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Symmetry-adapted Gaussian Process Regression

Symmetry-adapted Gaussian process regression (SA-GPR) is a machine-learning framework

which makes it possible to include in the regression algorithm the geometric covariances

in three dimensions of spherical tensors of arbitrary order λ. This is done by designing a

tensorial kernel function kλ(X ,X ′) which transforms like a Wigner-D matrix of the proper

order λ, as follows:

kλ(X ,X ′) =

∫
dR̂ Dλ(R̂)

∣∣∣〈X |R̂X ′〉∣∣∣2 (S1)

On the top of this environmental similarity measure, a normalization can follow by

considering

k̃λ(X ,X ′) =
kλ(X ,X ′)√

‖kλ(X ,X ′)‖F ‖kλ(X ,X ′)‖F
(S2)

Finally, the normalized kernel can be elevated to a positive integer power ζ to enhance

its non-linear character and, as a consequence, its ability to describe many-body structural

correlations of higher order. Given that the proper geometric covariances of the kernel function

are strictly related to its linear relationship with the Wigner-D matrix, such exponentiation

actually consists in multiplying the primitive tensorial kernel by its scalar, and therefore

rotationally invariant, counterpart:

kλ,ζµµ′(X ,X
′) = k̃λµµ′(X ,X ′) k̃000(X ,X ′)ζ−1 (S3)

As a practical implementation of Eq. (S2), we followed the choice made in Ref. S1 where

such kernel functions have been implemented by choosing as the primitive similarity measure

〈X |X ′〉 the smooth overlap of atomic positions (SOAP) of Ref. S2, consisting of a real space

overlap of Gaussian smoothed atomic densities between atomistic environments. From this

hierarchy of λ-SOAP kernels, the prediction of a spherical tensor component Tλ associated
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with a given atomic environment X is given by

T λµ (X ) =
∑
j∈M

∑
|µ′|<λ

kλµµ′(X ,Xj) xλµ′(Xj) (S4)

with xλν(Xj) the regression weights associated with a set M of training environments {Xj},

being in turn spherical tensors of dimension 2λ+ 1.

Derivation of the regression formula

We report here a detailed mathematical derivation of the regression formula for the charge

density.

1. We start by making the ansatz of expanding the charge density field in an atom-centred

basis set:

ρ(r) =
∑
i∈A

ρi(r) =
∑
i∈A

∑
nlm

cinlm φnlm(r− ri) δαiαn , (S5)

with i atomic labels for molecule A. Given S = r− ri the atom centred position vector, basis

functions are factorized into spherical harmonics Y l
m(Ŝ) and radial functions Rn(S). Letting

n run over any arbitrary set of radial functions, the Kronecker delta δαiαn has the role of

associating different radial functions with different atomic species α.

2. We continue by making the assumption that the expansion coefficients arise from a

symmetry-adapted Gaussian process regression framework, where different atomic species,

radial channels and spherical harmonic components are predicted independently of each

other. In practice, once the full series of spherical-tensor kernels {kl} is computed up to

the maximum angular momentum value lmax included in the density expansion, the local

prediction of a generic density component associated with a given local environment Xi is
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carried out by the following linear combination:

cinlm(x) =
∑
j∈M

∑
|m′|<l

klmm′(Xi,Xj) xjnlm′ δαiαj , (S6)

where j runs over a given reference set M of representative atom-centred environments Xj,

while the sum over m′ provides the correct geometric covariance of the predicted density

component. x refers to the vector of regression weights xjnlm′ to be determined.

3. The regression weights xjnlm′ come from the minimization of a loss function describing

the collective error in representing the density of N training molecules. Formally we can

write:

`(x) =
∑
A∈N

∫
dr

∣∣∣∣∣ρA(r)−
∑
i∈A

∑
nlm

cinlm(x) φnlm(r− ri) δαiαn

∣∣∣∣∣
2

+ η |x|2 (S7)

with cinlm(x) depending parametrically on the set of regression weights x to be determined

while η accounting for the intrinsic noise of the training densities. Differentiating the loss

function of Eq. (S7) with respect to the regression weights xγνλµ, we find:

∂`(x)

∂xγνλµ
= 2η xγνλµ − 2

∑
A∈N

∫
dr

[
ρA(r)−

∑
i∈A

∑
nlm

cinlm(x) φnlm(r− ri) δαiαn

]
×

×

[∑
i′∈A

∑
n′l′m′

∂ci
′

n′l′m′(x)

∂xγνλµ
φn′l′m′(r− ri′) δαi′αn′

]
=

= 2η xγνλµ − 2
∑
A∈N

∑
i′∈A

∑
n′l′m′

[
wi

′

n′l′m′ −
∑
i∈A

∑
nlm

cinlm(x) Si,i
′

nlm,n′l′m′

]
∂ci

′

n′l′m′(x)

∂xγνλµ

(S8)

where we have defined the projections of the density on basis functions as

wi
′

n′l′m′ =

∫
dr ρA(r) φn′l′m′(r− ri′) δαi′αn′ (S9)
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and the overlap between basis functions as

Si,i
′

nlm,n′l′m′ =

∫
dr φnlm(r− ri) φn′l′m′(r− ri′) δαiαnδαi′αn′ . (S10)

Note that the overlap matrix S is block diagonal in the space of dataset configurations

since it only couples basis functions relative to the atoms of the same molecule A. Upon

plugging Eq. (S6) in place of the expansion coefficients, derivatives with respect to the

regression weights are given by:

∂ci
′

n′l′m′(x)

∂xγνλµ
= kλm′µ(Xi′ ,Xγ) δλl′ δνn′ δαi′αγ (S11)

which leaves us with

∂`(x)

∂xγνλµ
= 2η xγνλµ − 2

∑
A∈N

∑
i′∈A

∑
|m′|<λ

wi
′

νλm′ kλm′µ(Xi′ ,Xγ) δαi′αγ

+2
∑
j∈M

∑
nlm′′

xjnlm′′

∑
A∈N

∑
i∈A

∑
|m|<l

[
klm′′m(Xj,Xi) δαjαi

]T ∑
i′∈A

∑
|m′|<λ

Si,i
′

nlm,νλm′ k
λ
m′µ(Xi′ ,Xγ) δαi′αγ


(S12)

Setting to zero the previous equations, we get a system of coupled equations for the

regression coefficients x which can be linearly solved by a simple matrix inversion. Defining

the problem dimensionality via the collective index {γ, νλµ} this system can be written in

matrix notation as follows:

0 = ηx−wK + xKTSK (S13)

which corresponds to the formal solution:

x =
(
KTSK + η1

)−1
KTw (S14)
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Basis functions and overlap matrix

The atom-centered basis functions chosen are Gaussian Type Orbitals (GTOs), commonly

used in quantum chemistry codes as primitive functions to construct optimized atomic

functions. They are defined as:

Gnlm(r− ri) = Ylm(θ, φ)×Rl
n(r) = Ylm(θ, φ)×N l

n |r− ri|l exp

{
−1

2

(
|r− ri|
σ(n)

)2
}

(S15)

where the normalization factor N l
n is defined such that:

∫ ∞
0

dr r2 Rl
n(r)Rl

n(r) = 1 (S16)

This choice allow us to get an analytic implementation of the overlap matrix. In particular,

the overlap matrix can be computed analytically if working with the Cartesian counterpart

of GTOs. For each l value of angular momentum, there are (l + 1)(l + 2)/2 Cartesian GTOs,

namely:

Gλxλyλz(r− ri;n) = (x− xi)λx(y − yi)λy(z − zi)λz exp

{
−1

2

(x− xi)2 + (y − yi)2 + (z − zi)2

σ2(n)

}

such that l = λx + λy + λz.

In particular, since each Cartesian direction is independent from each other, we have

S{λxλyλz}{λxλyλz}′ = Sλxλ′xSλyλ′ySλzλ′z , where, for instance,

Sλxλ′x =

√
π

α(n) + α(n′)
exp

{
−E (Ax − A′x)2

}
×

×
λx∑
ix=0

λ′x∑
i′x=0

(
λx
ix

)(
λ′x
i′x

)
(ix + i′x − 1)!!

[2α(n) + 2α(n′)](ix+i
′
x)/2

(Px − Ax)λx−ix(Px − A′x)λ
′
x−i′x

(S17)
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with (ix + i′x) assumed even, and

α(n) =
1

2σ(n)
, E =

α(n)α(n′)

α(n) + α(n′)
, Px =

α(n)Ax + α(n′)A′x
α(n) + α(n′)

.

Going back to the spherical representation requires the proper transformation matrix Cl

which can be found, for instance, in Ref. S3. Finally a transformation matrix Rl is also used

to go from the complex to real space. With these choices, the final real and spherical overlap

matrix Sll′ for a given couple of atoms i, i′ and radial functions n, n′ reads:

Sll′ =

∫
dr Gl(r− ri;n) GT

l′ (r− ri′ ;n
′) = R∗l C

∗
l

(∫
dr Gl(r− ri;n) GTl′ (r− ri′ ;n

′)

)
CT
l′ R

T
l′

(S18)

which requires to pick the proper Cartesian overlap matrix of dimension (l+1)(l+2)
2

× (l′+1)(l′+2)
2

included in the parentheses (·).

Density projections over basis functions

The projection of the molecular density onto the atom-centered basis functions reads

winlm = 〈φinlm|ρ〉 =

∫
dS S2Rl

n(S) Y ?
lm(Ŝ) ρ(ri + S) (S19)

with S = r− ri. To accurately integrate spherical harmonic components over the unit sphere

we use the Lebedev quadrature with 2030 points.S4–S6 The radial integration is performed

with an equispaced radial mesh of 200 points spanning a cutoff distance of rcut = 6 Å.

Error estimation on uniform grids

The comparison between the predicted machine-learning densities and the reference quantum-

mechanical densities are carried out on Cartesian uniform grids with 0.1 Bohr of spacing and
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with a number of points per side defined in such a way that the grid extends for at least 5 Å

from any atom of the molecule. The density printing for quantum mechanical densities is

carried out by using the Dgrid software.S7

Basis set optimization

When using a multi-centred expansion one can easily encounter ill-conditioning issues consist-

ing in a lowering of the overlap matrix rank. The standard strategy to avoid these problems

involves the contraction of the radial basis set in a smaller set of optimized functions R′n(r)

expressed as a linear combination of the starting primitive functions Rn′(r). Formally we can

write,

R′n(r) =
∑
n′

ann′Rn′(r) (S20)

with ann′ the rectangular contraction matrix to be optimized. In our case, 12 primitive radial

GTOs are contracted down to a total of 4 optimized functions in such a way that both the

root mean square density error ερ coming from the linear problem solution c = S−1w and

the condition-number ω of the overlap matrix S are simultaneously minimized.S8 The two

quantities are for this purpose suitably combined to modulate their relative importance in

the final minimization target. In particular, we found that a good compromise consists in

combining the root mean square density error with 10−3 logω. The primitive set of GTOs

is defined in order to uniformly span the radial interval via the Gaussian width σn. The

minimization is carried out by using the L-BFGS-B method of the Scipy optimization libraries.

The systems which have been used for the optimization are given by 3 molecules of butane and

3 molecules of butadiene. This choice has demonstrated to encode enough chemical variability

to lead to a basis set that can suitably represent all the carbon molecules considered in this

work with comparable accuracy.
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Dataset generation

Molecular structures included in the dataset were generated by sampling the trajectory of

the lowest temperature (300 K) replica of a replica exchange molecular dynamics (REMD)

simulation.S9,S10 Forces were computed at the DFTB3-UFF/3OBS11–S13 level as implemented

in the DFTB+ software,S14 while the REMD was driven by the i-PI software.S15 The REMD

simulation was performed in the NVT ensemble with a generalised Langevin equation (GLE)

thermostat.S16 The time step of the dynamics was set at 0.25 fs for a total simulation time

of at least 130 ps. 16 replica at 300 K, 364.3 K, 430.6 K, 498.9 K, 569.2 K, 641.7 K, 716.4

K, 793.4 K, 872.7 K, 954.5 K, 1038.7 K, 1125.5 K, 1215.0 K, 1307.2 K, 1402.1 K, 1500.0

K, were found sufficient to ensure enough exchanges within the simulation time. Upon

removing the first picosecond of dynamics to get rid of the equilibration steps of the canonical

ensemble at 300K, the resulting REMD trajectory consists of at least 10’000 independent

configurations. On the top of this selection, farthest point samplingS17,S18 coupled with scalar

0-SOAP average kernel similarity measure, with 4.5Å cutoff radius and 0.2Å of Gaussian

smearing, is finally used to extract the 1000 most diverse structures that we used to provide

a diverse, challenging benchmark for the machine-learning model for the charge density.

Ab-initio computations

Ab-initio computations of the electron density (ρ) have been performed within the framework

of density functional theory, using the PBE functional.S19,S20 The SBKJC-LFK basis setS21,S22

has been used for all atoms, combined with SBKJC effective core potentialsS23 for the core

electrons of second row elements. All DFT computations have been performed in a locally

modified version of the GAMESS-US software.S24,S25
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Machine-learning parameters

All the tensorial λ-SOAP kernels for all the molecules of this work have been computed with

the following parameters:

• environment cutoff: rcut = 4.5Å

• Gaussian smearing: σ = 0.2Å

• angular cutoff: lcut = 6

• radial cutoff: ncut = 8

• environmental kernel exponent: ζ = 2

It should be noted that the angular expansion of the SOAP descriptor has nothing to do

with the expansion of the charge density field, which instead refers to the tensorial order λ

of the SOAP kernel of Ref. S1 used to encode geometric covariances of density components.

Since the density is expanded in real spherical harmonics, these tensorial kernel components

are also expressed as real quantities.

On the top of the SOAP descriptor defined above, the feature space is reduced to the 500

principal components obtained by diagonalizing the covariance matrix defined in space of

data points. The parameter η regularizing the regression has been set to 10−6.

Selection of reference environments

The 1500 reference environments defining the dimensionality of the regression problem

are defined via farthest point sampling (FPS) coupled with environmental 0-SOAP kernel

computed using the same parameters described above. Fig. S1 reports a comparison between

the charge density learning curves of butane computed with a different number of FPS

reference environments.
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Figure S1: Learning curves comparison for the charge density prediction of butane at different
numbers of reference environments M . Black dashed line represents the error brought by the
basis set representation.

As shown, all models are limited by the basis set accuracy, and not by the sparsification

of the reference environments. The case of M = 1500, that we used in the main text, is

overconverged: 500 environments leads to almost indistinguishable accuracy, and even just

100 environments lead to an error increase of less than 20%.

Comparison between datasets

In Figure. S2 we compare the learning curves for density of ethane, as obtained for the same

dataset we used in the main text, and from the dataset of Ref. S26. It can be seen that

– although comparable – errors are slightly larger for our dataset, because structures were

selected by FPS rather than randomly, and are therefore more diverse.
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Figure S2: Comparison between the density learning curves of ethane (C2H6) for our 300K
FPS selection (red) and the 300K selection used in Ref.S26 (blue, ?).

Summary of regression performance

We report here a Table that summarize the SA-GPR performances both in terms of density

and PBE exchange correlation energies at different training set sizes.

Table 1: Comparison among machine-learning (ML) performances of the four carbon dataset
at different training size N , to be compared with the corresponding basis set (BS) error.
Errors are averaged over three independent random selections of 200 test molecules.

ερ(%) εXC [kcal/mol]

BS ML BS ML

N 5 80 800 5 80 800

C2H4 1.039 1.443 1.044 1.042 0.784 18.700 1.212 0.926
C2H6 1.142 1.771 1.180 1.145 1.633 26.853 2.442 1.700
C4H6 0.975 2.442 1.025 0.990 1.503 56.286 4.004 1.912
C4H10 1.190 2.344 1.257 1.209 2.721 49.544 7.557 3.367
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