Meta-Analysis. PLoS One. 1103 2012;7(9):e44611. 77. Weinbaum C, Lyerla R, Margolis HS. Prevention and control of infections with hepatitis viruses in 1104 1105 correctional settings. Centers for Disease Control and Prevention. MMWR Recomm Rep. 1106 2003;52(Rr-1):1-36; quiz CE31-34. 1107 78. Weinbaum CM, Sabin KM, Santibanez SS. Hepatitis B, hepatitis C, and HIV in correctional 1108 populations: a review of epidemiology and prevention. AIDS. 2005;19 Suppl 3:S41-46. 79. Heimer R, Grau LE, Singer M, et al. Hepatitis B Virus Prevalence and Vaccination Rates among 1109 Hispanic Injection Drug Users Participating in a Vaccination Campaign. Journal of Drug Issues. 1110 1111 2008;38(1):335-350. Scott KC, Taylor EM, Mamo B, et al. Hepatitis B screening and prevalence among resettled 1112 80. 1113 refugees - United States, 2006-2011. MMWR Morb Mortal Wkly Rep. 2015;64(21):570-573. Huzly D, Schenk T, Jilg W, Neumann-Haefelin D. Comparison of nine commercially available 1114 81. assays for guantification of antibody response to hepatitis B virus surface antigen. J Clin 1115 1116 Microbiol. 2008;46(4):1298-1306. 1117 82. Scheiblauer H, El-Nageh M, Diaz S, et al. Performance evaluation of 70 hepatitis B virus (HBV) surface antigen (HBsAg) assays from around the world by a geographically diverse panel with an 1118 array of HBV genotypes and HBsAg subtypes. Vox Sang. 2010;98(3 Pt 2):403-414. 1119 Popp C, Krams D, Beckert C, et al. HBsAg blood screening and diagnosis: performance evaluation 1120 83. of the ARCHITECT HBsAg qualitative and ARCHITECT HBsAg qualitative confirmatory assays. 1121 1122 Diagn Microbiol Infect Dis. 2011;70(4):479-485. 1123 84. Chandrasekar E, Kaur R, Song S, Kim KE. A comparison of effectiveness of hepatitis B screening 1124 and linkage to care among foreign-born populations in clinical and nonclinical settings. J 1125 Multidiscip Healthc. 2015;8:1-9. Blackburn NA, Patel RC, Zibbell JE. Improving Screening Methods for Hepatitis C Among People 1126 85. 1127 Who Inject Drugs: Findings from the HepTLC Initiative, 2012-2014. Public Health Rep. 2016;131 1128 Suppl 2:91-97. Dang JHT, Chen MS. Increasing Hepatitis B Testing and Linkage to Care of Foreign-Born Asians, 1129 86. Sacramento, California, 2012-2013. Public Health Rep. 2016;131 Suppl 2:119-124. 1130 1131 87. Hebert AJ, Lamia TL, Schoenbachler BT, Richardson AK. Data Collection for Monitoring Hepatitis 1132 Testing Programs: The HepTLC Data Management System. Public Health Rep. 2016;131 Suppl 2:41-43. 1133 Ramirez G, Cabral R, Patterson M, et al. Early Identification and Linkage to Care for People with 1134 88. 1135 Chronic HBV and HCV Infection: The HepTLC Initiative. Public Health Rep. 2016;131 Suppl 2:5-11. 1136 89. Rein DB, Lesesne SB, Smith BD, Weinbaum CM. Models of community-based hepatitis B surface antigen screening programs in the U.S. and their estimated outcomes and costs. Public Health 1137 *Rep.* 2011;126(4):560-567. 1138 Ward JW. Strategies for Expanding Access to HBV and HCV Testing and Care in the United States: 1139 90. The CDC Hepatitis Testing and Linkage to Care Initiative, 2012-2014. Public Health Rep. 2016;131 1140 1141 Suppl 2:1-4.

- 1142 91. Des Jarlais DC, Nugent A, Solberg A, Feelemyer J, Mermin J, Holtzman D. Syringe Service
 1143 Programs for Persons Who Inject Drugs in Urban, Suburban, and Rural Areas United States,
 1144 2013. MMWR Morb Mortal Wkly Rep. 2015;64(48):1337-1341.
- 1145 92. Iversen J, Grebely J, Topp L, Wand H, Dore G, Maher L. Uptake of hepatitis C treatment among
 1146 people who inject drugs attending Needle and Syringe Programs in Australia, 1999–2011. *J Viral*1147 *Hepat.* 2014;21(3):198-207.
- 93. Grebely J, Matthews GV, Lloyd AR, Dore GJ. Elimination of hepatitis C virus infection among
 people who inject drugs through treatment as prevention: feasibility and future requirements. *Clin Infect Dis.* 2013;57(7):1014-1020.
- 94. Akyar E, Seneca KH, Akyar S, Schofield N, Schwartz MP, Nahass RG. Linkage to Care for Suburban
 Heroin Users with Hepatitis C Virus Infection, New Jersey, USA. *Emerg Infect Dis.* 2016;22(5):907909.
- 1154 95. Sansom S, Rudy E, Strine T, Douglas W. Hepatitis A and B vaccination in a sexually transmitted
 1155 disease clinic for men who have sex with men. *Sex Transm Dis.* 2003;30(9):685-688.
- 1156 96. Martin P, Lau DT, Nguyen MH, et al. A Treatment Algorithm for the Management of Chronic
 1157 Hepatitis B Virus Infection in the United States: 2015 Update. *Clin Gastroenterol Hepatol.*1158 2015;13(12):2071-2087 e2016.
- 1159 97. Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH. AASLD guidelines for1160 treatment of chronic hepatitis B. *Hepatology*. 2015.
- 1161 98. Batirel A, Guclu E, Arslan F, et al. Comparable efficacy of tenofovir versus entecavir and
 1162 predictors of response in treatment-naive patients with chronic hepatitis B: a multicenter real1163 life study. Int J Infect Dis. 2014;28:153-159.
- 1164 99. Kim SS, Hwang JC, Lim SG, Ahn SJ, Cheong JY, Cho SW. Effect of virological response to entecavir
 1165 on the development of hepatocellular carcinoma in hepatitis B viral cirrhotic patients:
 1166 comparison between compensated and decompensated cirrhosis. *Am J Gastroenterol.*1167 2014;109(8):1223-1233.
- 1168 100. Liaw YF. HBeAg seroconversion as an important end point in the treatment of chronic hepatitis B.
 1169 *Hepatol Int.* 2009;3(3):425-433.
- 1170 101. Lin SM, Yu ML, Lee CM, et al. Interferon therapy in HBeAg positive chronic hepatitis reduces
 1171 progression to cirrhosis and hepatocellular carcinoma. *J Hepatol.* 2007;46(1):45-52.
- 102. Tseng TC, Liu CJ, Yang HC, et al. High levels of hepatitis B surface antigen increase risk of
 hepatocellular carcinoma in patients with low HBV load. *Gastroenterology*. 2012;142(5):11401174 1149 e1143; quiz e1113-1144.
- 1175 103. Yang HI, Lu SN, Liaw YF, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N
 1176 Engl J Med. 2002;347(3):168-174.
- 104. You SL, Yang HI, Chen CJ. Seropositivity of hepatitis B e antigen and hepatocellular carcinoma.
 Ann Med. 2004;36(3):215-224.
- 1179 105. Tziomalos K. Effect of antiviral treatment on the risk of hepatocellular carcinoma in patients with
 1180 chronic hepatitis B. *World J Hepatol.* 2010;2(3):91-93.
- 1181 106. Vlachogiannakos J, Papatheodoridis GV. Optimal therapy of chronic hepatitis B: how do I treat
 1182 HBeAg-positive patients? *Liver Int.* 2015;35 Suppl 1:100-106.
- 1183107.Marcellin P, Heathcote EJ, Buti M, et al. Tenofovir disoproxil fumarate versus adefovir dipivoxil1184for chronic hepatitis B. N Engl J Med. 2008;359(23):2442-2455.
- 108. Liaw YF, Sung JJ, Chow WC, et al. Lamivudine for patients with chronic hepatitis B and advanced
 liver disease. N Engl J Med. 2004;351(15):1521-1531.

109. Buti M, Fung S, Gane E, et al. Long-term clinical outcomes in cirrhotic chronic hepatitis B patients 1187 1188 treated with tenofovir disoproxil fumarate for up to 5 years. *Hepatol Int.* 2015;9(2):243-250. 110. Wang HM, Hung CH, Lee CM, et al. Three-year efficacy and safety of tenofovir in nucleos(t)ide 1189 analog-naive and -experienced chronic hepatitis B patients. J Gastroenterol Hepatol. 2016. 1190 1191 111. Chang TT, Lai CL, Kew Yoon S, et al. Entecavir treatment for up to 5 years in patients with 1192 hepatitis B e antigen-positive chronic hepatitis B. *Hepatology*. 2010;51(2):422-430. Gish RG, Chang TT, Lai CL, et al. Loss of HBsAg antigen during treatment with entecavir or 1193 112. 1194 lamivudine in nucleoside-naive HBeAg-positive patients with chronic hepatitis B. J Viral Hepat. 1195 2010;17(1):16-22. 113. Pan CQ, Tong M, Kowdley KV, et al. High rates of viral suppression after long-term entecavir 1196 treatment of Asian patients with hepatitis B e antigen-positive chronic hepatitis B. Clin 1197 Gastroenterol Hepatol. 2012;10(9):1047-1050 e1041. 1198 1199 114. Schiff ER, Lee SS, Chao YC, et al. Long-term treatment with entecavir induces reversal of advanced fibrosis or cirrhosis in patients with chronic hepatitis B. Clin Gastroenterol Hepatol. 1200 1201 2011;9(3):274-276. 1202 115. Yokosuka O, Takaguchi K, Fujioka S, et al. Long-term use of entecavir in nucleoside-naive 1203 Japanese patients with chronic hepatitis B infection. J Hepatol. 2010;52(6):791-799. Yuen MF, Seto WK, Fung J, Wong DK, Yuen JC, Lai CL. Three years of continuous entecavir 1204 116. 1205 therapy in treatment-naive chronic hepatitis B patients: VIRAL suppression, viral resistance, and 1206 clinical safety. Am J Gastroenterol. 2011;106(7):1264-1271. Buti M, Tsai N, Petersen J, et al. Seven-year efficacy and safety of treatment with tenofovir 1207 117. disoproxil fumarate for chronic hepatitis B virus infection. Dig Dis Sci. 2015;60(5):1457-1464. 1208 1209 118. Jonas MM, Chang MH, Sokal E, et al. Randomized, controlled trial of entecavir versus placebo in children with hepatitis B envelope antigen-positive chronic hepatitis B. *Hepatology*. 2015. 1210 1211 119. Lai CL, Shouval D, Lok AS, et al. Entecavir versus lamivudine for patients with HBeAg-negative 1212 chronic hepatitis B. N Engl J Med. 2006;354(10):1011-1020. 1213 120. Chang TT, Gish RG, de Man R, et al. A comparison of entecavir and lamivudine for HBeAg-positive 1214 chronic hepatitis B. N Engl J Med. 2006;354(10):1001-1010. 1215 121. Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology. 1216 2009;137(5):1593-1608 e1591-1592. 1217 Baran B, Soyer OM, Ormeci AC, et al. Efficacy of tenofovir in patients with Lamivudine failure is 122. 1218 not different from that in nucleoside/nucleotide analogue-naive patients with chronic hepatitis 1219 B. Antimicrob Agents Chemother. 2013;57(4):1790-1796. 1220 123. Colonno RJ, Rose R, Baldick CJ, et al. Entecavir resistance is rare in nucleoside naive patients with 1221 hepatitis B. Hepatology. 2006;44(6):1656-1665. 1222 Kitrinos KM, Corsa A, Liu Y, et al. No detectable resistance to tenofovir disoproxil fumarate after 124. 1223 6 years of therapy in patients with chronic hepatitis B. *Hepatology*. 2014;59(2):434-442. 1224 125. Tenney DJ, Rose RE, Baldick CJ, et al. Two-year assessment of entecavir resistance in Lamivudine-1225 refractory hepatitis B virus patients reveals different clinical outcomes depending on the 1226 resistance substitutions present. Antimicrob Agents Chemother. 2007;51(3):902-911. Koklu S, Tuna Y, Gulsen MT, et al. Long-term efficacy and safety of lamivudine, entecavir, and 1227 126. 1228 tenofovir for treatment of hepatitis B virus-related cirrhosis. Clin Gastroenterol Hepatol. 1229 2013;11(1):88-94. 1230 127. Snow-Lampart A, Chappell B, Curtis M, et al. No resistance to tenofovir disoproxil fumarate 1231 detected after up to 144 weeks of therapy in patients monoinfected with chronic hepatitis B 1232 virus. *Hepatology*. 2011;53(3):763-773.

128. Chen CJ, Yang HI. Natural history of chronic hepatitis B REVEALed. J Gastroenterol Hepatol. 1233 1234 2011;26(4):628-638. 1235 129. Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA. 2006;295(1):65-73. 1236 1237 130. Chen JD, Yang HI, Iloeje UH, et al. Carriers of inactive hepatitis B virus are still at risk for 1238 hepatocellular carcinoma and liver-related death. *Gastroenterology*. 2010;138(5):1747-1754. Iloeje UH, Yang HI, Su J, et al. Predicting cirrhosis risk based on the level of circulating hepatitis B 1239 131. 1240 viral load. Gastroenterology. 2006;130(3):678-686. Chang TT, Liaw YF, Wu SS, et al. Long-term entecavir therapy results in the reversal of 1241 132. 1242 fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. 1243 Hepatology. 2010;52(3):886-893. Marcellin P, Gane E, Buti M, et al. Regression of cirrhosis during treatment with tenofovir 1244 133. disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 1245 2013;381(9865):468-475. 1246 Hutton DW, Tan D, So SK, Brandeau ML. Cost-effectiveness of screening and vaccinating Asian 1247 134. 1248 and Pacific Islander adults for hepatitis B. Ann Intern Med. 2007;147(7):460-469. 1249 135. Des Jarlais DC, Diaz T, Perlis T, et al. Variability in the incidence of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus infection among young injecting drug users in New 1250 York City. Am J Epidemiol. 2003;157(5):467-471. 1251 1252 136. Hagan H, Snyder N, Hough E, et al. Case-reporting of acute hepatitis B and C among injection drug users. J Urban Health. 2002;79(4):579-585. 1253 Falade-Nwulia O, Seaberg EC, Snider AE, et al. Incident Hepatitis B Virus Infection in HIV-Infected 1254 137. and HIV-Uninfected Men Who Have Sex With Men From Pre-HAART to HAART Periods: A Cohort 1255 Study. Ann Intern Med. 2015;163(9):673-680. 1256 1257 138. European Consensus Group on Hepatitis B Immunity. Are booster immunisations needed for 1258 lifelong hepatitis B immunity? . Lancet. 2000;355(9203):561-565. 1259 139. Yuen MF, Lim WL, Chan AO, Wong DK, Sum SS, Lai CL. 18-year follow-up study of a prospective randomized trial of hepatitis B vaccinations without booster doses in children. Clin Gastroenterol 1260 1261 Hepatol. 2004;2(10):941-945. Kuan RK, Janssen R, Heyward W, Bennett S, Nordyke R. Cost-effectiveness of hepatitis B 1262 140. vaccination using HEPLISAV in selected adult populations compared to Engerix-B(R) vaccine. 1263 Vaccine. 2013;31(37):4024-4032. 1264 Levy AR, Kowdley KV, Iloeje U, et al. The impact of chronic hepatitis B on quality of life: a 141. 1265 multinational study of utilities from infected and uninfected persons. Value Health. 1266 1267 2008;11(3):527-538. 142. Pereira A, Sanz C. A model of the health and economic impact of posttransfusion hepatitis C: 1268 1269 application to cost-effectiveness analysis of further expansion of HCV screening protocols. 1270 Transfusion (Paris). 2000;40(10):1182-1191. Sullivan PW, Ghushchyan V. Preference-Based EQ-5D index scores for chronic conditions in the 1271 143. 1272 United States. Med Decis Making. 2006;26(4):410-420. Thein HH, Krahn M, Kaldor JM, Dore GJ. Estimation of utilities for chronic hepatitis C from SF-36 1273 144. scores. Am J Gastroenterol. 2005;100(3):643-651. 1274 Tu HAT, de Vries R, Woerdenbag HJ, et al. Cost-Effectiveness Analysis of Hepatitis B 1275 145. 1276 Immunization in Vietnam: Application of Cost-Effectiveness Affordability Curves in Health Care 1277 Decision Making. Value in Health Regional Issues. 2012;1(1):7-14.

- 1278146.Wong JB, Koff RS, Tine F, Pauker SG. Cost-effectiveness of interferon-alpha 2b treatment for1279hepatitis B e antigen-positive chronic hepatitis B. Ann Intern Med. 1995;122(9):664-675.
- 1280 147. Woo G, Tomlinson G, Yim C, et al. Health state utilities and quality of life in patients with
 hepatitis B. *Can J Gastroenterol.* 2012;26(7):445-451.
- 1282 148. Wu B, Li T, Chen H, Shen J. Cost-effectiveness of nucleoside analog therapy for hepatitis B in
 1283 China: a Markov analysis. *Value Health.* 2010;13(5):592-600.
- 1284 149. Gish RG, Lok AS, Chang TT, et al. Entecavir therapy for up to 96 weeks in patients with HBeAg1285 positive chronic hepatitis B. *Gastroenterology*. 2007;133(5):1437-1444.
- 1286 150. Butler JR, Pianko S, Korda RJ, et al. The direct cost of managing patients with chronic hepatitis B
 1287 infection in Australia. *J Clin Gastroenterol.* 2004;38(10 Suppl 3):S187-192.
- 1288 151. Enriquez AD, Campbell MS, Reddy KR. Cost-effectiveness of suppressing hepatitis B virus DNA in
 immune tolerant patients to prevent hepatocellular carcinoma and cirrhosis. *Aliment Pharmacol* 1290 Ther. 2007;26(3):383-391.
- 1291 152. Lee TA, Veenstra DL, Iloeje UH, Sullivan SD. Cost of chronic hepatitis B infection in the United
 1292 States. J Clin Gastroenterol. 2004;38(10 Suppl 3):S144-147.
- 1293 153. Miriti MK, Billah K, Weinbaum C, et al. Economic benefits of hepatitis B vaccination at sexually
 1294 transmitted disease clinics in the U.S. *Public Health Rep.* 2008;123(4):504-513.
- 1295 154. Centers for Medicare and Medicaid Services. 2016 Clinical Laboratory Fee Schedule. 2016;
 1296 <u>https://www.cms.gov/apps/ama/license.asp?file=/ClinicalLabFeeSched/Downloads/16CLAB.zip</u>.
 1297 Accessed February 16th, 2016.
- 1298 155. Centers for Medicare and Medicaid Services. 2016 Physician Fee Schedule. 2016;
 1299 <u>https://www.cms.gov/apps/physician-fee-schedule/search/search-criteria.aspx</u>. Accessed
 1300 February 16th, 2016.
- 1301 156. Micromedex. Red Book Online. 2016. Accessed February 16th, 2016.
- 1302 157. CBO. *Prices for Brand-Name Drugs Under Selected Federal Programs.* The Congress of the United
 1303 States; Congressional Budget Office;2005.
- 1304 158. Gao X, Stephens JM, Carter JA, Haider S, Rustgi VK. Impact of adverse events on costs and quality
 1305 of life in protease inhibitor-based combination therapy for hepatitis C. *Expert Rev Pharmacoecon*1306 *Outcomes Res.* 2012;12(3):335-343.
- 1307 159. Post SE, Sodhi NK, Peng CH, Wan K, Pollack HJ. A simulation shows that early treatment of
 1308 chronic hepatitis B infection can cut deaths and be cost-effective. *Health Aff (Millwood)*.
 1309 2011;30(2):340-348.
- 1310 160. Fernández-Rodríguez CM, Gutiérrez-García ML. Prevention of hepatocellular carcinoma in patients with chronic hepatitis B. *World J Gastrointest Pharmacol Ther.* 2014;5(3):175-182.
- 1312 161. Kim WR, Loomba R, Berg T, et al. Impact of long-term tenofovir disoproxil fumarate on incidence
 1313 of hepatocellular carcinoma in patients with chronic hepatitis B. *Cancer.* 2015;121(20):36311314 3638.
- 1315 162. Lai CL, Yuen MF. Prevention of hepatitis B virus-related hepatocellular carcinoma with antiviral
 1316 therapy. *Hepatology*. 2013;57(1):399-408.
- 1317 163. Papatheodoridis GV, Chan HL-Y, Hansen BE, Janssen HLA, Lampertico P. Risk of hepatocellular
 1318 carcinoma in chronic hepatitis B: Assessment and modification with current antiviral therapy. J
 1319 Hepatol. 2015;62(4):956-967.
- 1320 164. Papatheodoridis GV, Lampertico P, Manolakopoulos S, Lok A. Incidence of hepatocellular
 1321 carcinoma in chronic hepatitis B patients receiving nucleos(t)ide therapy: a systematic review. J
 1322 Hepatol. 2010;53(2):348-356.

- 1323 165. Sung JJ, Tsoi KK, Wong VW, Li KC, Chan HL. Meta-analysis: Treatment of hepatitis B infection
- reduces risk of hepatocellular carcinoma. *Aliment Pharmacol Ther.* 2008;28(9):1067-1077.
- 1325 166. Thiele M, Gluud LL, Dahl EK, Krag A. Antiviral therapy for prevention of hepatocellular carcinoma
 1326 and mortality in chronic hepatitis B: systematic review and meta-analysis. *BMJ Open.* 2013;3(8).
- **1327** 167. Hosaka T, Suzuki F, Kobayashi M, et al. Long-term entecavir treatment reduces hepatocellular
- carcinoma incidence in patients with hepatitis B virus infection. *Hepatology.* 2013;58(1):98-107.
- 1329 168. Zhang YQ, Peng LJ, Cao YR, et al. Risk Factors for Hepatocellular Carcinoma in Cirrhotic Patients
- 1330 with Chronic Hepatitis B. *Genet Test Mol Biomarkers*. 2016.